

1

Grant Agreement No.: 604656

Project acronym: NanoSim

Project title: A Multiscale Simulation-Based Design Platform for Cost-Effective CO2 Capture Processes
using Nano-Structured Materials (NanoSim)

Funding scheme: Collaborative Project

Thematic Priority: NMP

THEME: [NMP.2013.1.4-1] Development of an integrated multi-scale modelling environment for
nanomaterials and systems by design

Starting date of project: 1st of January, 2014

Duration: 48 months

WP
N°

Del.
N°

Title Contributors Versio
n

Lead
beneficiary

Nature
Dissemin
.
level

Delivery date
from Annex I

Actual
delivery date

dd/mm/yyyy

1 D1.
1

Functional
Requirements
Document

Author: Thomas F.
Hagelien
Checked by: Stefan
Radl (TUG) and
Christoph Kloss (DCS)

1 SINTEF Other PU 31/06/2014 18/08/2014

2

1 Introduction

1.1 Purpose
The purpose of this document is to give as detailed descriptions of the requirements for the common
environment "Porto" as possible. This document is a live document in the sense that requirements,
as they are introduced and/or changed, will be reflected through revisions of the specification
document.

1.2 Scope
The software to be implemented (Porto) will enable offline-coupling of physical processes that occurs
on different scales. Porto will have a role both in the development of the process simulators, as well
as in the execution of the simulation. Porto will also be an extendable framework on which custom
features can be added and new simulators integrated.

1.3 List of definitions and abbreviations

1.3.1 Definitions
Actor (UML) A specified role played by a user/system that interacts with the

subject
Application A software program, or group of programs, that is designed for the end

user
ECMAScript A programming language standardized by ECMA International in the

ECMA-262 specification and ISO/IEC 16262. Also known by
implementations such as JavaScript, Jscript and ActionScript

Entity A type that contains a collection of properties that describes the
properties of itself

Model A software implementation of a simulator or prediction tool
Offline simulation A loosely coupled simulation that doesn't depend on other simulations to

be running concurrently, but may depend on data produced by another
simulation

Plugin A software component that adds a specific feature to an existing software
application. Usually plugins can be loaded run-time (dynamically linked
libraries/shared objects).

Relationship A description of a dependency between two entities in a given context

3

1.3.2 Abbreviations
URI Uniform Resource Identifier (RFC1630) – A string identifying a name

and/or location of a resource.
API Application Programming Interface – A formal (software) specification of

the interaction between software components
TCP Transmission Control Protocol - A reliable, stream-oriented, connection-

oriented protocol
UDP Use Datagram Protocol - a lightweight datagram-oriented connectionless

protocol
UML Unified Modeling Language

1.4 Overview
In chapter two of this document a description of the Porto system and its environment is given. In
Chapter three the Use Cases collected from other work packages that are necessary for the
requirements analysis are given. Chapter four contains the software requirements.

4

2 Overall Description

2.1 Product Perspective
The objective of the NanoSim EU-project is to create a multi-scale simulation platform that connects
models spanning a wide range of scales from the atomic scale through the particle and cluster scales,
industrial equipment scales and up to full system scale. The offline exchange of data and information
between different simulation software will be facilitated by the NanoSim common framework
'Porto'.

Porto will primarily be a tool for data exchange and connecting different computational codes
performing computations on different scales. This will be achieved by building adopters that utilize a
common data description format for metadata. Porto will be able to store huge amounts of data by
employing MongoDB, an open-source document database designed to support massive data volumes
through horizontal scaling. Porto will provide a powerful scripting engine for performing tasks such as
code-generation, running workflows, automating testing, report generation and performing analysis.
Porto will also provide interfaces for creating custom I/O driver and scripting extensions.

5

2.1.1 User Interfaces
The main user interface to Porto is a scripting shell based on ECMAScript. It will be possible to use
the scripting both as batch processes and as an interactive process. Different Porto-modules and
extensions can be loaded at run-time.

2.1.2 Hardware Interfaces
None.

2.1.3 Software Interfaces
Porto will provide interfaces for creating application extensions and custom I/O drivers. For
connections to the MongoDB database, Porto will use the officially supported MongoDB C driver
(written in C89 compatible C and distributed under the Apache License v2.0). Porto will also make
use of the Qt cross-platform application framework available under the open-source LGPL v2.1
license terms.

