

Grant Agreement No.: 604656

Project acronym: NanoSim

Project title: A Multiscale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes
using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

THEME: [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for
nanomaterials and systems by design

Starting date of project: 1st of January , 2014

Duration: 48 months

WP N°

Del.
N°

Title Version Lead
beneficiary

Nature
Dissemin.
level

Delivery date
from Annex I

Actual
delivery date

dd/mm/yyyy

1 4 NanoSim Meta-data 0.1 SINTEF Report PU 01/12/2014 13/03/2015

1 Executive Summary
Multi-scale modeling is the discipline of utilizing multiple models at different scales to describe a
system. The data flows through the different scales, where simulations are connected steps of data
transformations. The data itself don't have meaning unless it is put into a context and becomes
information. The sharing and transformation of information requires that there exists some kind of
information interchange mechanism. This is one of the key purposes of the common platform Porto.

The extra information that tells us what the data represents is often called meta-data (or data
describing data). The rationale behind the meta-data schema used in Porto is given in the initial
chapter, while the collected meta-data from the different work-packages are given in chapter 3.

The meta-data of NanoSim is also input to the European Materials Modeling Council (EMMC) in
context of the Multiscale Cluster/ICMEg consortium for defining a standardized structure for
metadata interchange. For this work the section on "Values, data and meta-data" is our suggestions
for how the formal schemas should be implemented and standardized, motivated by numerous other
projects that are using this very same schema.

2 Values, data and meta-data
A value can be defined as a numerical amount denoted by an algebraic term, such as a magnitude,
quantity a number or even something complex. Values can also be seen as a something that
describes the state of an entity at a point in time. In computing this is often referred to just as data.
An entity is a physical or imaginary "thing" that is logically self-contained and independent. In order
to interpret, share and utilize data, we need to apply meaning and context to the
data. This is what we often call information (Figure 2) In this chapter we will look
at how we can define information in terms of meta-data. Furthermore, we look at

how entities can be built from these primitives, and give an abstract context to a

set of properties.

2.1 From Data to Information
To go from data to information, we need to
describe what the data is. In order to do this we
define the concept of a property (Figure 1). A
property represents a primitive type (see Table 1
Primitive types) in a data set and gives it meaning.

Figure 2 Data vs Information

Figure 3 - Property defined with a name, type and dim/rank

Figure 1 Property

Table 1 Primitive types

Property Type Equvalent C type

Boolean bool

Character unsigned char

Integer int

String

BLOB

Int8 int8_t

Int16 int16_t

Int32 int32_t

UInt8

UInt16

UInt32

Float float

Double double

LongDouble long double

enumerated type1

In a computer programming language, a property is often declared as a variable or a constant. In
programming languages that supports static typing, a constant or variables is declared as defined
type. If the property is not a scalar, the dimensionality and sizes is declared. Figure 3 illustrates how a
property can be defined to give enough meaning for a computer program to declare an instance of
the data.

1 Enumerated types are locally defined data types consisting of a set of named values (enumerators).
These names are to be considered as constant identifiers. For example, an enumerated type to
describe a solver type for incompressible flow in OpenFOAM could consist of the enumerators
BOUNDARY_FOAM, CHANNEL_FOAM, ICO_FOAM, MRF_SIMPLE_FOAM etc.

This is, however, not enough information to understand what the data really represents. For that we
need to add more metadata. In scientific computing the data is worthless without knowing unit of
measurement. To extend the information further, a textual description is often useful for humans
(See Figure 4). Other attributes of a property can be applied, but these are often dependent on the
context in which the property is used, and should therefore be avoided in a standardized generic
description of the metadata.

Figure 4 A property defined with context information

2.2 Defining entities
Once we have the lowest level primitives covered we need to put them in a context. An entity iøs an
abstract context that is self-contained and independent (of other entities). This allows the entity to
be used in any context without causing dependency problems. To be able to do this in practice, we
need to define a standardized schema for how the entities are defined. Any software that wants to
apply the entity information should therefore comply with this standard. There are numerous
options for choosing a language to describe the schema. We have chosen JSON (JavaScript Object
Notation - ECMA-404 The JSON Data Interchange Standard.) because of the widespread support of
the standard in popular programming languages, its ease of use and readability for both humans and
computers.

2.2.1 Contents of the entity
The entity (Figure 5) contains a set of properties. In addition to this it should be uniquely identified in
order to avoid conflicting versions of entity definitions. This can be achieved by giving it a name and
version number. It might even be necessary apply additional information to ensure uniqueness. A
textual description is useful for humans to understand the context and purpose of an entity.

