

3rd EUMMC Workshop

28th-29th May 2015 – Jyäskylä, Finland

Porto: A framework for information interchange and multi-scale fluid mechanics simulations

T. Hagelien, S. Radl, C. Kloss, C. Goniva, P.I. Dahl, S. M. Nazir, P.Fede, S. Amini

Contents

- Our Multi-Scale Simulation Strategy
- Perspectives on Data, Quality and Connectivity
- Data Centric Architecture and Simulation Framework
- Meta-Data and Structures
- Example Reading from arbitrary data sources
- Demo Live Porto-webserver dynamically generating presentation of queries from mongodb using Porto.MVC
- Summary/Conclusions

GitHub In-House b-initio *** reaction DESIGN ackage imulation **edf** XI Excel COMPUTING GMBH **CFDEM® FLUENT**® PROJECT THERMOFLOW Inc. Open∇FOAM Thermal Engineering Software *aspentech*

Software Simulators

From an Industrial Perspective

Industrial Scale Simulations inherently demand large simulation domains

- To be able to simulate micro scale effects in a large scale environment
- Lowest level of modelling produces highest amount of data
- Low level of modelling is technically infeasible due to computation time

Quality and degree of applied modelling essentially influences the accuracy of the simulation results

- In the past industrial problems were often reduced to a simple cold flow analysis
- Usage of detailed models enables consideration of multi-physics reaction
- Customer's demand implies usage of widely accepted and internationally approved models Data exchange
- Currently, the majority of applications with significant data exchange have only R&D relevance
- For industrial applications an efficient exchange between platforms is highly requested.

From a modelling perspective (CFD-DEM)

Data amount

- ~ 100MB-1GB particle/fluid data per time-step
- ~ 100GB-1TB (O(10e6) particles, CFD cells)

Quality of data

- High temporal and spatial resolution required because of complex physics (physical time-scales (1e-3 sec))
- Data exchange between different scales
- Most of particle and fluid data exchanged frequently (exchange time-step (O(1e-3 sec)).
- Needs tight on-line coupling, independent load balancing and efficient, scalable communication schemes. (many-to-many MPI)

Highly-resolved periodic CFB simulation perspective

Data Amount

 For Euler-Euler monodisperse numerical simulation, a "mesh converged" solution requires at least 17 millions of cells. For such a case, the mesh file is about 1Go and for each time the dropped solution (9 variables) files is about 600 Mo. In case of polydisperse or reactive flow the mesh size for "mesh converged" solution is bigger.

From a modelling perspective (CFD-DEM) (continued)

Solutions

Intelligent data management

Separate post-processing data from data needed to restart simulations, stored w/different frequencies

Multi-Scale Modelling

Model selected parts of physics on a continuum level (Finite Volume or Finite Element), either with offline and online coupling.

Need tool-chain for interoperability between simulation packages (Porto)

From a particle scale simulator perspecive

Data amount

- Detailed flow simulations require high spatial resolution (> 10 mio. Grid points)
- Unrealistic to save all data (O(100) Gb per simulation, and run parameter variations consisting of O(100) individual simulation runs.
- Standard tools can extract data on the fly however, they cannot record spatially-filtered statistics (of key relevance for model building i.e. "scale bridging").

Data exchange between scales

 Key issue: standardized input/output format for simulators

Concentration field in a typical heterogeneous reactor (the lines illustrate the required mesh resolution, ©TU Graz, 2015).

0.8

0.6

0.4

Particle scale simulator perspective sound ton strategy

Data amount

- Established the tool "CPPPO" for on-the-fly parallel spatial data filtering (e.g. flow velocity, concentration, reaction rates)
- Monitoring of data statistics <u>during the simulation</u> run is poss

Quality of data

- Correctness of simulator and post processing tool is ensured by an extensive test harness hosted by DCS GmbH
- Parallelization enables grid sensitivitiy study

Data exchange between different scales

- JSON-files are widely used
- Simple workflows run in Matlab[®] / Octave.
- Complex workflows are run in Porto

20.0	
applications	Merge master in C3PO_dev
i core	Major Update of sampling
atial data filtering	Major Update of sampling
in etc	Removed bugs
a examples	Major Update of sampling
is possible	Removed bugs
interface_OF	Update

CPPPO is a compilation for the on-the-fly post processing of fluid and particle data, is integrated with OpenFOAM[®], and can read CSV or HDF5-style data files.