2.1.4 Communication Interfaces
Porto will provide interfaces for accessing offline data, and as such does not need to support any
communication interfaces on the application/model level – however, for running workflows and
performing automated tasks it is useful to have mechanisms to exchange information between
processes. For this purposes there will be scripting extensions that supports asynchronous TCP
and/or UDP communication.

2.1.5 Memory Constraints
There are currently no known memory constrains.

2.2 User Characteristics
Users of Porto will be divided into three categories.

1. Developer (personnel extending the Porto framework itself).
2. Advanced users/scientists (in charge of running and integrating simulators into the modeling

framework of NanoSim or another modeling workflow)
3. Industrial users (engineers or scientists)

2.2.1 Developer
People with this profile have a thorough understanding of the design and implementation of the
Porto framework, and are able to change/extend and adopt new modules and interfaces.

2.2.2 Advanced users/scientists
In this category we have simulator/model developers with a deep understanding of the requirements
for interfacing their own software.

2.2.3 Industrial users
In this category we find domain experts with the ability to use the software for investigation and
analysis purposes.

6

3 User Scenarios / Use Cases
In this chapter different Use Cases defined by consortium partners are summarized. The Use Cases
illustrate how different simulation tools will be used. Based on these Use Cases, as well as input that
is generated during workshops organized by the consortium members, the complete offline
workflow and data exchange requirements will be mapped out. [Ref to workflow document]

Figure 1 Overview - Use Case Model

3.1 Use Case UC1: Generate a Filtered (Drag) Model incl. Reversibility
Check

Primary Actor: Scientist

Stakeholders and Interests:

• The NanoSim Consortium: Wants a reliable drag model for use with FLUENT & OpenFOAM.
• Scientific members of NanoSim: wants that filtered models are accepted by industry to

strengthen cooperation with industry. Wants to have a clear workflow that makes generation
of filtered drag models less cumbersome.

7

• EC: Wants to see that we (i.e., the NanoSim consortium) publish new models that help in
predicting full-scale performance of reactors using nano structured materials during the
project. Wants that these models & the corresponding workflow can be re-used by other
(nano)-focused groups of researchers (outside & inside of the NanoSim project).

• Industrial members of NanoSim: Wants to see that the filtered drag model is “better” than
the other currently available, wants to see the advantage over competitors when using
filtered models (what can we do better in case we use these models?). Typically, no interest
in model building, but understanding of the model usage and limitations (want to see
reference results, documentation).

• CFDEM & OpenFOAM user community & consulting companies: want to use a predefined (&
functional) workflow to generate customized filtered drag (or heat & mass transfer) models
to be (i) published, or (ii) sold to customer. Want to re-use the workflow for similar tasks
(e.g., build filtered models for other reactive systems).

Preconditions: Relevant domain-averaged particle volume factions, particle parameters (density
ratio, as well as a number of dimensionless quantities like the particle Froude number Frp), physical
and chemical parameters (e.g., the Schmidt, Sc, or the Damkoehler number, Da, etc.), as well as sub
models (e.g., from direct numerical simulation, or correlations from literature) are available.

Success Guarantee (Postcondition):

- A function that predicts the effective drag (and other effective transfer coefficients) with an
accuracy of better than 10 % when compared to fully resolved Euler-Euler simulations.

- A function that is universal (i.e., contains only dimensionless parameters), robust (has been
tested for a variety of parameter combinations), and corresponds to known theoretical
limits. It is demonstrated that the model is consistent with fully resolved Euler-Euler
simulations (i.e., the model switches itself off in case it is not needed, i.e., it is user friendly).

- A function that significantly improves industrial-scale flow (& heat / mass transfer)
predictions. This requires that the (i) the model yields significantly better predictions
compared to a standard model (deviation to experimental data is reduced by a factor of 2 or
more), and (ii) that the model predicts (without tuning of parameters) experimental data
(e.g., hold up, domain-averaged reaction and heat transfer rates, gas/particle flow rates)
with an accuracy better than 20% over a wide parameter range.

