NanoSim
NanoSim

Grant Agreement No.: 604656

il

Project acronym: NanoSim

-

- A Multi-scale Simulation-Based Des:ign Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

Project title: A Multiscale Simulation-Based Design Platform for Cost-Effective CO, Capture

Processes using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

THEME: [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for
nanomaterials and systems by design

Starting date of project: 1* of January, 2014

Duration: 48 months

WP Del. Title Version Contributor Lead Dissemi Deliver Actual
N° N° s beneficiary Nature n. y date delivery
level from date
Annex
1 dd/mmlyyyy
1 D1.5 Porto API 1 Thomas F. SINTEF Other PU 31/01 31/09/201
documentation Hagelien /2014 4

NanoSim - A Multi-scale Simulation-Ba

1 Description

The current implementation of Porto supports different ways of extending the framework. The
PortoShell is a key feature that is built on a mature and feature rich scripting language suitable for
writing general purpose scripts, and serves as the main interface for Porto. Many of the features of
Porto are therefore implemented as extensions for the scripting language. When the framework is
extended with support for new file formats, model implementations etc., it is imperative that this
functionality is made available to the scripting platform.

The indented readers of this document are software developers that want to extend the framework,
or simply wants use the existing functionality.

Porto is a data-centric framework with great focus on entities and their relationship. Entities are
either stored in the internal storage (database), represented in source code as structs, classes or
modules, or weakly represented through references to external data sources (external storage). The
physical representation of an external storage is dictated by the different simulators. Adaptors for
these formats are necessary for being able to retrieve (and write) data for use in a multiscale
workflow in a generic way. Ideally it should be possible to define a workflow between scales without
making any presumptions about the involved simulation tools and file formats. The processes involved
should simply share a single reference (ID) that refers to a collection of data that the individual
adaptors and driver will be able to work with.

One possible way of working with Porto is to map out the entire state of the software application to
be developed and represent this as a collection of entities. Based on the meta-data schemas that
describes the format of the entities, it is possible to generate source code that represents the
entities in a native way of the target programming language. For instance, in C, an entity would
perhaps best be represented as struct, in Java, C# and C++ as a class, in Fortran as a Type within a
modaule, etc. The generated code could include all communication with the framework and memory
management such as caching, allocation and deallocation.

This document describes the current state of the different application programming interfaces (API) in
Porto - for making use of the existing functionalities, as well as creating custom extensions.

2 Porto Plugin API

The Porto Plugin API defines the interface for creating custom extensions in the language of C++. This
API will rely heavily on the Qt Plugins API. Recommended reading is "How to Create Qt Plugins".

2.1 ISoftPlugin

Brief Description
The ISoftPlugin class is the abstract interface that is needed for creating plugins for extending
SoftShell.

Public Functions
virtual void registerPlugin(QScriptEngine *engine) = 0

http://www.google.com/url?q=http%3A%2F%2Fqt-project.org%2Fdoc%2Fqt-5%2Fplugins-howto.html&sa=D&sntz=1&usg=AFQjCNHA_dOLSeNQR-vhtnSeBeKVy2oSyg

Detailed Description
Extending SoftShell with plugins requires the use of the QtPlugin framework.

The ISoftPlugin is the abstract interface class that all plugins needs to derive. The interfaces is built on
the QtPlugin framework and is identified by the string literal
"org.sintef.no/ISoftPlugin/0.1" asitis compatible with the SOFT5-framwork interface.

Since the only purpose of the plugin is to extend the scripting engine (QScriptEngine) the only callback
function is registerPlugin which lets the plugin modify properties of the current engine object.

To include the interface class in your code, include the following statement in the .pro —file:
include($$(PORTOBASE)/../portotools/src/plugins/common/common.pri)
API

registerPlugin (QScriptEngine *engine) -> void
A callback function called by framework that passes a pointer to a QScriptEngine object.