From a plant simulator perspective

Data exchange

- Commercial software (like Thermoflow), have Excel as a platform to transfer data between different models. Using Excel brings manual intervention to transfer data (which is a challenge)
- Carbon Capture Simulation Initiative (CCSI) group has been actively carrying out research in linking of multi-scale models for CCS processes. NETL, USA developed a modular framework to connect the plant-scale model to reduced order model, optimization module and process synthesis module through Excel interface [1]

[1] Miller, D.C., et al. A modular framework for the analysis and optimization of power generation systems with CCS. in Energy Procedia. 2011

From the experimentalists perspective

• Data

- Considerable data related to Chemical-Looping Combustion (CLC) materials, moderate amount related to Reforming (CLR)
- Limited amount of data concerning successful application of nanoparticles, without coarsening, at elevated temperatures, and at the defined operating conditions for CLR.
- Quality
 - Data need often to be reproduced
 - Testing the same materials, using similar equipment at different locations, is recommended.

Offline simulator platform perspective

- Utilization of existing data (simulated or experimental)
 - Due to size
 - Formats
 - Quality/Reliability
- Lack of standard schemas and meta-data

 Need for access to a scientific data infrastructure – (data warehouses/Hadoop(?)), which supports a rich set of features for search, filtering, data upload, and retrieval.

Some considerations

- Mix of commercial, free/open source and in-house simulators
- Highly heterogeneous simulation environment (geography, hardware, OS)
- The set of simulators may change over time
- Multiple data formats
- Avoid duplication of data
- Completeness of data throughout the simulation workflow
- Allow for analysis/processing of data between workflow steps

Data Centric Architecture and Simulation Framework

Flow assurance http://www.kongsberg.com/ledaflow

Process control and industrial IT http://piscada.com/

Data Centric Architecture and Simulation Framework

OSCAR – Oil Spill Contingency and Response http://www.sintef.no/

DREAM - Dose related Risk and Effect Assessment Model http://www.sintef.no/

Data Centric Architecture and Simulation Framework

SimCoFlow - A Framework For Complex 3D Multiphase And Multi Physics Flows

Porto

Porto is connecting different simulators and scales. The novelty of the Porto framework lies in the **offline data-centric code-coupling strategy**.

Due to the complexity of (correctly, safely and maintainable) sharing data between multiple inhouse and commercial tools (proprietary and open) the new approach to the problem is building a database of meta-data that describes the data (and models) in terms of entities and relationships.

Porto

- Meta-data and data management
- MongoDB database backend
- Configure and run simulator workflows
- Extendable command-line scripting platform based on ECMAScript (QtScript/JavaScript)
- Code generation
 - During development
 - Runtime (Running workflows with automatic code-gen/compile steps)
 - Presentation (Automatic Report Generation/Dynamic Contents)
- New features (beta)
 - HDF5 support (plugin)
 - Integration of the GNU Scientific Library in the scripting environment (early version)
 - Entity translators (automatic input adaptors based on meta-meta)

High Level Tools- and Metadata overview

WP	WP2 COSI	WP3 Atomistic Modelling	WP4 DNS	WP5 Eulerian Modelling	WP6 Phenomenological modelling	WP7 Validation/ Experiments	WP8 Techno Economical Modelling
Tools	 CFDEM OpenFOAM LIGGHTS 	 REMARC DFT SPPARKS 	 ParScale CPPPO 	 AnSys Fluent Neptune CFD 	• Phenom	•	 Thermoflow ASPEN Plus ASPEN HySys
Data	 LIGGHTS- dump OpenFOAM Flow Particle 	 MD VASP extend CHEMKIN-II Data Surface CHEMIKIN Data Thermo- Chemistry 	 CPPPO Sample ParScale Sample 	 Resolved Flow Kinetics Input Reactor Performance 	 Mesh Fluid Operational Reactor Reaction Spec 	• Kinetics	 Gas Stream (ASPEN) GasStream (Thermoflow)

Requirements for metadata

- Formal specification of metadata (critical for sharing!)
- Entities as building blocks for further abstractions
 - External Links
 - Collections of entities (and relationships)
 - Construct and represent metadata semantics from more primive types

"In terms of meta-information, a vector is different from a same-type tuple. For a vector it is implied that vector algebra applies. However, in terms of data storage, a vector and a same-type tuple would be the same."