Main Success Scenario:

1. Setup
a. Simulations with various domain-averaged volume fractions, particle parameters

(density ratio, Frp, Sc, Da, etc.)
 generate input scripts (e.g., for mesh generation, setup of simulation parameters,
etc.), start scripts for use with the simulator (e.g., OpenFOAM).

2. Run Simulation
a. Run OpenFOAM simulations on a remote cluster

3. Post process data

8

a. Collect samples for slip velocities, forces, pressure gradient, etc. for various filter
sizes (ca. 10 x 4 x 108 data samples for each run).

b. Bin Data (Calculate mean, variance, etc.)
c. The system is asked to generate a report that includes comparisons with previous

results, known analytical limits and collapsed results with different filter sizes.
d. Find collapse of data, and fit with some function (user input required).

4. Reversibility checks
a. Construct model (user input required).
b. Run semi-automated reversibility check (i.e., compare model prediction with fully

resolved simulation). This requires fully resolved and filtered simulations to be run at
the same time (but independently, of course)

c. Iterate over 2. / 3. / 4. to find the correct model structure and parameters.
5. Validation

a. Compare model prediction with experimental data and predictions of standard
models.

Extensions (Alternative Flows)

1. If the resulting data from the simulation in Main Success Scenario step 2 does not look good,
run the case for a longer time.

2. If the reversibility check fails, one has to rethink the model structure (modify the model in
Porto), propose a new model structure, export the model to one or more simulation codes,
and re-run the filtered model, and possible also run some new fully resolved Euler-Euler
simulations.

Special Requirements:

None.

Technology and Data Variations List:

2a: during project: run FLUENT and NEPTUNE_CFDE on a cluster. After project: run OpenFOAM on a
Linux Cluster.
3b: Porto is set up with mongoDB as the database backend
3d: Could be realized in Octave (or similar)

3.2 Use Case UC2: Quantum Mechanical Computation of Rate and Diffusion
Constants

Main Success Scenario:

• Set up structure (bulk or surface), and run to find low energy stable structures

• Find transition state (i.e. NEB algorithm)

 Get activation energy (ΔH, difference in energy between initial state and transition
state)

9

• Do vibrational analysis

 Obtain entropic prefactor

• Calculate rate constant of transition

• (Related) Do molecular dynamics of carriers, obtain diffusion constant

3.3 Use Case UC3: Kinetic Monte Carlo – Chemical evolution of a material

3.3.1 Introduction
If one is interested in the long-time scale physical and chemical evolution of a solid material on a 1-
100 nm length scale and a time scale of a microsecond or much longer, Kinetic Monte Carlo (KMC)
offers an attractive way of simulating this. A KMC-based computation requires as input (i) the initial
structure and (ii) the rates of fundamental diffusion and reaction steps. The structure might be
resolved into individual atoms or larger units such as molecules or clusters. These basic structural
units can lie on a lattice of given symmetry or be distributed without any spatial bias. In the latter
case, the interactions between atoms are most often provided through some force calculator, as a
user-provided function or taken from a quantum mechanical calculation, such as DFT.

3.3.2 Procedure
1) Setup simulation (on-lattice KMC calculation)

- Define the geometry of the system (for a crystalline solid it is natural to choose a lattice with
the same symmetry as the experimental structure). Apart from structural units sitting at
lattice points, there are no restrictions on the connectivity of the structure such that it is
possible to build in steps, kinks and pores

- Define the rates for all possible transitions in the system, e.g., diffusion jumps, chemical
reactions, adsorption, and desorption. The rates can be estimated or derived from
simulations or experiments

2) Run simulation (on-lattice KMC calculation)

- The simulation progresses through a number of simulation steps tracing a trajectory of the
entire system. In each step 2 random numbers are drawn, one to determine the next step to
take, based on the relative rates of all possible transition, and the other to determine the
time it takes for the transition to take place, based on the total rate of escape out of the
current state (sum of individual rates of each fundamental step)

- The simulation is run for a given number of steps that are sufficient to study the process of
interest

- To obtain proper statistics it is often necessary to run a larger sample of KMC trajectories

