

Grant Agreement No.: 604656

Project acronym: NanoSim

**Project title**: A Multiscale Simulation-Based Design Platform for Cost-Effective CO<sub>2</sub> Capture Processes using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

**THEME:** [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for nanomaterials and systems by design

Starting date of project: 1<sup>st</sup> of January , 2014

Duration: 48 months

Document ID: WP1.TESTPLAN.MASTER

| WP N° | Del.<br>N° | Title                               | Contributors                                                                                   | Version | Lead<br>beneficiary | Nature | Dissemin.<br>level | Delivery date<br>from Annex I | Actual<br>delivery date<br>dd/mm/yyyy |
|-------|------------|-------------------------------------|------------------------------------------------------------------------------------------------|---------|---------------------|--------|--------------------|-------------------------------|---------------------------------------|
| 1     | D1.3       | Test Plan<br>(based on IEEE<br>829) | Author: Thomas F.<br>Hagelien<br>Checked by: Stefan Radl<br>(TUG) and Christoph Kloss<br>(DCS) | 1       | SINTEF              | Other  | PU                 | 31/06/2014                    | 15/08/2014                            |



## **1** Introduction

This document is the Master Test Plan (MTP) for the NanoSim/Porto project, and provides a highlevel test planning and management overview. The MTP follows the IEEE 829-2008 format.

| Document Identification | PORTO-MTP (Porto Master Test Plan) |
|-------------------------|------------------------------------|
| Author(s)               | Thomas F. Hagelien                 |
| Reviewers               | DCS, TUG                           |
| Manager                 | Dr. Shariar Amini (SINTEF)         |
| Version of the Product  | 0.1                                |
| Version of this Plan    | 1                                  |
|                         |                                    |

### **1.1 Document identification**

### 1.2 Scope

One of the challenges in the NanoSim project is integrating the different simulation tools involved in building a multi-scale simulation platform. As a common framework for offline coupling of the simulators, Porto is begin developed as part of the NanoSim project. In order to achieve the goals of developing an efficient and cost effective multi-scale platform, testing is an essential ingredient. As testing is an embedded part of the development work, planning and following up on the key testing activities is essential. In the different work-packages where software is being developed, it is assumed that adequate testing activities are being scheduled and executed. During the integration of the different models, and the testing of different offline coupling scenarios, however, the testing activities need to be planned and performed on a higher level. The goals for the system testing efforts are therefore to plan for quality for the overall system.

The requirements engineering process in NanoSim is largely *Use Case*-driven. In the definition of the fully dressed use cases, the preconditions, success guarantee, main success scenario, extensions and other relevant factors are defined, and largely define the acceptance criteria for the required functionality.

| Acronym | Name                                                                             |
|---------|----------------------------------------------------------------------------------|
| FRD     | Functional Requirements Document (D1.1, WP1)                                     |
| WD      | Detailed Workflow Document (D1.2, WP1)                                           |
| PRP     | Project Proposal (NanoSim EU Proposal)                                           |
| PRP-1.3 | Project Plan (NanoSim EU Proposal, Chapter 1.3)                                  |
| EUC     | External Use Cases (GitHub:                                                      |
|         | https://github.com/NanoSim/Porto/blob/master/doc/specification/umlExternalCode/) |

#### **1.3 References**

#### 1.4 System overview and key features

See "PRP 1.3.4 Table 1.3d: Work Package Description – Common Environment Software Platform"



#### 1.5 Test Overview

The consortium partners responsible for the planning, execution and reporting of the testing activities in WP1 are SINTEF with support from DCS and TUG. The integration and system tests will be performed incrementally and reported regularly as part of the half-year progress reports, limited to the involved modules and scenarios that are mature enough to be tested.

### 1.6 Organization and responsibilities

SINTEF is responsible for the administration and definition of the testing activities. DCS and TUG are supporting the execution and technical assistance of the testing activities. The NanoSim consortium is collectively responsible for defining the acceptance criteria.

### 1.7 Tools, techniques, methods and metric

Testing will be performed on various hardware and software configurations (Windows/Linux on desktops and clusters). The main testing methods for acceptance testing will be black-box testing, running of preconfigured workflow scripts, along with manual testing. Detailed white-box tests (Unit tests and integration tests); manual, semi-manual and fully automated unit tests will be conducted. Metrics for success will be based on pass/fail in acceptance testing, along with deviation reporting for regressions tests.

# 2 Details of the Master Test Plan

This section contains defines the high-level test processes. The tasks are defined in the FRD and EUC.

| Task        | Test Design                                                    |
|-------------|----------------------------------------------------------------|
| Method      | Interface PaScal with OpenFOAM data format thermophysical data |
| Subsystem   | PaScal                                                         |
| Inputs      | Thermophysical data in OpenFOAM format available               |
| Outputs     | PaScal reports thermophysical data for various temperatures    |
| Responsible | TUG                                                            |

| Task        | Test Design                                          |
|-------------|------------------------------------------------------|
| Method      | Storing PaScal simulation data to vtk or hdf5 format |
| Subsystem   | PaScal                                               |
| Inputs      | PaScal simulation result                             |
| Outputs     | VTK or hdf5 format                                   |
| Responsible | TUG                                                  |

| Task        | Test Design                                 |
|-------------|---------------------------------------------|
| Method      | Chemkin-II data format interfacing          |
| Subsystem   | PaScal                                      |
| Inputs      | Chemical reaction data in CHEMKIN-II format |
| Outputs     | PaScal report on chemical reaction data     |
| Responsible | TUG                                         |

