



# Towards resolved intra particle temperature predictions in coupled simulations

#### **Graz University of Technology**

Thomas Forgber

Stefan Radl

#### **DCS** Computing

**Christoph Kloss** 





Nano Sim

EVENTH FRAMEWO





## **Key Question**





Figure 2: Sheared particle bed

- Periodic box  $(H/d_p = 15)$ . <sup>[1]</sup>
- Upper wall  $T^* = 1$ , lower wall  $T^* = 0$ .
- Combination of Biot and Peclet number as key non-dimensional influence parameters.

$$Pr = \frac{(0,5 D_P)^2}{K/(\rho_P c_P)} \qquad Bi = \frac{D_P \alpha_P}{K}$$

- Matching results for small Bi with. [2]
- Intra particle temperature profiles should be considered at higher Bi.
- Infulence the prediction of the heat transfer rate.



Figure 3: Basic scope of PaScal

<sup>[1]</sup> Lees and Edwards, *Journal of Physics C: Solid State Physics* (1972) <sup>[2]</sup> Bhageshvar, Kloss, Radl, Khinstast, Powder Technology (2014) **Institute for Process and Particle Engineering, 2014** 







- 1. The "NanoSim" project
- 2. PaScal
- 3. Test Drive
- 4. Conclusion and Outlook









#### Title

Multiscale Simulation-Based Design Platform for Cost-Effective CO<sub>2</sub> Capture Process by Nano-Structured Materials.

#### Goals

- Open source multi-scale software platform (CFDEMcoupling, OpenFOAM, LIGGGHTS, and PaScal, C3PO as core tools).
- Facilitate rational design of second generation gas-particle CO<sub>2</sub> capture techniques based on nano materials, CLC.
- Highly generic for general gasparticle contacting processes (e.g., biomass gasification/combustion).



Figure 4: Vector plot of the flow field (flow into the positive x-direction, x = 4 dp).





#### Key Facts

- Consortium: SINTEF, TUG, UCL, INPT, NTNU, DCS, ANDRITZ, UCOIMBRA
- Scientific coupling of relevant phenomena on different scales, fully automatic, LGPL License
- PaScal (particle scale simulation) and C3PO (online post-processing utility)
- C/C++ environment, interface capabilities to LIGGGHTS, OpenFOAM, FLUENT, NEPTUNE\_CFD, Stande-alone mode
- Variety of particle scale models to solve reactiondiffusion models incl. heterogeneous reactions



Figure 5: Temperature of the gas (top panel) and inside coal particles (bottom panel) in a 2D setup (Schmidt and Nikrityuk, 2012).









### PaScal



#### **Key Facts**

- C/C++ environment, Particle Scale tool for calculating transient Intra Particle Properties, LGPL Licence.
- Development started in February 2014, hosted in CFDEMcoupling Github Repository.
- Public availability planned.

| Major Update           |                                                                              |  |
|------------------------|------------------------------------------------------------------------------|--|
| sradi authored 13 hour | s ago                                                                        |  |
| applications           | Minor update                                                                 |  |
| doc                    | chemistry_reaction_single, consistensy to docu of chemikin format,cal        |  |
| examples               | clean-up                                                                     |  |
| platforms              | clean-up                                                                     |  |
| specification/UML      | [NOCOMPILE] manual merge of bc8f565 and d749566                              |  |
| src 🖿                  | Major Update                                                                 |  |
| srcExternal            | Added multiSpeciesMassTransportLibrary                                       |  |
| thirdParty             | Merge branch 'parallelism'                                                   |  |
| .gitignore             | added some files to gitignore                                                |  |
| LICENSE.md             | Create LICENSE.md                                                            |  |
| README.md              | Signed-off-by: sradl <sradl@naboo.tu-graz.ac.at></sradl@naboo.tu-graz.ac.at> |  |
| doxygen_config         | tested transient BC                                                          |  |
| paScal_logo.png        | [NOCOMPILE] manual merge of bc8f565 and d749566                              |  |







Figure 9: PaScal Model Base Class diagram

- Base classes (Error, Input, Output,..), Accessible base classes.
- Modular system, easy to extend and understand (documentation).
- Designed for spherical particles, 1D discretization with fixed number of mesh points.
- Standard integrator **CVODE** (variable-order, variable-step multistep method, 1-5 order, BDF, robust for stiff systems).









| tforg authored on Sep 2                     |           | latest commit <b>2fd5eeca63</b> |
|---------------------------------------------|-----------|---------------------------------|
|                                             |           |                                 |
| <b>D</b> 0                                  | cosmetics | 2 months ago                    |
| En settings                                 | cosmetics | 2 months ago                    |
| Allclean                                    | cosmetics | 2 months ago                    |
| Allrun_convective                           | cosmetics | 2 months ago                    |
| README.md                                   | cosmetics | 2 months ago                    |
| in.file_convective                          | cosmetics | 2 months ago                    |
| numerical_solution_BC_convetive_cooling.cpp | cosmetics | 2 months ago                    |
| ■ plotMe.m                                  | cosmetics | 2 months ago                    |
| run.config                                  | cosmetics | 2 months ago                    |
| I README.md                                 |           |                                 |

Figure 10: Test case of transient boundary conditions inside *PaScal/examples/* 

• Input script "in.convective".

Nano Sim

- "0/" folder for internal conditions, "settings/" for model constants.
- "Allrun"/"Allclean" scripts, "README.md" (Markdown) for problem description, "plotMe.m" for plotting functionality.
- HDF5, JSON data format available for output, both can be post-processed with Octave.
- Run.config for DCS test harness.







#### Conclusion

- Novel simulation tool called **PaScal**.
- **general framework** for coupled system of PDEs (spherical coordinates).
- Sub-time stepping by CVODE.
- Capable of temperature, species profiles, stiff ODE systems (reactive systems).
- Standalone or Library.

#### Outlook

- Library to be coupled to LIGGGHTS and CFDEMcoupling (& other OpenFOAM solvers).
- Public release in December 2014 (planned).
- Current activity: Interfaces, Coupling, Multiple reactions, Documentation.



## **Sim** Conclusion and Outlook

VENTH FRAMEWORI





process end Particle Engineering, 2014

12





## Towards resolved intra particle temperature predictions in coupled simulations

#### **Graz University of Technology**

Thomas Forgber

Stefan Radl

**DCS Computing** 

**Christoph Kloss** 

# Thank you!