3.3.3 Analyze simulation (on-lattice KMC calculation)
- Follow the property of interest, e.g., chemical composition, morphology or displacement,

and output its characteristics, e.g., concentration, as function of time

10

- Derive the overall rate of change of interesting property as slope of characteristic parameter
(concentration/displacement/other) versus time at long times

3.4 Use Case UC 4: Phenomenological Model

3.4.1 Introduction
Phenomenological modelling sacrifices some generality for a very large reduction in computational
cost and complexity. The primary objective is therefore to maximize generality and establish clear
bounds on the applicability of different models. Many closures for the phenomenological modelling
of fluidized bed reactors are already available. NanoSim will therefore build on this available data
source, and extend and/or refine the current capabilities of phenomenological models.

3.4.2 The Foundation
This well-established base and further improve the generality and fidelity of these models. In order
to maximize generality, the phenomenological model should have the following features:

• Run transient or steady state simulations
• Offer easy access to a wide range of closure laws
• Handle a single reactor or groups of interconnected reactors
• Include user-friendly pre- and post-processing

This foundation must be built from scratch or compiled from existing codes

3.4.3 Closure Model Evaluation
The performance of existing closure models must be evaluated against results from filtered CFD
modelling (WP5). Comparisons must be carried out over a wide range of parameters and over the
spatial extension (i.e., the height) of the reactor. Ranges of good comparison and ranges of poor
comparison must be carefully noted.

11

Figure 2 - Difference between CFD and 1D predictions of reactor performance as a function of fluidization velocity (U) and
reactor temperature (T).

3.4.4 Improved Closures
Ranges of poor comparison must be analyzed in more detail in order to identify the defective closure
law and make the necessary improvements. This step may require some more expensive resolved
simulations to extract the information required for closure development (WP5 resolved simulations).
New closures must then be evaluated again.

12

Figure 3 Comparison of bubble diameters predicted by CFD and 1D models

3.4.5 The Final Package
The phenomenological tool will be developed especially for industrial application. Participating
industrial partners will receive a fast and user-friendly modelling tool programmed in Matlab or
Octave with well-documented guidelines for closure selection.

3.5 Use Case UC5: Run a "Filtered Simulation" with Fluent or OpenFOAM

3.5.1 Introduction
This use case details the procedure how to run a filtered CFD simulation of a fluidized bed using the
NanoSim platform. For the current project, this is relevant for industrial end users (e.g., Andritz), as
well as partners that will implement and test filtered drag laws (i.e., TUG and DCS).

Up to now, filtered models have been used in OpenFOAM (Euler-Euler) and CFDEM (Euler-Lagrange)
simulations via dedicated software modules directly implemented into these software packages. This
use case should illustrate how NanoSim will interface with any of the CFD software packages (e.g.,
OpenFOAM, FLUENT, NEPTUNE_CFD) used within this project.

3.5.2 Setup simulation
1. Define the geometry (often complex), and generate the mesh (check mesh quality).
2. Define system parameters and model (pick an appropriate filtered model from a database).
3. Generate UDF for Fluent, or select model and set parameters in an input file for OpenFOAM
4. (alternatively: compile a library to be called at run time, this can also be an option for

interfacing with NEPTUNE_CFD in future extensions)

A web-based solution might bring benefit to industrial end-users.

13

3.5.3 Run simulation
1. Run Fluent / OpenFOAM simulations and save statistics: instantaneous slip velocity, bed

expansion, fuel conversion, etc.
2. Visualize results online to check status of the simulation (e.g. via remote access and a web-

based solution).

3.5.4 Postprocess
1. Post-process simulation results with Paraview (or FLUENT GUI). Assemble & Call OpenFOAM

post-processing routines if required for more sophisticated post-processing.
2. Compare to reference data & generate reports (e.g., to support design decisions, etc.)

3.6 Use Case UC6: Simulate a Lab-Scale Reactor with Complex Particle
Degassing processes

3.6.1 Introduction
This use case details how to embed a particle-scale simulation tool from the NanoSim module
„PaScal“ into a CFD code. For the current project, this is relevant for WP „Lagrangian Modelling“,
where fully resolved simulation of flow, concentration and temperature fields surrounding a small
ensemble of particles will be performed.