Creating a new plugin-class
This example shows how a class derived from QObject can also be declared as a plugin:

#include <QObject>
#include <QScriptEngine>
#include "isoftplugin.h”

class MongoPlugin : public QObject, public ISoftPlugin
{
Q_OBJECT
Q_PLUGIN_METADATA(IID "org.sintef.soft/ISoftPlugin/0.1")
Q_INTERFACES(ISoftPlugin)
public:
virtual ~MongoPlugin();
virtual void registerPlugin(QScriptEngine *engine) override;

}s

3 External storage API

The External Storage API defines the generic interface to all external file formats that will be used in
the Porto framework. By "external" we mean the 3™-party and in-house formats used by different
simulator software. The only requirement of the external file format is that data is transformable into
a keywork-value type of data model. The keyword should be specified by a (unique?) text string
representing property or group, and value being a set of data (primitives, lists or arrays).

Note: The current interface is very immature and will need to be developed further to be more
suitable for real world implementations.

The next version of this APl should include classes that supports the data model by defining at leag
the following classes:

IExternalStorageArray
|IExternalStorageObiject
|IExternalStorageValue
|IExternalStorageError

3.1 IExternalStorageDriver

The IExternalStorageDriver class is an interface (true virtual abstract class) that defines the API for all
derivative drivers to be implemented.

Functions

IExternalStorageDriver (IExternalStorageDriver *driver)
bool open (char const *url) [virtual]
string name() const [virtual]
string version() const [virtual]
string readString (char const *propertyName) [virtual]
bool readDouble (char const *propertyName, double *target) [virtual]
bool readInt (char const* propertyName, int *target) [virtual]
bool readDoubleArray (char const * propertyName, int rank,
int const *dimensions, double *target) [virtual]
bool readIntArray (char const * propertyName, int rank,
int const *dimensions, int *target) [virtual]

int getRank (char const *propertyName) [virtual]
bool getDimensions (const char *propertyName, int *target) [virtual]
int getNumProperties() const [virtual]

bool getPropertyName (int index, char *target) const [virtual]

API

This is an interface class and must be derived/specialized for each
external driver to be embedded into the Porto framework. All virtual
methods must be overridden and implemented in the derivative classes.

IExternalStorageDriver ()
Constructor.

I - f

- A Multi-scale Simulation-Based Des:ign Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

NanoSim

bool open (char const *url) [virtual]
Connect to data source indicated by url.

string name () [virtual]
Return the current driver name.

string version () [virtual]
Return the current driver version.

string readString(char const *propertyName) [virtual]
Get string value for item with the key propertyName.

bool readDouble (char const *propertyName, double *target) [virtual]
Get double value for item with the key propertyName. The value is stored in
target. Returns true if successful, otherwise returns false.

bool readDoubleArray (char const * propertyName, int rank, int const
*dimensions, double *target) [virtual]

Get array of doubles values for the item with the key propertyName. The
rank defines number of dimensions the array or matrix has. Dimensions
receives the actual size of each rank. The values are stored in target.
Returns true if successful, otherwise returns false.

bool readIntArray (char const * propertyName, int rank, int const
*dimensions, int *target) [virtual]

Get array of integer values for the item with the key propertyName. The
rank defines number of dimensions the array or matrix has. Dimensions
contains the actual size of each vector. The values are stored in target.
Returns true if successful, otherwise returns false.

int getRank(char const *propertyName) [virtual]
Get the rank of the array or matrix value for the item with the key
propertyName.

bool getDimensions(char const *propertyName, int *target) [virtual]
Get the dimension sizes for each vector of the array or matrix value for
the item with the key propertyName.

J Il =, L s
- A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Ca

pture Processes using Nano-Structured Materials

NanoSim

int getNumProperties() [virtual]
Get the number of properties defined in the current dataset.

bool getPropertyName(int index, char *target) [virtual]

Get the name of the property with index index. The resulting string is
copied to the buffer target. Returns true if successful, otherwise returns
false.

3.2 ExternalStorage

Functions

void registerExternalStorageDriver (char const *name,
IExternalStorageDriver *driver) [static]

ExternalStorage addExternalStorageDriver (const char *name) [static]

IExternalStorageDriver *driver()

API
This is the content class of the external storage driver. This class follows the software design pattern
known as strategy pattern.

void registerExternalStorageDriver(char const *name,
IExternalStorageDriver *driver) [static]
Register an external storage driver in the framework.

ExternalStorage addExternalStorageDriver(char const *name) [static]
Create a new ExternalStorage embedded with the driver registered as name.

IExternalStorageDriver *driver()
Returns the pointer to the currently embedded driver.

4 PortoShell API

The following Porto standard build-in modules are extensions to the standard ECMAScript Language
and provide generic basic functionality.