The way we want to define dimensionality in a property is by giving it a named value (for instance NX
and NY could be the number of cells in a grid in x and y-direction, and a pressure field could be

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

defined by a property named 'p' with the dimension ["NX","NY"]. Because these named values can
be shared by multiple properties, it makes sense to declare the dimensions as part of the entity.

Figure 5 - The Entity

2.2.2 JSON Schema
The JSON Schema standard is still at a draft stage. However, we are able to use this for defining the
formal specification of an entity:

Figure 6 JSON Schema - The Entity

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "id": "http://schema.sintef.no",

 "type": "object",

 "properties": {

 "name": {

 "id": "http://schema.sintef.no/name",

 "type": "string"

 },

 "version": {

 "id": "http://schema.sintef.no/version",

 "type": "string"

 },

 "description": {

 "id": "http://schema.sintef.no/description",

 "type": "string"

 },

 "enums": {

 "id": "http://schema.sintef.no/enums",

 "type": "array",

 "items": {

 "id": "http://schema.sintef.no/enums/0",

 "type": "object",

 "properties": {

 "name": {

 "id": "http://schema.sintef.no/enums/0/name",

 "type": "string"

 },

 "values": {

 "id": "http://schema.sintef.no/enums/0/values",

 "type": "array",

 "items": {

 "id": "http://schema.sintef.no/enums/0/values/1",

 "type": "string"

 }

 },

 "description": {

 "id": "http://schema.sintef.no/enums/0/description",

 "type": "string"

 }

 }

 }

 },

 "dimensions": {

 "id": "http://schema.sintef.no/dimensions",

 "type": "array",

 "items": {

 "id": "http://schema.sintef.no/dimensions/0",

 "type": "object",

 "properties": {

 "name": {

 "id": "http://schema.sintef.no/dimensions/0/name",

 "type": "string"

 },

 "description": {

 "id": "http://schema.sintef.no/dimensions/0/description",

 "type": "string"

 }

 }

 }

 },

 "properties": {

 "id": "http://schema.sintef.no/properties",

 "type": "array",

 "items": {

 "id": "http://schema.sintef.no/properties/1",

 "type": "object",

 "properties": {

 "name": {

 "id": "http://schema.sintef.no/properties/1/name",

 "type": "string"

 }

 }

 }

 }

 },

 "required": [

 "name",

 "version",

 "dimensions",

 "properties"

]

}

3 NanoSim Meta-data
One ambition of the Porto framework in NanoSim is to collect or access data from all scales
regardless of the simulation tool or file formats being used. (Figure 7) This requires two things: 1) The
data must be described (in terms of meta-data) to make the information available outside the scope
of the original context (or simply, create a common language such that all data can be interpreted).
The framework to do this is described in the previous chapter where the anatomy of the entity
schema is defined. 2) The data must be accessible by common Data Access Interfaces (Data Access
API's). Where and how the data is actually stored is then irrelevant for any application that wants to
use the information.

Figure 7 Meta-data and Data from all scales

3.1 Scale connectivity
The different work-packages in NanoSim have defined a set of simulation tools that can be regarded
as data transformations. Each transformation step has a well-defined set of inputs and outputs. In
the case where the output from one transformation is the input to another, the data must match
semantically. In cases where the data does not match, an in-between transformation must be
defined (adapter) in order for the workflow to be complete. In NanoSim there are 10-14 different
simulation tools (transformations) in addition to experimental activities where data used for
validation, as and input to simulators.

Defining meta-data for each work package has the following advantages:

• The flow of information can be documented
• Missing data in the information flow can be identifies (or other sources of data must be

given)
• Through file-format adaptors the data stored in different files and formats can be accessed

through a common API which has no dependencies on the original format and structure of
the data.

• Enable the possibility of performing post-processing on data for the entire offline coupled

workflow (for instance, observing non-linear effects of parameters at the atomic scale on the
equipment or plan simulations).

• Introducing new simulation tools that can work within the workflow, without having to make
changes elsewhere in the framework. (extendibility/scalability)

• Reduce the risk of introducing semantic errors in the coupling of models.

3.2 High Level Tools and Meta-Data Overview
The following table illustrates the different tools involved in the work-packages. In addition, the
currently defined meta-data for each work-packages is listed in the row labeled Data.