Up to now, complex particle processes often have been accounted for by embedding UDFs into
FLUENT. This use case should illustrate how NanoSim will auto-generate code that can be used in any
CFD software packages (e.g., OpenFOAM, FLUENT, NEPTUNE_CFD) to account for complex particle-
scale processes.

Figure 4 “Thunman” 4-layer particle often used for biomass particles (Mehrabian et al., 2012)

3.6.2 Procedure
• Define the geometry (often complex), and mesh (check mesh quality).

14

• Define system parameters and model
(pick an appropriate particle scale model with sub-models, e.g., for pyrolisis, char
gasification, etc.). This will often be a system of ODEs!

• Generate UDF code for Fluent; or generate top-level code for PaScal, compile, and link to
OpenFOAM

A web-based solution could be considered as an educational resource.

3.6.3 Run Simulation
• Run Fluent / OpenFOAM simulations and save statistics: particle temperatures, char burnout,

etc.
• Visualize results online to check status of the simulation. Remote access via web-based

solution

Figure 5 Temperature at the center and the surface of a wood particle (Mehrabian et al., 2012)

3.6.4 Post Process
• Compare to reference data & generate reports (validation).

3.7 Use Case UC7: Parameterize PaScal to Predict the Metal Distribution in
a Porous Particle

3.7.1 Introduction
This use case details how to parameterize PaScal in order to predict the distribution of the active
(i.e., the carrier metal, or a catalyst) in a porous particle. The description is based on the model of Liu
et al. (CES 79:187-199; Ind. Eng. Chem. Res. 49:2649–2657), which has been applied to wet
impregnation of porous alumina particles with nickel nitrate hexahydrate. Similarly, this use case can
be applied to, e.g., other impregnation processes of support particles, or (with further adaptation) to

15

parameterize the particle scale simulation tool “PaScal” based on TGA experiments for the prediction
of processes in the fuel and air reactor. Thus, this use case should illustrate a general approach
where experimental data and atomistic simulation data from the Porto database is combined to
establish a model.

3.7.2 Setup Simulation
1. Define the geometry and discretization of the particle (spherical, cylindrical, or sheet;

particle size; discretization scheme, numerical solution parameters, fitting algorithm), and
boundary and initial conditions to reflect the influence of the surrounding fluid (e.g.,
constant gas-phase composition and fixed heat transfer coefficient; temperatures, initial
concentrations).

2. Define the particle parameters: the key experimental data required here is the pore size
distribution (e.g., measured via mercury intrusion), which is used to estimate the
permeability (both for the gas and liquid phase; simple models can be used based on the
porosity; thus, a sub-model for permeability needs to be picked from a database).

3. Define the transport properties: key parameters like diffusion coefficients, thermal heat
conductivities and capacities, viscosity, density as well as the surface tension needs to be
modelled (for both the liquid and the gas phase; models need to as a function of
temperature, and in case of concentrated solutions of the salt concentration). The user
needs to pick these parameters from a database, or select an appropriate model for its
prediction. For parameters which are connected to uncertainty, there should be an option
to perform a sensitivity analysis (i.e., select parameters for later analysis).

3.7.3 Run Experiments
1. Conduct simple experiments to determine unknown model parameters (e.g., adsorption

parameters).
2. Conduct impregnation & drying experiments; record drying rate and temperature profiles,

as well as metal distribution via micro-X-ray fluorescence spectroscopy

3.7.4 Run Simulation & Fit
1. Pick a certain set of experimental data (fit data set), run PaScal (stand-alone) to fit certain

model parameters with fit data set.
2. Run PaScal model with optimized parameters and save results (base case & sensitivity study;

quality of fit)

16

4 Specific Requirements
In this chapter all requirements and constraints of the software to be developed are given. The
product will adhere to these requirements.

4.1 External Interface Requirements

4.2 Functional Requirements
Requirements in this chapter are formulated as Use Cases using this form:

"As a [role] I want/need [goal/desire] so that [benefit]" - where [role] will be replaced by the primary
actor of the Use Case, and the [goal/desire] will be replaced by the required functionality.

