
MATLAB® geoChemistry: a tool for the solution of equilibrium

geochemical systems

Colin Joseph McNeece
colinjmcneece@gmail.com

Xavier Raynaud
xavier.raynaud@sintef.no

December 5, 2017

Contents

1 Introduction 2
1.1 Program capabilities . 2
1.2 Installation and usage . 3

2 Defining a chemical system 3
2.1 Elements . 3
2.2 Species . 4
2.3 Reactions . 4
2.4 Surfaces . 5

2.4.1 Langmuir . 5
2.4.2 Ion exchange . 6
2.4.3 Triple layer model . 6
2.4.4 Constant capacitance model . 7
2.4.5 Surface groups . 8

2.5 Linear combinations . 8
2.6 Redox chemistry . 8
2.7 Solid and gas phase chemistry . 9
2.8 Visualizing the system . 10

3 Solving the chemical system 10
3.1 Input format . 11
3.2 Temperature . 12
3.3 Charge balance . 13
3.4 Solver options . 13
3.5 Exploring variable and parameter space . 13

4 Post processing 14
4.1 Accessing information in state . 15
4.2 Additional calculations . 16

4.2.1 computeActivities . 16
4.2.2 computeChargeBalance . 16
4.2.3 computeSurfacePotentials . 17
4.2.4 computeSurfaceCharges . 17
4.2.5 computeAqueousConcentrations . 17
4.2.6 computeSurfaceConcentrations . 18
4.2.7 changeUnits . 18

5 Transport simulations 18

1

6 Equations of the chemical system 21
6.1 Conservation of mass . 22
6.2 Laws of mass action . 22
6.3 Activity of aqueous species . 22
6.4 Activity of surface species . 23

6.4.1 Ion exchange surfaces . 23
6.4.2 Electrostatic surface . 23

6.5 Electrostatics of the surface . 23
6.5.1 Constant Capacitance model . 23
6.5.2 Triple layer model . 24

6.6 Equilibrium with solid phases . 24
6.7 Linear combinations . 25
6.8 Charge balance . 25
6.9 Transport . 25
6.10 a priori bounds on variables . 26
6.11 log transformation of variables . 27

7 Examples 27

8 Comparison to PHREEQC 27
8.1 Aqueous speciation . 27
8.2 Equilibrium with phases . 29
8.3 Surface chemistry . 31

8.3.1 Langmuir model . 31
8.3.2 Ion exchange model . 34
8.3.3 Triple layer model . 36

1 Introduction

1.1 Program capabilities

MATLAB® geoChemistry (MATCH) is a tool for the solution of equilibrium geochemistry systems. The
supported physical phenomenon include:

• non-isothermal aqueous speciation

• surface chemistry

– langmuir

– triple layer model

– diffuse layer model

– constant capacitance model

– basic stern model

– ion exchange

• redox chemistry

• equilibrium with gas and solid phases

MATCH was developed as a module for the MATLAB® Reservoir Simulation Toolbox (MRST). MRST
provides a number of tools which allow for a robust and flexible geochemistry simulator. Key among these
capabilities is the automatic differentiation framework. Practically, this technique enables the user to choose
any variable within the geochemical system to be an unknown or an input.

2

Unlike PHREEQC, MATCH does not have a large database of reactions and species, therefore only
elements, species and reactions defined by the user are considered by the solver. This greatly increases the
efficiency of the solver, but puts more work on the user in defining the chemical system.

There is much room for further incorporation of MRST tools into MATCH, and to leverage the capabilities
of both for the purpose of answering interesting questions. MRST is well documented with a manual,
instructional videos, and examples. See their documentation page for more information.

1.2 Installation and usage

1. Install the MATLAB® Reservoir Simulation Toolbox.

2. Add the matlab-geoChemistry repository to the modules folder of MRST.

3. Create a file named startup_user.m within the MRST folder, at the same level as startup.m.

4. In startup_user.m add the line

mrstPath('register', 'geochemistry', 'path/to/repo/matlab-geochemistry')

Once MRST is installed and made aware of the location of the matlab-geoChemistry repository the
module can be used like any other MRST module. Before any script that relies on the repository is run,
MRST must be started. This is done by running the startup.m script which is located inside of the MRST
directory.

