Towards resolved intra particle temperature predictions in coupled simulations

Graz University of Technology

Thomas Forgber

Stefan Radl

DCS Computing

Christoph Kloss
Key Question

How can we predict intra particle transport phenomena (temperature, reactions) in a fluid-particle systems?

Figure 1: Basic concept of Chemical Loop Combustion
Key Question

- Periodic box ($H/d_p = 15$). \[^{[1]}\]
- Upper wall $T^* = 1$, lower wall $T^* = 0$.
- Combination of Biot and Peclet number as key non-dimensional influence parameters.

$$Pr = \frac{(0.5 \, D_p)^2}{K/(\rho_p \, c_p)} \quad Bi = \frac{D_p \, \alpha_p}{K}$$

- Matching results for small Bi with. \[^{[2]}\]
- Intra particle temperature profiles should be considered at higher Bi.
- Influence the prediction of the heat transfer rate.

Content

1. The “NanoSim” project
2. PaScal
3. Test Drive
4. Conclusion and Outlook
NanoSim Project

Title

Goals
• Open source multi-scale software platform (CFDEMcoupling, OpenFOAM, LIGGGHTS, and PaScal, C3PO as core tools).
• Facilitate rational design of second generation gas-particle CO₂ capture techniques based on nano materials, CLC.
• Highly generic for general gas-particle contacting processes (e.g., biomass gasification/combustion).

Figure 4: Vector plot of the flow field (flow into the positive x-direction, x = 4 dp).
NanoSim Project

Key Facts

• Consortium: SINTEF, TUG, UCL, INPT, NTNU, DCS, ANDRITZ, UCOIMBRA

• Scientific coupling of relevant phenomena on different scales, fully automatic, LGPL License

• PaScal (particle scale simulation) and C3PO (online post-processing utility)

• C/C++ environment, interface capabilities to LIGGGHTS, OpenFOAM, FLUENT, NEPTUNE_CFD, Stande-alone mode

• Variety of particle scale models to solve reaction-diffusion models incl. heterogeneous reactions

Figure 5: Temperature of the gas (top panel) and inside coal particles (bottom panel) in a 2D setup (Schmidt and Nikrityuk, 2012).
Figure 6: Part of the Porto Information Flow
PaScal

Key Facts

- C/C++ environment, **Particle Scale** tool for calculating transient Intra Particle Properties, LGPL Licence.
- Development started in February 2014, hosted in CFDEMcoupling Github Repository.
- Public availability planned.

![Figure 7: Current Github repository of PaScal](image)
Base classes (Error, Input, Output,..), Accessible base classes.

Modular system, easy to extend and understand (documentation).

Designed for spherical particles, **1D discretization** with fixed number of mesh points.

Standard integrator **CVODE** (variable-order, variable-step multistep method, 1-5 order, BDF, robust for stiff systems).
Figure 10: Test case of transient boundary conditions inside PaScaI/examples/

- **Input script “in.convective”**.
- **“0/”** folder for internal conditions, **“settings/”** for model constants.
- **“Allrun”/”Allclean”** scripts, **“README.md”** (Markdown) for problem description, **“plotMe.m”** for plotting functionality.
- **HDF5, JSON** data format available for output, both can be post-processed with Octave.
- Run.config for DCS test harness.
Conclusion

- Novel simulation tool called **PaScal**.
- **general framework** for coupled system of PDEs (spherical coordinates).
- Sub-time stepping by CVODE.
- Capable of temperature, species profiles, stiff ODE systems (reactive systems).
- Standalone or Library.

Outlook

- Library to be coupled to **LIGGGHTS** and **CFDEMcoupling** (& other **OpenFOAM** solvers).
- Public release in December 2014 (planned).
- Current activity: Interfaces, Coupling, Multiple reactions, Documentation.
One timestep

LIGGGHTS (fix_pascal_couple)

- Fix_shellTemperature
- Fix_shellHeatFlux
- PaScal called at end_of_step in LIGGGHTS

Initialisation

PaScal object

- Initialisation from latest time step.
- Inner loops for all particles, temperature, species, chemistry.
- Calculation of intra particle properties, relevant properties for LIGGGHTS.

Parameters to LIGGGHTS for next timestep

- Runs as Slave Program.
- Serial Init, than Parallel Run.
- No interaction to Master during runtime.
- Automatic Sub-time stepping through CVODE (needed for chemistry).

Figure 11: Timestep in LIGGGHTS/PaScal coupling
Towards resolved intra particle temperature predictions in coupled simulations

Graz University of Technology

Thomas Forgber
Stefan Radl
DCS Computing

Christoph Kloss

Thank you!