Dr. Ernst Meese - on the need to be able define a meta-level type-system

Requirements for metadata

- Imperative to separate meta-data from a given storage media
- Complete enough to be able to generate (on the basis of meta-types or instances)
 - Searchable documentation
 - Source code (here are some examples of usage)
 - Classes/Structs representing internal state
 - RPC stubs (Google Protobuf, D-BUS, CORBA IDLs, XML-RPC, ++)
 - MPI-dervied data types
 - Specialized Import/Export file-format converters
- Easy to write/read for humans
- Formal schemas for metadata should be implemented and *standardized*

Using databases in scientific computing has many benefits

- Distributed storage
- Query languages
- Support transactional data operations
- Indexed data for fast lookups
- Concurrent access
- Data redundancy
- ✓ Scalability
- Role-Based Access Control
- ✓ Support TLS/SSL encrypted communication between server and clients

Brief about MongoDB

- Currently the World leading NoSQL database
 - 4th. most popular database (<u>http://db-engines.com/</u> April/May 2015) (only beaten by Oracle and MySQL, Microsoft SQL Server)
- Document Database (not tables identified with keys)
 - The documents are JSON which maps nicely to programming language data types
- High Performance
 - Fast reads and writes
 - Powerful indexing
- Features that can potentially be utilized:
 - Large data volume aggregation through *Map-Reduce*
 - Storage of very large data sets through *sharding*
 - Connect to a Hadoop Common Scientific Data Warehouse

Read Data from an Arbitrary Source using Meta-Data


```
"name": "RVE Rectangle",
                                                         "version": "0.1-SNAPSHOT-1",
"namespace": "eu.icmeg",
"description": "For demonstrational purposes",
"properties": [
    {
       "name": "position",
       "type": "double",
       "aggregated-type": "vector",
       "unit": "m",
       "description": "Position of the origin of the RVE with respect to a global frame of reference"
   },
   {
       "name": "orientation",
       "type": "double",
       "aggregated-type": "quaternion",
       "description": "Euler angles / quaternions w.r.t global frame of reference"
   },
    {
       "name": "volume",
       "type": "double",
       "aggregated-type": "vector",
       "unit": "mm3",
       "description": "Length in x,y,z axes"
   },
   {
       "name": "NumberCells x",
       "type": "int",
       "description": "Number of grid cells in x direction"
   },
```


{

lesenintion": "Number of grid calls in y direction"

Generate code for representing the Entity as a class


```
// WARNING: This class is autogenerated, please do not edit
#pragma once
```

```
Gemerated Code
#include <ientity.h>
#include <Vector>
#include <Ouaternion>
/*! \class RVE_Rectangle
    \brief For demonstrational purposes
 */
namespace eu {
  namespace icmeg {
    class RVE_Rectangle : public porto::IEntity {
    public:
      RVE_Rectangle();
      explicit RVE Rectangle(const porto::IEntity *entity);
      explicit RVE_Rectangle(const char *id);
      virtual ~RVE Rectangle();
                                               (const char *id);
      static porto::IEntity*
                               create
                                               (porto::IDataModel *dataModel) const;
      void
                               store
      void
                               load
                                               (porto::IDataModel *dataModel);
      const char *
                               metaType
                                               ()
                                                                               const;
      static const char *
                               staticMetaType;
      Vector<double> position;
                                          /*!< Position of the origin of the RVE with respect to a ....*/
      Quaternion<double> orientation;
                                          /*!< Euler angles / quaternions w.r.t global frame of reference */</pre>
      Vector<double> volume;
                                          /*!< Length in x,y,z axes */</pre>
      int NumberCells x;
                                          /*!< Number of grid cells in x direction */</pre>
      int NumberCells_y;
                                          /*!< Number of grid cells in y direction */</pre>
      int NumberCells_z;
                                          /*!< Number of grid cells in z direction */</pre>
```

```
...
};
} // namespace icmeg
} // namespace eu
```


