

1

Grant Agreement No.: 604656

Project acronym: NanoSim

Project title: A Multiscale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes

using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

THEME: [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for

nanomaterials and systems by design

Starting date of project: 1st of January , 2014

Duration: 48 months

WP N°

Del.

N°

Title Contributors Version Lead

beneficiary

Nature

Dissemin

.

level

Delivery date

from Annex I

Actual

delivery date

dd/mm/yyyy

1 6 A MongoDB connectivity

implementation in the

Porto Scripting

Environment

Thomas

Hagelien

0.1 SINTEF Report PU 31/06/2014 31/06/2014

2

1 Executive Summary
MongoDB is an open-source database, designed for handling very large amounts of data. The key

role of MongoDB in the NanoSim project is to act as our common central database, storing

everything from simulation results to meta-data.

In NanoSim WP1 we've employed the MongoDB C-Driver and made a wrapper to Qt/C++. Based on

this we've also created a wrapper to our scripting engine in the Porto Scripting Shell, and deployed

the implementation as a plugin, using the Porto Plugin Interface.

2 MongoDB Driver

2.1 Qt/C++ Wrapper
The C++ wrapper technique is quite naïve and straight forward. Each mongoc structure type is

represented with its own C++ class.

Example:

The current implementation of the wrappers is available at GitHub:

https://github.com/NanoSim/Porto/tree/master/portostorage/src/mongo/driver

2.2 Script wrappers
In order to make the MongoDB driver available from script, we had to create an additional wrapper-

layer and build a library that can be loaded runtime for the Porto Scripting Shell Environment

(plugin).

C API:

mongoc_client_t

functions

mongoc_client_get_collection()

mongoc_client_get_database()

mongoc_client_get_gridfs()

…

Qt/C++ API:

class Client : public QObject

Methods

collection()

database()

gridFS()

https://github.com/NanoSim/Porto/tree/master/portostorage/src/mongo/driver

3

Since ECMAScript is a prototype-oriented language, the process of exposing a C++ class to

ECMAScript is register the instance of an object, and register its interfaces (methods) as prototypes

of that object. In our case this is trivial and the plugin library is a very thin wrapper layer. The current

version (0.1) implementation is available on GitHub:

https://github.com/NanoSim/Porto/tree/master/portotools/src/plugins/mongo

2.3 Usage
Using the MongoDB classes are now straight forward.

#include <QObject>

#include "isoftplugin.h"

class QScriptEngine;

class MongoPlugin : public QObject

 , public ISoftPlugin

{

 Q_OBJECT

 Q_PLUGIN_METADATA(IID "org.sintef.soft/ISoftPlugin/0.1")

 Q_INTERFACES(ISoftPlugin)

public:

 virtual ~MongoPlugin();

 virtual void registerPlugin(QScriptEngine *engine) override;

}; // class MongoPlugin

// Inserts a JSON-document into the MongoDB database

var client = new MongoClient();

var collection = client.collection('dbname', 'collectionName');

collection.insert({somedoc:"value", foo: "bar"});

https://github.com/NanoSim/Porto/tree/master/portotools/src/plugins/mongo