WP WP2
COSI

WP3
Atomistic
Modelling

WP4
DNS

WP5
Eulerian
Modelling

WP6
Phenomenological
modelling

WP7
Validation/
Experiments

WP8
Techno Economical
Modelling

Tools • CFDEM
• OpenFOAM
• LIGGHTS

• REMARC
• DFT
• SPPARKS

• PaScal
• CPPPO

• AnSys
Fluent

• Neptune
CFD

• Phenom • • Thermoflow
• ASPEN Plus
• ASPEN HySys

Data • LIGGHTS-
dump

• OpenFOAM
Flow
Particle

• MD
• VASP

extend

• CHEMKIN-
II Data

• Surface
CHEMIKIN
Data

• Thermo-
Chemistry

• CPPPO
Sample

• PaScal
Sample

• Resolved
Flow

• Kinetics
Input

• Reactor
Performan
ce

• Mesh
• Fluid
• Operational
• Reactor
• Reaction

Spec

• Kinetics • Gas Stream
(ASPEN)

• GasStream
(Thermoflow)

The formal meta-data schemas reside in the NanoSim/Porto repository on GitHub. A tabulated form
of the same data is given in the next chapters. The formal primitive types of the properties is not
used in the following sections, but they are part of the formal entity declarations in JSON.

3.3 WP 2 Meta-Data
Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description

LIGGHTS dump timestep int s - Time step the snapshot was collected"

LIGGHTS dump nmberOfAtoms int - - The number of particles within the simulation

LIGGHTS dump boxBounds double - - Boundaries applied in the simulation, as well as bounds of the simulation box

LIGGHTS dump boxBoundsDescription string - - Description of the boundaries

LIGGHTS dump atoms double - 2 [nparticles,nproperties] array of the per-particle properties

LIGGHTS dump atomsDescription string - 2 [nparticles,nproperties] String containing description of the per-particle properties

OpenFOAM Flow pressure double m²/s² 1 [nCells] List of scalars containing the actual pressure for each cell

OpenFOAM Flow rho double kg/m³ 1 [nCells] List of scalars containing the actual fluid density for each cell

OpenFOAM Flow velocity double m/s 1 [nCells] List of scalars containing the actual fluid velocity for each cell

OpenFOAM Flow voidfraction double

1 [nCells] List of scalars containing the actual voidfraction for each cell

OpenFOAM Particle position double m 2 [nparticles,3] List of vectors representing particle positions

OpenFOAM Particle radii double m 1 [nparticles] List of scalars representing particle radii

OpenFOAM Particle velocity velocity double m/s 2 [nparticles, 3] List of vectors representing particle velocities

3.4 WP3 Meta-Data

Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description

VASP VASP_extraction surface_name string - [] The name of the surface - atom types (and orientation)

VASP VASP_extraction atoms string - []
List of atom type(s) (chemical symbol) and number of this this type
 excluding the surface atoms

VASP VASP_extraction atom_species string - []
Chemical formula excluding surface atoms in alphabetical order with H
 and C placed first

VASP VASP_extraction state string - []
Refers to the state of the molecule system - surface, gasphase, adsorbed
state, transition state

VASP VASP_extraction site_name string - []
The adsorption or transition site(s) of the atom(s) or molecule(s) for the
adsorbed or transition state

VASP VASP_extraction total energy float eV [] The total energy of the system from the DFT calculation

VASP VASP_extraction frequencies float cm^(-1) [] List of the frequencies calculated for the system

VASP VASP_extraction cell float Å [3,3]
3x3 array with the lattice parameters of the system corresponding to the
x, y and z directions

VASP VASP_extraction positions float - / Å [nAtoms,4] List of the atom type followed by its position in the x, y and z direction.

VASP VASP_extraction info string -

Optional - any relevant info can be added here

Thermochemistry Temperatures float K [] Temperatures for which thermodynamics data are given

Thermochemistry reaction char / float - [nReactions] Chemical reaction in default CHEMKIN format

Thermochemistry DeltaH float kJ/mol [nReactions,nTemperatures] Enthalpy change of reaction

Thermochemistry DeltaS float J/mol K [nReactions,nTemperatures] Entropy change of reaction

Thermochemistry DeltaG float kJ/mol [nReactions,nTemperatures] Free energy change of reaction

REMARC Surface Chemkin data comment char - [] Comment that explains a particular reaction scheme

REMARC Surface Chemkin data site_name char - [] Name of surface

REMARC Surface Chemkin data site_density float mol/cm^2 [] Density of surface sites

REMARC Surface Chemkin data surface_species char - [nSurfSpecies] Name of species at surface

REMARC Surface Chemkin data thermo char / float - [nSpecies,20+2*nElements]

Array containing names and composition chemical species along
 with parameters to calculate its thermodynamic quantities in given
 temperature ranges (default CHEMKIN format)

REMARC Surface Chemkin data energy_unit char - [] Unit of activation energy used in calculation of rate constants

REMARC Surface Chemkin data reaction char / float - [nReactions,5]