4.2.1 Running jobs from shell

Use Case
Title Comment
Name Running jobs from shell
Purpose As a scientist I need to be able to execute external processes from a scripting shell

so that I can perform post-processing operations from the interactive shell.
Main Success
Criteria

A process can observably be executed from the scripting shell

4.2.2 Working with files from shell

Use Case
Title Comment
Name Working with files and standard IO routines from shell
Purpose As a scientist I need to load, store and create files and directories from the shell so

that I can navigate around and work with the file system.
Main Success
Criteria

Being able to create a directory, change current directory to the newly created one.
The store text as a new file in the current directory, and read it back in

4.2.3 Communicate between script processes

Use Case
Title Comment
Name Simple script application communication protocol
Purpose As a scientist/developer, I want to be able to send and receive asynchronous messages

to other scripting processes in order to perform operations that depend on the status
of other running processes, i.e., start a post processing operation job when a given
workflow is signaling that data is ready

Main
Success
Criteria

A message is passed though the asynchronous communication protocol from one script
job to another and verified

17

4.2.4 Adding a new set of entities

Use Case
Title Comment
Name Registering a new dataset (entity)
Purpose As a developer I need to be able register the information about how a certain

data point should be interpreted, in order for other programs to be able to
read the data and ensure the correct semantics.

Main
Success
Criteria

A file describing the contents of an entity is registered into a shared database

4.2.5 Defining relationships between entities

Use Case
Title Comment
Name Entity relationships
Purpose As a developer I need to define relationships between entities in such a way

that this can be exploited during the searching/restructuring of data, and
during code generation

Main
Success
Criteria

A schema for defining relationships is defined and user provided contents can
be validated against this schema.

4.2.6 Resolve version dependencies and transform internal data

Use Case
Title Comment
Name Version dependency
Purpose As a user I need to be able to assure that data read into an application is

consistent, such that my models are consistently defined even though the
external source might change.

Main
Success
Criteria

An internal data representation (entity) can be restored from the state of a
different entity (or different version of the entity)

18

4.2.7 Setting up Workflows

Use Case
Title Comment
Name Workflow setup
Purpose As an industrial user I want to define a set of execution steps and automate

the running of a batch of coupled simulations
Main Success
Criteria

A setup file is created which defines the execution order and other
conditions. The file is executed in the scripting environment and causes the
applications to be run in the defined sequence, producing a verifiable result.

4.2.8 Writing and validating data descriptions

Use Case
Title Comment
Name Writing and validating data description files
Purpose As a scientist/developer I want to describe a data point (entity) and validate

the file against the formal specification such that I can verify the correctness
of the data before it is stored in the metadata-database

Main
Success
Criteria

An entity is specified in the formal schema. By running a validation script that
takes the entity description file as a parameter, the user will receive a report
indicating whether the specification is valid or not.

4.2.9 Adding a new external driver

Use Case
Title Comment
Name Adding a new external driver
Purpose As a developer I need to integrate a new file format into the Porto platform

such that data from an external file can be used as input for different
simulators in the NanoSim environment.

Main
Success
Criteria

By implementing a driver connector using the API specifications from Porto, it
will be possible to instantiate an entity with data from an external source.

19

4.2.10 Adding a new script plugin

Use Case
Title Comment
Name Adding a script plugin
Purpose As a developer I want to extend the scripting functionality with a custom plugin such

that I can perform different data analysis tasks in the interactive shell
Main
Success
Criteria

By implementing a Porto plugin based on the specified Porto Plugin API, and placing
the plugin in the correct location on the file system, the scripting environment will
load the functionality and make the new functions available for scripting.

4.2.11 Plotting data

Use Case
Title Comment
Name Plotting data contents from entities
Purpose As a scientist/industrial user I need to validate simulation results by creating

various plots for different entities, regardless of their origin, such that data
from different sources can be analyzed and processed to develop a model on
the next level.

Main
Success
Criteria

By specifying a specific instance of an entity, its data is available for plotting.

