

1

Grant Agreement No.: 604656

Project acronym: NanoSim

Project title: A Multiscale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes

using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

THEME: [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for

nanomaterials and systems by design

Starting date of project: 1st of January , 2014

Duration: 48 months

WP N°

Del.

N°

Title Version Lead

beneficiary

Nature

Dissemin.

level

Delivery date

from Annex I

Actual

delivery date

dd/mm/yyyy

1 7 Porto Automated Test System 0.2 SINTEF Report PU 12 05/06/2015

2

1 Executive Summary
The Porto Automated Test System (ATS) is a plugin for the

Portoshell scripting environment for managing the

execution of workflows. The test system can utilize all

features of the Porto platform in the task of running

scheduled computations - such as employing the

code/text generator, available post-processing plugins

(where available), managing data with the MongoDB[1]

backend and off course execute custom scripts. The

workflow manager is built on the powerful State Machine

Framework in Qt5[2] which proves a hierarchical finite

state machine (HSM). The execution algorithm is based on

the State Chart XML (SCXML)[3], however for harmonizing

the methodology on the Porto platform we provide a way to

define generic State Charts in the JavaScript Object Notation

(JSON)[4] format. The workflow implementation is multi-

threaded and allows the execution of concurrent workflows with automatic utilization of all available

processor cores[5]. For reporting the results of a workflow execution the Porto.MVC module may be

used for generating e.g. HTML, LaTeX with support of tools such as gnuplot, Google Chart[6], ++.

2 The Porto ATS
The current Porto ATS (v0.2) is based on the SOFT5 ATS (SINTEF internal, LGPL licensed) that has

been employed as a testing environment for the commercial software LedaFlow[7]. This test system is

running nightly concurrent tests on hundreds of test-cases and is used for automatic generation of

detailed test reports in the PDF-format and summary reports in HTML5 (Figure 2). The Porto ATS is

designed to be a more generic tool that supports complex workflows with conditional transitions

(branches and loops) based on a Hierarchical State Machine. This has been necessary to support the

workflows in the currently defined use cases. Since the Hierarchical Finite State Machine is

theoretically “Turing Complete” [8] there are no technical limitations to the complexity of the

workflows possible to define, and should therefore suffice for all possible future configurations.

Figure 1 - A State Chart (UML) defining a workflow with a
conditional transition

3

2.1 Test System Requirements
The Porto ATS is provided as a generic test-runner for everything from very simple to complex

workflows with conditional transitions and loops. This chapter outlines some of the key requirements

of the testing environment.

2.1.1 Run a single workflow on multiple instances

One key concept of the data centric architecture is that the simulators are adapted to the data and

only a unique identifier (UUID[9]) needs to be passed to

the simulation code (or wrapper) as a command

line argument. The unique identifier points to an

entity or a collection. When the simulator receives

the UUID, it is able to read and interpret the data

contents and start the simulation. When multiple

simulators are connected in a workflow, only UUIDs are passed

between the processes, not files. The initial data that sets up a

"scenario" or "case" must exist. The ATS is able to run a set of

scenarios/cases using the same workflow description.

2.1.2 Automatic scalability to the number of processes available

The ATS needs to be able to adjust the number of threads used for running concurrent workflows

according to the number of processor cores available. In addition it needs to support for a manual

override.

2.1.3 Fully integrated in the Porto scripting shell environment

There will often be a need to make local adjustments to a given testing environment and having the

entire scripting language will all features and plugins available is a powerful feature. Extensions to

the scripting environment will become immediately available for the ATS.

2.1.4 Support for regression testing, acceptance testing, performance tests and system

tests.

The ATS is a tool to support the

development, deployment and

maintenance phases of the simulators.

During development it often required to

identify what impact a change will have

on results, and compare this with

previous versions (regression testing).

Other pre-deployment tests are

acceptance tests that compare results

to previously defined acceptance

criteria. Performance tests and system

tests can be performed at any stage in

the lifetime of software system.

Figure 2 - Generated Summary Report

4

2.1.5 Explicit declaration of the State Chart

In order to effectively work and maintain the scriptable test-cases it is imperative that the work-flow

definition and scenario-definitions are separated from the test runner. This allows for different

workflows to be created, stored and run independently without having to maintain multiple copies of

specially tailored scripts. It will also be possible (if applicable) to run the same scenarios on different

workflow definitions.

See chapter [ref 2.3 State Machine Schema in JSON] for the definition of the formal schema for

defining state charts.

2.2 Prerequisite
Before the Porto ATS can be employed the following prerequisites need to be met:

 Meta-Data – All neccesary meta-data has been registered

 Collections – All collections of entities and interdependencies has been identified

 Storage – The data backend must be available for all processes in the workflow and the

necessary driver(s) are provided.