| Task | Test Design |
|------|-------------|
|      |             |



| wethod      | Drying of a wet, Porous Particle                                         |
|-------------|--------------------------------------------------------------------------|
| Subsystem   | PaScal                                                                   |
| Inputs      | Relevant physical and chemical data. Specification of drying experiment. |
| Outputs     | Simulation results                                                       |
| Responsible | TUG                                                                      |

| Task        | Test Design                 |
|-------------|-----------------------------|
| Method      | Import of ANSYS Fluent Mesh |
| Subsystem   | CFDEM                       |
| Inputs      | Fluent .msh or .cas file    |
| Outputs     | mesh OpenFOAM data format   |
| Responsible | DCS                         |

| Task        | Test Design                                                  |
|-------------|--------------------------------------------------------------|
| Method      | C3PO library simulation test in ANSYS Fluent and NEPTUNE CFD |
| Subsystem   | PaScal, C3PO, ANSYS Fluent and NEPTUNE CFD                   |
| Inputs      | Physical and chemical data. BCs, ANSYS Fluent/NEPTUNE setup  |
| Outputs     | Simulation data                                              |
| Responsible | TUG                                                          |

| Task        | Test Design                         |
|-------------|-------------------------------------|
| Method      | Storing large data files in MongoDB |
| Subsystem   | Porto                               |
| Inputs      | > 100 GB of Simulation data         |
| Outputs     | MongoDB document                    |
| Responsible | SINTEF                              |

| Task        | Test Design                                 |
|-------------|---------------------------------------------|
| Method      | Searching for data in MongoDB               |
| Subsystem   | Porto                                       |
| Inputs      | Data available in database, search criteria |
| Outputs     | JSON document                               |
| Responsible | SINTEF                                      |

| Task        | Test Design                           |
|-------------|---------------------------------------|
| Method      | Running jobs from the scripting shell |
| Subsystem   | Porto                                 |
| Inputs      | Executable process to be run          |
| Outputs     | Result from process execution         |
| Responsible | SINTEF                                |

| Task      | Test Design                    |
|-----------|--------------------------------|
| Method    | Files and standard IO routines |
| Subsystem | Porto                          |



| Inputs      | Data to be stored   |
|-------------|---------------------|
| Outputs     | File on file system |
| Responsible | SINTEF              |

| Task        | Test Design                      |
|-------------|----------------------------------|
| Method      | Script Application Communication |
| Subsystem   | Porto                            |
| Inputs      | Data Message                     |
| Outputs     | Data Message                     |
| Responsible | SINTEF                           |

| Task        | Test Design                                |
|-------------|--------------------------------------------|
| Method      | Register Entities in the metadata-database |
| Subsystem   | Porto                                      |
| Inputs      | Entity Schema                              |
| Outputs     | Database Record                            |
| Responsible | SINTEF                                     |

| Task        | Test Design                     |
|-------------|---------------------------------|
| Method      | Defining workflows              |
| Subsystem   | Porto, NanoSim                  |
| Inputs      | Simulation tools and setup data |
| Outputs     | Simulation result               |
| Responsible | SINTEF                          |

| Task        | Test Design                       |
|-------------|-----------------------------------|
| Method      | External file format driver       |
| Subsystem   | Porto                             |
| Inputs      | Data file in external file format |
| Outputs     | Porto entity                      |
| Responsible | SINTEF                            |

| Task        | Test Design            |
|-------------|------------------------|
| Method      | Data plotting          |
| Subsystem   | Porto                  |
| Inputs      | Entity with array data |
| Outputs     | Plot                   |
| Responsible | SINTEF                 |

| Task      | Test Design                                   |
|-----------|-----------------------------------------------|
| Method    | MongoDB data storage                          |
| Subsystem | Porto                                         |
| Inputs    | Porto Entity, database, and collection name   |
| Outputs   | MongoDB entry containing data from the entity |



| Task        | Test Design                                            |
|-------------|--------------------------------------------------------|
| Method      | Importing external data                                |
| Subsystem   | Porto                                                  |
| Inputs      | External File Format, driver plugin, entity definition |
| Outputs     | MongoDB entry                                          |
| Responsible | SINTEF                                                 |

| Task        | Test Design                               |
|-------------|-------------------------------------------|
| Method      | Exporting data to proprietary data format |
| Subsystem   | Porto                                     |
| Inputs      | Collection of data                        |
| Outputs     | External file format with data            |
| Responsible | SINTEF                                    |

| Task        | Test Design                      |
|-------------|----------------------------------|
| Method      | Source code generation from JSON |
| Subsystem   | Porto                            |
| Inputs      | JSON document, code template     |
| Outputs     | Compilable source code           |
| Responsible | SINTEF                           |

| Task        | Test Design                              |
|-------------|------------------------------------------|
| Method      | Source code generation from MongoDB data |
| Subsystem   | Porto                                    |
| Inputs      | Data available, code template            |
| Outputs     | Compilable source code                   |
| Responsible | SINTEF                                   |

#### 2.1 Test Documentation requirements

The *Level Test Plans* that will outline the specific methods and details to achieve the indicated tests will follow the IEEE 829 Test Plan Structure.

### 2.2 Test administration requirements

Anomalies and issues discovered during testing will be submitted to the NanoSim/Porto issue tracker on GitHub.

#### 2.3 Test reporting requirements

Appropriate test reports will be a part of the regular status updates.



## **3** General

# 3.1 Glossary

See List of definitions and abbreviations in FRD section 1.3

# 3.2 Document Change Log

| Date       | Description     | Author(s)          | Comments                    |
|------------|-----------------|--------------------|-----------------------------|
| 15.08.2014 | Initial version | Thomas F. Hagelien |                             |
| 18.08.2014 | RevRadl         | Stefan Radl        | Completed table in Ch.<br>2 |