4.2.12 Importing data from external sources

Use Case
Title Comment
Name Importing data from external source
Purpose As a scientist I need to be able to connect to an external data source and

read the contents such that the information can be processed further.
Main Success
Criteria

By pointing the data source to a specified external driver type and an
address (URI) the software should be able to read the contents into an
entity.

20

4.2.13 MongoDB driver

Use Case
Title Comment
Name Using MongoDB as data storage
Purpose As a developer I want to use MongoDB to store the contents of my entities in

order to exploit the MongoDB facilities such as auto-sharding, full index
search, map/reduce and huge data support.

Main
Success
Criteria

By specifying a database - and collection name, an entity should be serialized
to the given storage location, and read back in again.

4.2.14 Storing 'internal' data

Use Case
Title Comment
Name Storing the current state of an entity
Purpose As a developer/scientist I want to store the current state of an entity in my

preferred programming language, with the ability to retrieve the contents
from a different application written in the same, or different, language

Main
Success
Criteria

An entity is instantiated in a software application and stored in the 'internal’
database (i.e., MongoDB).

4.2.15 Retrieving 'internal' data'

Use Case
Title Comment
Name Retrieving a stored state of an entity
Purpose As a developer/scientist I want to retrieve a stored state of an entity
Main Success Criteria See [UC: MongoDB driver]

4.2.16 Importing 'external' data to 'internal' data

Use Case
Title Comment
Name Importing external data to internal data
Purpose As a scientist/developer I want to be able to import data from an external

source, and store the contents in the internal storage
Main
Success
Criteria

Data stored in an external file is identified through the appropriate metadata
and read into Porto. Then the entities are written back to the 'internal'
storage (MongoDB).

21

4.2.17 Exporting 'internal' data to an external (proprietary) data format

Use Case
Title Comment
Name Exporting data
Purpose As a scientist I want to export internal data into an external data format

such that proprietary software can import the data.
Main Success
Criteria

By importing data stored in the Porto database and exporting it through a
specified storage device the data can be read by a third party application.

4.2.18 Generating source code from JSON

Use Case
Title Comment
Name Generate source code from JSON
Purpose As a developer I want to generate source code by combining a template file

with a JSON file, and produce compile-able output code such that the tedious
and possibly error prone task of implementing large amounts of similar code
can be fully automated.

Main
Success
Criteria

A template file for producing source code is combined with a data source
specified in JSON. By processing these files an output file is produced that can
be compiled, linked and run.

4.2.19 Generating source code from internal data

Use Case
Title Comment
Name Generate source code from internal data
Purpose As a developer I want to generate an OpenFOAM model (i.e., source-code)

based on the state of an entity stored in the internal database, such that new
models can be produced and compiled automatically as part of a process
workflow.

Main
Success
Criteria

A template file for producing source-code is combined with an instance of one
or more entities. By running the generator an output file is produced that can
be compiled, linked and run as part of the simulation environment (UDF or
OpenFOAM model)

4.3 Performance Requirements
As Porto is a framework for offline coupling of models, it is clear that performance does not play a
major role.

4.4 Design Constraints
As Porto is based on the SINTEF Open Framework and Tools (SOFT 5), it is inherently a data centric
framework. Models/simulators revolve around data in a way that restricts the developers to adhere

22

to standard ways of specifying the meta-data for information that is exchanged. In addition, one idea
behind the data centric framework is to decouple structure (hierarches) from the data. This is done
by organizing the data into entities (i.e., a set of properties) that are linked with other entities
through a separate specification of their relationships (see Entity-Relationship modeling, ER-
modelling, as discussed in D.1.2, Detailed Workflow Document).

4.5 Software System Attributes

4.5.1 Reliability
While failure is not a critical issue in the offline coupling of simulators in NanoSim, Porto will need to
be able to safely store, keep and retrieve large amounts of data (<1 Tb) and support mechanisms for
providing safe, and fault tolerant handling of data.

4.5.2 Availability
There are no availability requirements for the Porto framework.

4.5.3 Security
Security is currently not a requirement of the Porto framework

4.5.4 Maintainability
It is imperative that Porto is implemented in such way that the software can be extended, adapted to
changes, improved and corrected. Key principles for designing the software are loose coupling and
high cohesion. Loose coupling refers to having few interdependencies. Module interdependencies
can often cause problems when changing one part of the code which has effects on other parts,
which also might have to be changed, and so on. High cohesion is the principle of creating classes
and modules that does one specific job, in contrast to low cohesion when a class or module does
many unrelated tasks.