Module Description

Process Module Execute and communicate with external programs
EventLoop Module Running and leaving even loops

UDP Socket Module Provides UDP socket communication

Console Module Console output utility

File System Module File I/O0 module

File System Watcher Module Monitoring of file and directories

Httpd module Web server functionality

NanoSim | i g ; oS - v

i e : .
NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

4.1 Process Module
The Process Module allows for the execution of external applications from scripts.

Functions

Process()

execute (program, [arguments])

arguments()

setArguments([arguments])

program()

setProgram(program)

start()

readAllStandardError()

readAllStandardOutput()

waitForFinished(msecs = 30000)

write (buffer)

Signals

finished()

readyReadStandardError()

readyReadStandardOutput()

started()

API
Process ()
Constructor

execute (program, [arguments])
Starts the program program with the arguments arguments. This function will
wait until the process has finished.

arguments() -> [arguments]
Returns the arguments used to start the process with.

setArguments ([arguments])
Set the arguments to pass to the program to be executed. This function must
be called before start().

program () -> program
Returns the program the process was last started with.

setProgram (program)
Set the program the be started. This function must be called before
start().

4 i - : i
NanoSim ‘f mm,fg E:{ 3 ; 8 , e

NanoSim - A Multi-scale Simulation-Based Des:ign Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

start ()

Asynchronously starts the given program in a new process. The Process will
emit the started() if the program successfully starts, otherwise it will
emit error().

readAllStandardOutput() -> buffer
Returns all available data written from the running program into the
standard output channel.

readAllStandardError() -> buffer
Returns all available data written from the running program into the
standard error channel.

waitForFinsihed(msec=30000) -> true | false
Blocks until the process has finished, or until msec milliseconds have
passed. Returns true if the process finished, otherwise returns false.

write(buffer) -> numBytes
Writes the contents of buffer to the process’ standard input channel.
Returns the number of bytes written, or -1 if an error occured.

Detailed Description
Process can be used to start and stop programs and has the ability to read from the out channels
stdout and stderr. In addition the script can write to the process's standard input.

The porto Process module is based on the QProcess class defined in QtCore/QProcess.

Example
In the following example the Process module, together with the EventLoop module, is used to run
shell process (Is) and display its outputs.

/* File: process-test.js */

/* Create an event loop */
var eventLoop = new EventLoop();

/* Create and set up the external process */
var dir = new Process();
dir.setProgram("1ls");
dir.setArguments(["-al"]);

http://www.google.com/url?q=http%3A%2F%2Fqt-project.org%2Fdoc%2Fqt-5%2FQProcess.html&sa=D&sntz=1&usg=AFQjCNGfNJISdVc74oT-Ls-YcYoFQAdQBA

/* Set up the signal/slots mechanism with callbacks */
dir["readyReadStandardOutput()"].connect(function(){
print (dir.readAllStandardOutput());

})s

dir["readyReadStandardError()"].connect(function(){
print (dir.readAllStandardError());

})s

/* Start the execution */

dir.start();

/* Run the eventloop (forever) */
eventLoop.exec();

Results

PortoShell 0.1.33
Source license: LGPLv3

For help, type :help

> :1d process-test.js

total 8

drwxrwxr-x 2 thomas thomas 96 Sep 30 23:15
drwxr-xr-x 7 thomas thomas 240 Sep 30 23:13
-rw-rw-r—-— 1 thomas thomas 333 Sep 30 23:15 test.js

4.2 EventLoop Module

Functions

EventLoop ()

exec ()

isRunning ()

wakeUp ()

exit (returnCode = 9)

quit ()

Detailed Description
The EventLoop provides a means of entering and leaving an event loop. The module is based on the
QtCore/QEventLoop

API
EventLoop()
Constructor.

] J";Hh'.‘.-" '

NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

exec() -> retval
Enters the event loop and waits until exit() is called. Returns the value
passed to exit().

isRunning() -> true | false
Returns true if the event loop is running, otherwise returns false.

wakeUp()
Wakes up the event loop.

exit(exitCode=0)
Tells the event loop to exit with return code exitCode.

quit()
Same as exit(9).