Chemical reaction in default CHEMKIN format with corresponding
 Arrhenius parameters for the calculation of rate constants and
 comment on source and applicability of data

REMARC Surface Chemkin data forward_reaction_order char / float - [nReactions,3]
Modified forward reaction order with respect to one species in the
 reaction specified as (Y/N, surface_species, reaction order)

REMARC Surface Chemkin data reverse_reaction_order char / float - [nReactions,3]

Modified reverse reaction order with respect to one species in the
reaction specified as (Y/N, surface_species, reaction order)

REMARC Surface Chemkin data duplicate char - [nReactions] Specifies whether reaction is duplicate of previous reaction (as Y/N)

REMARC Surface Chemkin data stick char - [nReactions] Specifies whether reaction is a sticking process (as Y/N)

REMARC Surface Chemkin data coverage_dependence char / float - [nReactions,5]

Specifies if rate constant is modified as a function of surface coverage of
 give species as (Y/N, surface_species, parameter1, parameter2,
parameter3)

CHEMKIN-II data species string - [] Comment that explains a particular reaction scheme

CHEMKIN-II data element string - [nElements] Name of chemical elements

CHEMKIN-II data species string - [nSpecies] Name of chemical species

CHEMKIN-II data thermo float - [nSpecies,20+2*nElements]

Array containing names and composition chemical species along
with parameters to calculate its thermodynamic quantities in given
temperature ranges (default CHEMKIN format)

CHEMKIN-II data energy_unit string - [] Unit of activation energy used in calculation of rate constants

CHEMKIN-II data number_unit string - []

Unit of particle number to determine concentration in calculation
of rate constants (molecules, moles)

CHEMKIN-II data reaction float - [nReactions,5]

Chemical reaction in default CHEMKIN format with corresponding
Arrhenius parameters for the calculation of rate constants and
comment on source and applicability of data

3.5 WP4 Meta-Data

Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description

PASCAL Particle temperature double K [nparticles] The actual (volume-averaged) particle temperature

PASCAL Particle headFlux double W [nparticles] The actual total heat flux

PASCAL Particle intraParticleT double K [nparticles,ngrid] The actual intra-particle temperature (at each grid point)

PASCAL Particle position double m [nparticles,3] The actual particle position

PASCAL Particle radius double m [nparticles] The actual particle radius

C3PO Sample data double N 2 [nsamples, 3] A list of vectors representing the force representative for the samples

C3PO Sample data double K 1 [nsamples]
A list of scalars representing the fluid temperature experienced by each
sampled particle

C3PO Sample data double K 1 [nsamples] A list of scalars representing the particle average temperature

C3PO Sample data double K 1 [nsamples] A list of scalars representing the particle surface temperature

C3PO Sample data double m/s 2 [nsamples, 3]
A list of vectors representing the fluid-particle relative velocity within each
sample

C3PO Sample data double - 1 [nsamples]
A list of scalars representing the voidage experienced by each sampled
particle

3.6 WP5 Meta-Data
Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description
FLUENT Resolved_Flow pressure double m²/s² 1 [nCells] Pressure for each cell

FLUENT Resolved_Flow temperature double K 1 [nCells] Temperatures for each cell

FLUENT Resolved_Flow velocity_gas double m/s 2 [nCells, 3] Velocity of the gas phase for each cell

FLUENT Resolved_Flow voidfraction double

1 [nCells] Volume fraction for each cell

FLUENT Resolved_Flow velocity_granular double m/s 2 [nCells, 3] Velocity of the granular phase for each cell

FLUENT Resolved_Flow species_massfraction double

2 [nCells, nSpecies] Mass fraction of each species for each cell

WP7 Kinetics_input particle type String

1 (nCases) Type of particle (eg. components and composition)

WP7 Kinetics_input particle_size double m 1 (nCases) The particle size used in each setup considered

WP7 Kinetics_input reaction_type string

1 (nReactions) Format of rate expression

WP7 Kinetics_input reaction_rate double
depends on
parameter

2 (nReactions,
nParameters) Parameters used in the rate expression

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) particle_size double m 1 (nCases) The particle size used in each setup considered

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) geometry double m 2 (nCases,2)

Includes the geometry size in 2 dimensions (height & diameter).
For more complex geometries more complex descriptions might be necessary

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) Bed loading double kg 1 (nCases) Mass of particles used

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) Particle type String

1 (nCases) Type of particle (eg. components and composition)

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) temperature_in double K 1 (nCases) Inlet temperature

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) temperature_out double K 1 (nCases) Outlet temperature

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) Pressure double Pa 1 (nCases) Operating pressure