 Workflows - The workflows must be defined (see next chapter)

 The initial case definitions (scenarios) are defined

 The ATS plugin is compiled and successfully loaded in the Portoshell environment

2.3 State Machine Chart Schema in JSON
The W3C has Proposed a Recommendation (30th april 2015) for State Chart extensible Markup

Language (SCXML). A sensible choice would be to follow this recommendation. However, as we've

settled on JSON instead of XML as our data-interchange format due to its many advantages, we are

basing our State Charts on JSON (semantically equal to SCXML). There are no limiting factors of

supporting both (or make a switch) in the future.

The main idea of the State Chart is to identify how signals

(triggers) cause a transition from one state to another

(Figure 3). In our context the state represents the execution

of a given simulation in our workflow. Based on the success

or variable outcomes of a simulation we can define different

possible transitions that will lead to the execution of a

different (or the same) simulator.

In the next section we've included the formal schema for

declaring state chart definitions in JSON

Figure 3 - States and transitions

5

2.3.1 Formal JSON-schema for State Chart Definitions
{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "id": "http://jsonschema.net",

 "type": "object",

 "properties": {

 "name": {

 "id": "http://jsonschema.net/name",

 "type": "string"

 },

 "version": {

 "id": "http://jsonschema.net/version",

 "type": "string"

 },

 "initial": {

 "id": "http://jsonschema.net/initial",

 "type": "string"

 },

 "senders": {

 "id": "http://jsonschema.net/senders",

 "type": "array",

 "items": {

 "id": "http://jsonschema.net/senders/0",

 "type": "string"

 }

 },

 "states": {

 "id": "http://jsonschema.net/states",

 "type": "array",

 "items": {

 "id": "http://jsonschema.net/states/0",

 "type": "object",

 "properties": {

 "id": {

 "id": "http://jsonschema.net/states/0/id",

 "type": "string"

 },

 "final": {

 "id": "http://jsonschema.net/states/0/final",

 "type": "string"

 },

 "transitions": {

 "id": "http://jsonschema.net/states/0/transitions",

 "type": "array",

 "items": {

 "id": "http://jsonschema.net/states/0/transitions/0",

 "type": "object",

 "properties": {

 "sender": {

 "id": "http://jsonschema.net/states/0/transitions/0/sender",

 "type": "string"

 },

 "event": {

 "id": "http://jsonschema.net/states/0/transitions/0/event",

 "type": "string"

 },

 "target": {

 "id": "http://jsonschema.net/states/0/transitions/0/target",

 "type": "string"

 }

 }

 }

 }

 }

 }

 }

6

 },

 "required": [

 "name",

 "version",

 "initial",

 "senders",

 "states"

]

}

7

2.4 Porto ATS API
The Ats.Workflow provides a high-level API that simplifies the process of writing multi-threaded

workflow execution applications. It is based on the Qt Concurrent module[10] for multi-threading, the

Qt State Machine Framework[2] for the execution of the workflows and the QtScript module[11] for

embedding everything into the scripting platform.

Ats.Workflow: public

run (workflow, testCases, callbackFn) Execute the workflow on the given
testCases and Invokes the callbackFn.

environment JS-map containing environmental
variables that will be available for the
processes during the execution of the
workflow

Watcher is a monitoring class (Based on the QFutureWatcher[12] class in Qt5) that uses signals and

slot mechanisms for asynchronous status updates on the items it is watching. It allows for callback

functions that gets invoked when the watcher emits signals[13].

Watcher: [public slots]

cancel() Cancels the asynchronous computation

pause() Pauses the asynchronous computation.

resume() Resumes the asynchronous computation.

togglePaused() Toggles the paused state of the
asynchronous computation.

[signals]

cancelled() The watched job is cancelled.

finished() The watched job finishes.

paused() The watched job is paused.

progressRangeChanged (min, max) The progress range changes to [min,max].

progressTextChanged (progressText) The progress text has changed.

progressValueChanged (progressValue) The progress value has changed.

resultReadyAt (index) The job reports ready result.

resultsReadyAt (beginIndex, endIndex) Reports multiple ready results.

resumed() The watched job is resumed.

started() The watched job has started.

8

2.5 Script for running automated testing
The following script is an example of a generic workflow test runner script.

#!/usr/bin/env portoshell

/*

 ___ _

 / _ ___ _ __| |_ ___

 / /_)/ _ \| '__| __/ _ \

/ ___/ (_) | | | || (_) |

\/ ___/|_| _____/ ATS(v.0.2)

A generic script for running concurrent test-scenario work-flows.