C++ example (external storage)

```
#include <Porto>
#include "rve_rectangle.h"
```

```
using namespace porto::ExternalStorage;
```

```
// ..
ExternalStorage storage = ExternalStorage::create()
    .driver("hdf5")
    .uri("file//localhost/path/mycase/data.h5");
```

```
auto rveRectangle = new eu::icmeg::RVE_Rectangle();
storage.registerInstance(rveRectangle);
storage->read();
```


	Porto - Iceweas	el	
 Porto Porto Ocalhost: 8080/porto/index.html 		✓ C S × keyboard	Q ☆ 自 🖡
Connect to MongoDB			
mongodb localhost			
meta			
entities			
Connect			

			Entity – Iceweasel
Sentity	×+		
Calhost:	8080/showentity.isc	ript?id=555f1c	1996401f11442863b1&scheme=mongodb&host=lc 🗸 😋 😵 keyboard 🔍 🙀 自 🖡 🏫 🗄
• • • • • • • • • • • • • • • • • • •	oooo,snowenacy.jsei	ipenia - 5551120.	
Entity De	escription: E	xtractior	ו (0.1)
			Entity: Extraction
Name	Namespace (context)		Version
Extraction	eu.nanosim.vasp	0.1	
			Description
			Dimensions
Name			Description
nAtoms	Number of atoms	3	
			Properties
Name	Туре	Dims	Description
surface_name	string		The name of the surface - atom types (and orientation)
atoms	string		List of atom type(s) (chemical symbol) and number of this this type excluding the surface atoms
atom_species	string		Chemical formula excluding surface atoms in alphabetical order with H and C placed first
state	string		Refers to the state of the molecule system - surface, gasphase, adsorbed state, transition state
site_name	string		The adsorption or transition site(s) of the atom(s) or molecule(s) for the adsorbed or transition state
total energy	float		The total energy of the system from the DFT calculation
frequencies	float		List of the frequencies calculated for the system
cell	float	[3,3]	3x3 array with the lattice parameters of the system corresponding to the x, y and z directions
positions	float	[nAtoms,4]	List of the atom type followed by its position in the x, y and z direction.
info	string		Optional - any relevant info can be added here

			Entity - Ice
Sentity	×	÷	
e localhost:	8080/showentity	/.jscript?id=55	5f2a0896401f12934b4b21&scheme=mo
Entity Descri	ption: Resolv	edFlow (1.0)-RC1)
		()	
		Entity: Resolve	edFlow
Name ResolvedFlow	Namespace (context) org.nanosim.fluen	t 10-BC1	Version
Resolvedi Iow	org.nanosna.naon	Description	
	.	Dimensior	
Name nCells			Description
nSpecies			
	1	Properties	
Name pressure	Tjpe double	Dims [nCells]	Description Pressure for each cell
temperature	double	[nCells]	Temperatures for each cell
velocity_gas	double	[nCells, 3]	Velocity of the gas phase for each cell
voidfraction velocity_granular	double double	[nCells] [nCells, 3]	Volume fraction for each cell Velocity of the granular phase for each cell
species_massfraction			es] Mass fraction of each species for each cell
Formal Meta-Data Sch	nema (ISON)		
"name": "Resolve "version": "1.0	RC1		
"namespace": "o "description": "dimensions": [rg.nanosim.fluent", "",		
{ "name":	"nCells",		
"descrij },	otion": ""		
{ "name": "daaaari	"nSpecies",		
"descri }],	otion": ""		
"properties": [{			
"name": "type":	"pressure", "double",		
"unit": "dims":	"m2/s2", [ells"		
"nu	2015"		
"descrip }.	otion": "Pressure f	or each cell"	
}, { "name":	"temperature",		
"type": "unit": "dims":	"double", "K",		
	ils"		
"descri	otion": "Temperatur	es for each cel	l"

"name": "velocity_gas", "type": "double", "upit": "m/c"

Conclusion

- Hybrid coupling strategy
 - Large data amounts.
 - Frequent exchange/ iterative -> online coupling
 - Offline coupling
- The role of Porto
- Metadata Requirements
- Applications of formal metadata schemas

