

HIGH PARALLEL COMPUTING OF REACTIVE PARTICULATE FLOWS IN COMPLEX GEOMETRIES

P. Fede^{1,2}, L. Bennani^{1,2}, H. Neau^{1,2}, C. Baudry³, J. Laviéville³

Z. Hamidouche^{1,2}, E. Masi^{1,2}, O. Simonin^{1,2}

1 Université de Toulouse; INPT, UPS; IMFT; 31400 Toulouse, France

2 CNRS; Institut de Mécanique des Fluides de Toulouse; 31400 Toulouse, France

3 EDF R&D, Fluid Dynamics, Power Generation and Environment Department-6, Quai Watier 78401 Chatou, France

ACKOWNLEDGEMENTS

 A Multiscale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials (NanoSim)

 Industrial steam generation with 100% carbon capture and insignificant efficiency penalty - Scale-Up of oxygen Carrier for Chemical-looping combustion using Environmentally SuStainable materials (SUCCESS)

MOTIVATIONS

Prediction of industrial dispersed two-phase turbulent flow

Vertical coal mass flow rate: $\alpha_p \rho_p W_p$ Time = 20.0 s. 450 50 10 -1 -10 -160 [kg.s⁻¹.m⁻²] Simulation NEPTUNE_CFD

Industrial applications:

Coal fired furnaces

CFB boilers

Polymerization reactor

FCC riser

IC engine (liquid fuel injection)

Solid rocket booster

Separation

.....

Turbulent two-phase flows:

Fluid-particle interaction (mass, momentum and energy transfer)

Particle-particle interaction (collision, agglomeration, attrition)

Particle-wall interaction (inelastic bouncing with friction, deposition)

MOTIVATIONS

MATHEMATICAL MODEL

EULER-EULER POLYDISPERSE APPROACH

Mass balance equation

$$\frac{\partial}{\partial t}(\alpha_k \rho_k) + \frac{\partial}{\partial x_j}(\alpha_k \rho_k U_{k,j}) = 0$$

Momentum balance equation

$$\alpha_k \rho_k \left[\frac{\partial U_{k,i}}{\partial t} + U_{k,j} \frac{\partial U_{k,i}}{\partial x_j} \right] = -\alpha_k \frac{\partial P_g}{\partial x_i} + \alpha_k \rho_k g_i + \sum_{q=g,p} I_{q \to k,i} - \frac{\partial \Sigma_{k,ij}}{\partial x_j}$$

Gas-particle momentum transfer

$$I_{g \to p, i} = -I_{p \to g, i} = -\alpha_p \rho_p \frac{V_{r, i}}{\tau_{gp}^F}$$

$$I_{g \to p, i} = -I_{p \to g, i} = -\alpha_p \rho_p \frac{V_{r, i}}{\tau_{gp}^F} \\ \begin{cases} \frac{1}{\tau_{gp}^F} = \frac{3}{4} \frac{\rho_g}{\rho_p} \frac{\langle |\mathbf{v}_r| \rangle}{d_p} C_D & \text{particle relaxation time} \\ Re_p = \frac{\alpha_g d_p \left\langle |\mathbf{v}_r| \right\rangle}{\nu_g} & \text{particle Reynolds number} \\ V_{r, i} = U_{p, i} - U_{g, i} & \text{mean gas-particle relative velocity} \end{cases}$$

Particle-particle momentum transfer

$$I_{q \to p,i} = -\frac{m_p m_q}{m_p + m_q} \frac{1 + e_c}{2} \frac{n_p}{\tau_{pq}^c} H_1(z) \left(U_{p,i} - U_{q,i} \right) \qquad \qquad \frac{1}{\tau_{pq}^c} = 4n_q g_0 \pi d_{pq}^2 H_0(z) \sqrt{\frac{2}{3\pi}} q_r$$

EULER-EULER POLYDISPERSE APPROACH

Effective solid stress modeling

$$\Sigma_{p,ij} = \left[P_p - \lambda_p \frac{\partial U_{p,m}}{\partial x_m} \right] \delta_{ij} - \mu_p \left[\frac{\partial U_{p,i}}{\partial x_j} + \frac{\partial U_{p,j}}{\partial x_i} - \frac{2}{3} \frac{\partial U_{p,m}}{\partial x_m} \delta_{ij} \right]$$

$$\mu_p = \alpha_p \rho_p (\mathbf{v}_p^{kin} + \mathbf{v}_p^{col}) \quad \begin{cases} \mathbf{v}_p^{kin} = \left[\frac{1}{2} \tau_{gp}^F \frac{2}{3} q_p^2 \left(1 + \hat{\alpha}_p g_0 \Phi_c\right)\right] \times \left[1 + \frac{\tau_{gp}^F \sigma_c}{2 \hat{\tau}_p^c}\right]^{-1} \\ \mathbf{v}_p^{col} = \frac{4}{5} \hat{\alpha}_p g_0 (1 + e_c) \left[\mathbf{v}_p^{kin} + \hat{d}_p \sqrt{\frac{2q_p^2}{3\pi}}\right] \end{cases}$$