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) Inlet_flow_rate double mol/s 2 (nCases, nSpecies) Average molar flow rate into the reactor for each species

FLUENT

Reactor_Performance_output
(for WP8 input and for WP6
comparison) Outlet_flow_rate double mol/s 2 (nCases, nSpecies) Average molar flow rate out of the reactor for each species

3.7 WP6 Meta-Data
Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description
Phenom Mesh ncell int - - Number of cells along z direction

Phenom ReactionSpecifications nspecies int - - Number of species in the system

Phenom ReactionSpecifications nRx int - - Number of reactions taking place in the reactor
(input to the model)

Phenom Fluid velocity_in double [m/s] [ncells,1] Initial superficial gas velocity (input of the model)

Phenom Fluid massflowrate_in double [kg/s] - Mass flow rate of the gaseous stream at the reactor at
the inlet (input of the model)

Phenom Fluid massflowrate_out double [kg/s] - Mass flow rate of the gaseous stream at the reactor at the
outlet (to WP8)

Phenom Fluid massfraction_in double - [nspecies,1] Species Mass fractions at the inlet (input of the model)

Phenom Fluid massfraction_out double - [nspecies,1] Species Mass fractions at the outlet (to WP8)

Phenom Operation pressure_in double [Pa] - Pressure at the reactor inlet (initial pressure)

Phenom Operation temperature_in double [K] - Temperature at the reactor inlet (initial temperature)

Phenom Operation pressure_out double [Pa] - Pressure at the reactor outlet (to WP 8)

Phenom Operation temperature_out double [K] - Temperature at the reactor outlet (to WP8)

Phenom Reactor height reactor double [m] - Reactor height (to WP8)

Phenom Reactor reactor_di double [m] - Reactor inner diameter (to WP8)

Phenom Reactor reactor_do double [m] - Reactor outer diameter (to WP8)

3.8 WP7 Meta-Data
Model/Simulator Entity/Group Propertyname Type Unit/Symbol Rank/Dimensions Description
ASPEN Plus / Aspen Hysys - Gas Stream Data - Input Temperature Float (excel) C 1 [1 cell] Temperature of Reduction Reactor

WP8 Product Gas Stream from Phenom

Model of WP6

Gas Stream Data - Input Mass Fraction Float (excel) 1 [n components]

Mass fraction of n components of
Reduction Reactor Product Gas
Stream from Phenom Model of WP6

Gas Stream Data - Input Pressure Float (excel) bar 1 [1 cell]

Pressure of Reduction Reactor
Product Gas Stream from Phenom
Model of WP6

Gas Stream Data - Output Temperature Float (excel) C 1 [1 cell]

Temperature of Product Gas Stream
(GT Fuel after Water Gas Shift and
CO2 Separation)

Gas Stream Data - Output Mass Fraction Float (excel) 1 [n components]

Mass fraction of n components of
Product Gas Stream (GT Fuel after
Water Gas Shift and CO2 Separation)

Gas Stream Data - Output Pressure Float (excel) bar 1 [1 cell]

Pressure of Product Gas Stream
(GT Fuel after Water Gas Shift and
CO2 Separation)

Thermoflow - WP8 Gas Stream Data - Input Temperature Float (excel) C 1 [1 cell]

Temperature - GT Fuel (output from
 Aspen Model)

Gas Stream Data - Input Volume Percent Float (excel) % 1 [n components]

Volume fraction of n components
of GT Fuel (output from Aspen Model)

Gas Stream Data - Input Pressure Float (excel) bar 1 [1 cell]

Pressure of GT Fuel (output from
Aspen model)

Gas Stream Data - Input Temperature Float (excel) C 1 [1 cell]

Temperature of Oxidation Reactor
Product Gas Stream from Phenom
Model of WP6

Gas Stream Data - Input Volume Percent Float (excel) % 1 [n components]

Mass fraction of n components of
Oxidation Reactor Product Gas
Stream from Phenom Model of WP6

Gas Stream Data - Input Pressure Float (excel) bar 1 [1 cell]

Pressure of Oxidation Reactor
Product Gas Stream from Phenom
Model of WP6

	1 Executive Summary
	2 Values, data and meta-data
	2.1 From Data to Information
	2.2 Defining entities
	2.2.1 Contents of the entity
	2.2.2 JSON Schema

	3 NanoSim Meta-data
	3.1 Scale connectivity
	3.2 High Level Tools and Meta-Data Overview
	3.3 WP 2 Meta-Data
	3.4 WP3 Meta-Data
	3.5 WP4 Meta-Data
	3.6 WP5 Meta-Data
	3.7 WP6 Meta-Data
	3.8 WP7 Meta-Data