4.3 UDP Socket Module

Functions

UdpSocket ()

bind (hostAddress, port)

hasPendingDatagrams ()

readDatagram ()

writeDatagram (datagram, hostAddress, port)

Signals

|readyRead O

Detailed Description
The UdpSocket module provides a User Datagram Protocol (UDP) socket. UDP is a lightweight
message-oriented network protocol for connectionless transfer of information (datagrams).

API
UdpSocket()
Constructor.

bind(hostAddress, port)

Enables the UdpSocket to receive datagram. The signal readyRead() is
emitted whenever a datagram arrives to the specified hostAddress on the
given port.

10

NanoSim | i g ; oS - v

i e : .
NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

hasPendingDatagrams() -> true | false
Returns true if the udp socket has at least one datagram waiting to be
read.

readDatagram() -> buffer
Reads a datagram from the UdpSocket and returns the text string.

writeDatagram(datagram, hostAddress, port)
Send a datagram to the given host hostAddress at port port.

4.4 Console Module

Functions

console.log (buffer)

console.info (buffer)

console.error (buffer)

console.warn (buffer)

console.trace (buffer)

Detailed Description
This module defines node.js compatible console object functions for sending output to stdout and
stdin.

4.5 File System Module

In order to work with files in JavaScript we have to extend the language. The File System Module
defines an object 'fs' which defines functions to support this.

Functions

fs.exists (fileName)

fs.copy (source, destination)

fs.remove (fileName)

fs.rename (oldPath, newPath)

fs.currentPath ()

fs.setCurrentPath (pathName)

fs.readFile (fileName, callback)

fs.writeFile (fileName, buffer, callback)

API
fs.exists (fileName) -> true | false
Checks whether fileName exists or not.

11

I - f

- A Multi-scale Simulation-Based Des:ign Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

NanoSim

if (fs.exists ('/tmp/myfile')) {
print ('the file exists');
}

fs.copy (fileName, newName) -> true | false

Copies the fileName to newName. Returns true if successful, otherwise returns false.

fs.remove(fileName) -> true | false

Removes the file specified by fileName. Returns true if successful, otherwise returns false.

fs.rename(oldPath, newPath) -> true | false
Renames the file or path specified by oldPath into newPath. Returns true if successful, otherwise
returns false.

fs.currentPath() -> pathName
Returns the path of the current directoy.

fs.setCurrentPath(pathName) -> true | false
Sets the current working directory to pathName. Returns true if successful, otherwise returns false.

fs.readFile (fileName, callback)
Reads a file. A callback function needs to be provided to capture the file contents and possible errors

fs.readFile(filename, function (err,data){
if (err)
throw ('Couldn't read file due to' + err);
console.log(data); // Print file contents to standard output

1)

fs.writeFile (fileName, buffer, callback)
Stores buffer into a file named fileName.

fs.writeFile(filename, data, function (err){
if (err) {
throw ('Couldn't write file due to' + err);
} else {

12

NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

console.log('The file was successfully saved');

}
1

4.6 File System Watcher Module

The File System Watcher module provides functions for monitoring files and directories for
modifications. It uses the signal/slot mechanism to notify about changes. This module should therefore
be used in conjunction with the EventLoop module.

Functions

FileSystemWatcher ()
addPath (path)
addPaths ([paths])
directories ()

files ()

removePath (path)
removePaths ([paths])

Signals

directoryChanged (directoryName)
fileChanged (fileName)

API

FileSystemWatcher()
Constructor.

addPath(path) -> true | false

Adds path to the watcher. If path specifies a directory, the signal directoryChanged(dirName) will
be emitted when path is modified, renamed or removed. If the path specifies a file, the signal
fileChanged (fileName) will be emitted when path is modified, renamed or removed. Returns true is
successful, otherwise returns false.

addPaths([paths]) -> true | false
Adds a list of paths to the watcher. See addPath()

directories() -> [dirs]
Return a list of paths to directories that are being watched.

13

NanoSim il Eﬁ_ " . ' Nyl s
NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

files() -> [files]
Returns a list of paths to files that are being watched.

removePath(path) -> true | false
Removes the specified path from the watcher. Returns true if successful, otherwise returns false.

removePaths([paths]) -> [paths]
Removes the specified list of paths to the watcher. Returns a list of paths which unsuccessfully
registered.