Polydispersion (Batrak et al., 2005)

$$\hat{\alpha}_p = \sum_{q \neq p} \alpha_p \frac{2m_q}{m_p + m_q} \left[\frac{d_{pq}}{d_q} \right]^3 \qquad \qquad \hat{d}_p = \frac{1}{\hat{\alpha}_p} \sum_{q \neq p} \alpha_q \frac{d_{pq}^4}{d_q^3} \frac{2m_q}{m_p + m_q} \qquad \qquad \frac{1}{\hat{\tau}_p^c} = \sum_{q \neq p} \frac{2m_q}{m_p + m_q} \frac{1}{\tau_{pq}^c}$$

Turbulence modeling

- Laminar for the gas or k-epsilon
- Equation on the random kinetic energy for each particle class q_p^2 (polydisperse model)

Neau, Fede, Laviéville, Simonin, Fluidization XIV, 2013

NEPTUNE CFD computation efficiency: Moving wall: U=0.1m/s Inlet Inlet Moving wall 64 24 56 ----SC1: Hyperion ----SC2: Curie Fat Nodes 20 --- Ideal speedup -Ideal speedup 48 16 dnpaads 32 24 dnpads 12 3,150,716 cells 38,000,000 cells ref =128cores 16 ref =8cores 8 0 512 1024 1536 2048 2560 3072 192 256 64 128 320 384 448 512 Number of cores Number of cores

NEPTUNE CFD computation efficiency:

Full mesh \approx 100,000,000 cells

$$\Delta_x \approx \Delta_y \approx \Delta_z \approx 1 cm^3$$

NEPTUNE CFD computation efficiency:

NEPTUNE CFD computation efficiency:

Why performing such a massive simulation?

→ Not only to do nice videos

What can be learn from such a numerical simulation?

Understanding of the local gas-particle interactions

Development of filtered approach

EFFECT OF UNRESOLVED SOLID STRUCTURES

How to analyze/model the effect of subgrid solid structure

Numerical simulation of large-scale industrial CFB

Limitation of computational resources leads to use relatively too coarse mesh for detailed prediction of the meso-scale structure

Bad prediction of the meso-scale structures

Dramatic influence on bed hydrodynamics (solid flux, bed height, ...)

Mesh independent results useful for:

Dave lapment define or the present half own in girl a perform

• mauemantical simulation with a reasonable mesh

MODEL VALIDATION

PERIODICAL CIRCULATING FLUIDIZED BED

 $Fr^{-1} = 0.032$ (128 × 128×1024=16,777,216)

 $Fr^{-1} = 0.128$ (32× 32×256=262,144)

With Subgrid model

 $Fr^{-1} = 0.128$ (32× 32×256=262,144)

More complex geometries

POLYPROPYLENE POLYMERIZATION REACTOR

Geometry from Soares, J. B., & McKenna, T. F. (2013). Polyolefin Reaction Engineering. John Wiley & Sons

FIRST APPROACH

In a first approach the domes have not been considered then the symetry of the geometry allows to solve the equation in a rotating frame

- Add coriolis and centrifugal forces in gas and solid momentum equations
- Projection of the gravity
- Rotating moving walls with imposed velocity

ROTATING FRAME

Solid Volume Fraction

HYBRID APPROACH

With the domes the first approach cannot be used, then an hybrid method has been developed.

- Two meshes are used: one static (stator) and one rotating (rotor)
- Real-time non-coincidence mesh joining

Hybrid Approach — Test case

Time = 0.050 s

CONCLUSIONS

- Numerical simulation of dense fluidized bed of an industrial scale geometry is possible up to 100 millions of cells
 - This allows to understand the local gas-particle interactions
 - These are "reference simulations" for model development (filtered approach)
- Rotating mesh opens the doors for the numerical simulation of horizontal reactor for polypropylene polymerization
 - Method validation is still in progress (rotating drum)
 - Needs model for frictional effects
- Additional physics