*/

__main__ = function (args)

{
 /* Define a local event-loop as we're running asynchronously.*/

 var eventLoop = new EventLoop();

 /* Parses and reads the file containing the State Chart JSON. */

 var workflow = new StateChart(args[1]);

 /* The test cases contains data source URI, UUID and driver options

 (db name, collection name) */

 var testcases = new readTestCases(args[2]);

 /* Set environmental variables in the process execution scope. */

 Ats.Workflow.environment["ATS_PATH"] = "/var/porto/workspace/bin";

 /* Run the work flow */

 Ats.Workflow.run (workflow, testcases, function () {

 /* Define asynchronous call-back functions that are triggered

 by the watcher-object signals */

 watcher["started()"].connect (function (){

 console.log ("Started");

 });

 watcher["finished()"].connect (function (){

 console.log ("Done");

 evenLoop.quit(); /* Leave the event loop */

 });

 watcher["resultReadyAt(int)"].connect (function (index){

 console.log ("Workflow " + index + " finished");

 });

 });

 /* Start the event loop*/

 return eventLoop.exec();

}

9

2.6 Running the ATS
The Porto ATS is intended to be executed from the command line, but is equally suited for begin run

from a Continuous Integration System such as Jenkins or as a web-service through the established

Common Gateway Interface (CGI) protocol.

2.7 Reporting
The ATS doesn't include a reporting tool, but the ability to query databases and generate text

documents (Porto.MVC) makes for an easy utilization of many available reporting tools. One possible

application of this can be the generation of HTML5 Google Chart enabled Documents, that not only

allows for displaying a rich variety of graphs and tables, but also includes interactive widgets for

filtering the displayed data. Other options are to generate DocBook/AsciiDoc or LaTeX

documentation with graphics produced with tools such as GNUPlot[14] and Graphviz[15].

During the workflow it recommended to transfer the relevant computational data to the "internal"

database (MongoDB) for reporting. This enables the data for 1-to-1 comparison when the same

scenarios are simulations are re-run with updated versions of the software. The reporting step can be

included as part of the workflow, or as a standalone tool that is invoked when needed. The latter

option can even be incorporated in a web-application for improved usability.

3 Summary
The Porto ATS is a generic and powerful workflow runner aimed towards developers that needs to

run and re-run large batches of predefined scenarios and workflows. The workflow-runner is

implemented on an established Hierarchical State Machine Framework and embedded in the

Portoshell scripting utility. The current version is premature for production work, but is actively

improved.

10

1. MongoDB Inc. The MongoDB 3.0 Manual. 2015; Available from:
http://docs.mongodb.org/manual/.

2. Qt Company Ltd. The State Machine Framework. 2015; Available from: http://doc.qt.io/qt-
5/statemachine-api.html.

3. W3C. State Chart XML (SCXML): State Machine Notation for Control Abstraction. 2015;
Available from: http://www.w3.org/TR/scxml/.

4. D. Crockford. RFC 4627 - The application/json Media Type for JavaScript Object Notation
(JSON). 2006; Available from: http://www.ietf.org/rfc/rfc4627.txt.

5. Margaret Rouse. Definition: multi-core processor. 2007 [cited 2013 March 6]; Available from:
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci1015740,00.html.

6. Google Inc. Display live data on your site. Available from:
https://developers.google.com/chart/.

7. Technologies, K.O.G. Flow Assurance. Available from:
http://www.kongsberg.com/en/kogt/products%20and%20services/flow%20assurance/.

8. Belzer, J.H., Albert George; Kent, Allen, Encyclopedia of Computer Science and Technology.
Vol. 25. 1975: USA: CRC Press.

9. Society., T.I., RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace. 2005.
10. Qt Company Ltd. Qt Concurrent. 2015; Available from: http://doc.qt.io/qt-5/qtconcurrent-

index.html.
11. Qt Company Ltd. Qt Script. 2015; Available from: http://doc.qt.io/qt-5/qtscript-index.html.
12. Qt Company Ltd. Qt Documentation. 2015; Available from: http://doc.qt.io/qt-5/.
13. Qt Company Ltd. Signals & Slots. Available from: http://doc.qt.io/qt-5/signalsandslots.html.
14. GNU. Gnuplot Homepage. 2015 [cited 2015 June 15]; Available from:

http://www.gnuplot.info/.
15. Arif Bilgin, et al. http://www.graphviz.org/. 2015 [cited 2015 June 5].

http://docs.mongodb.org/manual/
http://doc.qt.io/qt-5/statemachine-api.html
http://doc.qt.io/qt-5/statemachine-api.html
http://www.w3.org/TR/scxml/
http://www.ietf.org/rfc/rfc4627.txt
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci1015740,00.html
https://developers.google.com/chart/
http://www.kongsberg.com/en/kogt/products%20and%20services/flow%20assurance/
http://doc.qt.io/qt-5/qtconcurrent-index.html
http://doc.qt.io/qt-5/qtconcurrent-index.html
http://doc.qt.io/qt-5/qtscript-index.html
http://doc.qt.io/qt-5/
http://doc.qt.io/qt-5/signalsandslots.html
http://www.gnuplot.info/
http://www.graphviz.org/