Example

var event = new EventLoop();

var fsw = new FileSystemWatcher();

fsw.addPath("/tmp/test.txt");

fsw["fileChanged(QString)"].connect(function(file){
console.log("file",file, "did change");

1)

event.exec();

4.7 Httpd module

Functions

HttpServer ()

start ()

stop ()

setRootDir ()

Detailed Description

The HttpServer is not a major feature of Porto and is currently not mature enough to be very useful.
The intention of the module is, in the future, to be able to provide a GUI to the framework through a
web browser.

5 PortoShell Modules API

The PortoShell modules are JavaScript programs that resides in $ (PORTOBASE) /bin/modules.
These are different utilities and methods for performing a variety of operations. The directory/folder
structure of everything under the modules directory serves as the namespace for the module, and
the different modules can be imported through the function require ().

14

5.1 porto

5.1.1 porto.collection

Functions
setName (name)
name ()
setVersion (version)
version ()
count ()
instances ()
findInstance (label)
registerRelation (fromLabel, tolLabel, relation)
registerEntity (entity, label)
accept (visitor)

Detailed Description

The collection module provides an interface for working with the contents of the entity called
collection. The collection is a container of other entities and collection and the relationship beween
these.

5.1.2 porto.macro

Functions

expandFile (fileName, {ext})
expand (buffer, {ext})
setVersion (version)

Detailed Description
The macro module provides the functionality to expand a javascript expression within a text string.
The expression needs to be defined with the following markup:

Regular Expression Type Example
@{expr} Block @{obj.someValue}, @{1+2+3+4+5+6}
@value Value @foobar

The curly brackets are useful when the template requires contents to continue directly after the
evaluated expression, or when we need to evaluate a more complex expression.

Example

var $m = require ('porto.macro');
$m.expand('This is a test');
$m.expand ('Hello, @ext.value!', {value: 'World'});

This is a test

15

NanoSim - A Multi-scale Simulation-Based Des:ign Platform for Cost-Effective CO2 Ca pture Processes using Nano-Structured Materials

Hello, World!

5.1.3 porto.mvc

Functions

|create ({obj})

Detailed Description

The Model-View-Controller (MVC) module is a utility built on the porto.macro module to provide
implementers of code generators with a high-level design that supports the separation of
information.

Example

/* A generic code generator framework */

__main__ = function (args){
var modelFile = args[1];
var viewFile = args[2];
fs.readFile(modelFile, function(err, data){
if (err) throw (err);
try {
generate = require('soft.mvc').create({
model: JSON.parse(data),
view: viewFile
1
} catch (e) {
console.error(e);
return;

}

try {
console.log(generate({filename: modelFile}));

} catch (e) {
console.error(e);
}
1)
}s

5.1.4 porto.autorun

Functions

" run ({obj})

Detailed Description
The porto.autorun isaworkflow runner under development. The documentation will be
updated.

16

*

o

NanoSim T - ‘ . . =¥ e
NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

5.1.5 porto.entity

Functions

|db ({driverInfo})

Detailed Description
The entity module allows for creating entity constructors based on storage information and entity

name/version.

Example

/* Create factory */

var entityDb = require (‘soft.entity’).db({
driver: “mongodb”,
database: “MyEntityDb”,
collection: “MyCollection”

1)

/* Create constuctor (MyEntity class) */
MyEntity = entityDb.using(‘demoentity’, €1.0-SNAPSHOT-1’);

/* Create a new 1instance of the entity */
var myEntity = new MyEntity();

5.1.6 porto.storage

Functions

|connect ({driverInfo})

Detailed Description
The storage module provides a generic function for connecting to a storage device.

Example

/* Define a data storage connection */

var storage = require(‘soft.storage’).connect({
driver: “mongodb”’,
uri: “mongodb://localhost”,
database”: “MyStorage”,
collection”: “MyCollection”

1);

/* Use the entity factory to create a new entity type */
MyEntity = require(‘soft.factory.entity’).createEntity(
‘demoentity’,
€1.0-SNAPSHOT-2,
function (err){
if (err) throw (err);

17

NanoSim m}” 7

NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

s

/* Define how the entity should store its contents */
MyEntity.prototype.store = function() {
storage.write(this);

}

MyEntity.prototype.read = function() {
var self = this;
storage.read(this.id, function (bson) {
self.set(JSON.parse(bson.asString()));

¥

5.1.7 porto.storage.mongo

Functions

find (query)

read (uuid, callback)

write (entity, callback)

driver ()

Detailed Description
This is a specialization of porto.storage where driver for the MongoDB is defined. This class should
not be used directly. Use the porto.storage module instead.