Another principle of designing Porto to be maintainable is identifying and implementing known
design patterns where applicable. Design patterns are proven "best practices" for different reusable
solutions to common design challenges, and are known to improve code readability (for coders) and
architects familiar with the patterns.

4.5.5 Portability
Porto will be used on different computing platforms from desktops to clusters. Because of this the
code needs to run on multiple operating systems. Specific target operating systems are Windows and
Linux (32 and 64 bits).

4.6 Other Requirements
None

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 List of definitions and abbreviations
	1.3.1 Definitions
	1.3.2 Abbreviations

	1.4 Overview

	2 Overall Description
	2.1 Product Perspective
	2.1.1 User Interfaces
	2.1.2 Hardware Interfaces
	2.1.3 Software Interfaces
	2.1.4 Communication Interfaces
	2.1.5 Memory Constraints

	2.2 User Characteristics
	2.2.1 Developer
	2.2.2 Advanced users/scientists
	2.2.3 Industrial users

	3 User Scenarios / Use Cases
	3.1 Use Case UC1: Generate a Filtered (Drag) Model incl. Reversibility Check
	3.2 Use Case UC2: Quantum Mechanical Computation of Rate and Diffusion Constants
	3.3 Use Case UC3: Kinetic Monte Carlo – Chemical evolution of a material
	3.3.1 Introduction
	3.3.2 Procedure
	3.3.3 Analyze simulation (on-lattice KMC calculation)

	3.4 Use Case UC 4: Phenomenological Model
	3.4.1 Introduction
	3.4.2 The Foundation
	3.4.3 Closure Model Evaluation
	3.4.4 Improved Closures
	3.4.5 The Final Package

	3.5 Use Case UC5: Run a "Filtered Simulation" with Fluent or OpenFOAM
	3.5.1 Introduction
	3.5.2 Setup simulation
	3.5.3 Run simulation
	3.5.4 Postprocess

	3.6 Use Case UC6: Simulate a Lab-Scale Reactor with Complex Particle Degassing processes
	3.6.1 Introduction
	3.6.2 Procedure
	3.6.3 Run Simulation
	3.6.4 Post Process

	3.7 Use Case UC7: Parameterize PaScal to Predict the Metal Distribution in a Porous Particle
	3.7.1 Introduction
	3.7.2 Setup Simulation
	3.7.3 Run Experiments
	3.7.4 Run Simulation & Fit

	4 Specific Requirements
	4.1 External Interface Requirements
	4.2 Functional Requirements
	4.2.1 Running jobs from shell
	Use Case

	4.2.2 Working with files from shell
	Use Case

	4.2.3 Communicate between script processes
	Use Case

	4.2.4 Adding a new set of entities
	Use Case

	4.2.5 Defining relationships between entities
	Use Case

	4.2.6 Resolve version dependencies and transform internal data
	Use Case

	4.2.7 Setting up Workflows
	Use Case

	4.2.8 Writing and validating data descriptions
	Use Case

	4.2.9 Adding a new external driver
	Use Case

	4.2.10 Adding a new script plugin
	Use Case

	4.2.11 Plotting data
	Use Case

	4.2.12 Importing data from external sources
	Use Case

	4.2.13 MongoDB driver
	Use Case

	4.2.14 Storing 'internal' data
	Use Case

	4.2.15 Retrieving 'internal' data'
	Use Case

	4.2.16 Importing 'external' data to 'internal' data
	Use Case

	4.2.17 Exporting 'internal' data to an external (proprietary) data format
	Use Case

	4.2.18 Generating source code from JSON
	Use Case

	4.2.19 Generating source code from internal data
	Use Case

	4.3 Performance Requirements
	4.4 Design Constraints
	4.5 Software System Attributes
	4.5.1 Reliability
	4.5.2 Availability
	4.5.3 Security
	4.5.4 Maintainability
	4.5.5 Portability

	4.6 Other Requirements