5.1.8 porto.factory.entity

Functions

| createEntity (entityName, entityVersion, callback)

Detailed Description
A utility module for creating a constructor for an Entity.

5.1.9 porto.utils.metastore

Functions

|connect ({connectInfo})

18

NanoSim il B0 ek hP "
NanoSim - A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes using Nano-Structured Materials

Detailed Description

The porto.utils.metastore is a utility that hardcodes the use of MongoDB for storing meta-data. The
utility program found in SPORTOBASE/bin/register-entity.sh makes use of this module to create a
console application for registering meta-entities.

Example

/*
* register-entity.sh
* A utility to commit meta-data into the metadata-database

*/

__main__ = function (args)
{
if (args.length <= 1) {
console.error("fatal error: no input files");
return undefined;

}

/* Connect to the meta-data database */
var metaStorage = require ('soft.utils.metastore').connect(
{
uri: 'mongodb://localhost’,
database: 'meta’,
collection: 'entities’
})s
args.shift();
args.forEach(function(file){
fs.readFile(file, function(err, data) {
if (err) {
print ("error:", err);
return;
}
if (!metaStorage.store (data)) {
print ("Failed to write data");

}
1)
1);

19

il |5 ’
- A Multi-scale Simulation-Based Design Platform for Cost-Effective CO2 Ca

NanoSim pture Processes using Nano-Structured Materials

5.2 utils

The utils modules are a selction of 3™ party utility modules that are included in the framework for
enriching the scripting experience. They are included in the source code and adopted to Porto in
order for them to be available for all in cases where they are being used as part of production scripts.

5.2.1 utils.base
A base class for JavaScript inheritance.

Online documentation: http://dean.edwards.name/weblog/2006/03/base/

5.2.2 utils.jjv
A JavaScript JSON Validator

Online documentation: https://github.com/acornejo/jjv

5.2.3 utils.jling
jLing allows for complex queries on arrays of JSON data.

Online documentation: http://hugoware.net/projects/jling

5.2.4 utils.quantities
guantities is JavaScript library for handling scientific calculations involving quantities (units).

Online documentation: https://github.com/gentooboontoo/js-quantities

5.2.5 utils.time
A tiny module used for timing function-calls and JavaScript operations

5.2.6 utils.underscore
Underscore is a large library of functional programming helpers in JavaScript.

Online documentation: http://underscorejs.org/

20

http://www.google.com/url?q=http%3A%2F%2Fdean.edwards.name%2Fweblog%2F2006%2F03%2Fbase%2F&sa=D&sntz=1&usg=AFQjCNEwp1TJuPHWLSVetlS2bzkfwNlAqA
http://www.google.com/url?q=http%3A%2F%2Fdean.edwards.name%2Fweblog%2F2006%2F03%2Fbase%2F&sa=D&sntz=1&usg=AFQjCNEwp1TJuPHWLSVetlS2bzkfwNlAqA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Facornejo%2Fjjv&sa=D&sntz=1&usg=AFQjCNEIG60x6UQ3YaqP3xI4aELBZXsTpw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Facornejo%2Fjjv&sa=D&sntz=1&usg=AFQjCNEIG60x6UQ3YaqP3xI4aELBZXsTpw
http://www.google.com/url?q=http%3A%2F%2Fhugoware.net%2Fprojects%2Fjlinq&sa=D&sntz=1&usg=AFQjCNHIDFgD2k_Z8Nj1rbJ62S15dywgLQ
http://www.google.com/url?q=http%3A%2F%2Fhugoware.net%2Fprojects%2Fjlinq&sa=D&sntz=1&usg=AFQjCNHIDFgD2k_Z8Nj1rbJ62S15dywgLQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgentooboontoo%2Fjs-quantities&sa=D&sntz=1&usg=AFQjCNHXiA_rR1VuTOsGkpZwqQwW3So_Tg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgentooboontoo%2Fjs-quantities&sa=D&sntz=1&usg=AFQjCNHXiA_rR1VuTOsGkpZwqQwW3So_Tg