To use the geochemistry module in a MATLAB® script include the commands

run 'path/to/startup.m'
mrstModule add geochemistry ad-core

this will start MRST, and make the contents of the geochemistry directory available in the workspace.

2 Defining a chemical system

In using MATCH the user must first define and instantiate the chemical system. The user specifies the
elements, species, and reactions of the system as inputs to the ChemicalModel class. Any entry of elements
or species can be chosen as an input by appending an asterisk (*) to the name. This will be demonstrated
below. Once the chemical system is instantiated the system is solved by passing a vector of chosen input
values to initState, a function within the ChemicalModel object.

The chemical model can be instantiated by

chem = ChemicalModel(elementNames, speciesNames, reactions);

The inputs to ChemicalModel are cell arrays of strings, which MATCH parses to determine the relationship
between elements, species, and reactions. It is important to choose appropriate naming conventions and
remain consistent in writing variables names.

For a chemical system to be properly defined there must be as many unknowns as equations. From a
practical standpoint this means that the number of inputs must be equal to the number of elements. And
that the number of species must be equal the sum of elements and reactions, including surface functional
groups. The parser will make these checks and guide the user to create a properly defined chemical system.

2.1 Elements

Elements are the basis components from which species are created. In the manual we refer to elements
and basis components interchangeably. It is not necessary for the entries of elementNames to correspond to
actual chemical elements. The elementNames entry to ChemicalModel is a cell array of strings.

3

http://www.sintef.no/projectweb/mrst/publications/
http://www.sintef.no/projectweb/mrst/downloadable-resources/

elementNames = {'O', 'H', 'Na', 'Cl'}

In the above example the elements oxygen, hydrogen, sodium and chlorine have been specified. The order
of the entries in elementNames has no bearing on the system. Surface functional groups should not be listed
in elementNames, instead they are handled separately as is discussed in Section 2.4.

The total amount of an element in the system can be specified as an input by appending an asterisk (*)
to the element name. For instance, to choose the total concentration of sodium as an input:

elementNames = {'O', 'H', 'Na*', 'Cl'}

Actual elements do not need to be used as entries in elementNames. For instance it might be more
convenient to choose more complex entries as master components.

elementNames = {'O', 'H', 'Na*', 'SO4'}

From this basis one may define the species H2O, H2SO4, NaOH and so on. However, the basis can not be
subdivided, meaning that if the above basis is chosen, S can not appear in any other way than in the group
SO4. For example S2 would not be admissible because it can not be created by a positive linear combination
of the elements/basis components. Additionally, the parser would not recognize that the species SH2O4

contains SO4 as the string group 'SO4' does not appear in 'SH2O4'.
The user may have noticed that O appears in two elements/basis components. This is not a problem

for MATCH, however, from a mathematical standpoint this means that the oxygen in species which contain
SO4 will not contribute to the total amount of oxygen in the system.

2.2 Species

Species must be positive linear combinations of the basis components (entries in elementNames). The input
speciesNames is a cell array of strings. As in elementNames the concentration of a chemical species can be
chosen as an input by appending an asterisk to the variable name.

speciesNames = {'H2O', 'H+*','OH-', 'NaCl'}

Here the concentration of H+ has been chosen as an input. The order of the entries in speciesNames has
no bearing on the system.

The parser will search the entries of speciesNames for the exact non-case-sensitive matches to the
entries in elementNames in order to determine mass constraint relationships. This places some restrictions
on conventions of species naming. Elements must appear exactly as they are listed in elementNames and can
not appear as fragments or reordered versions of themselves. As an example, if 'SO4' and 'H' are entries
in elementNames the entry 'H2O4S' will cause the parser to through an error. However, 'H2SO4' would be
fine.

If an element appears more than once in a species the element can be written with a number after, or
simply written more than once, for example 'H2O' would be identical to 'HHO' or 'HOH'. Similarly groups of
elements can be written with parenthesis, for example peroxide could be written as H2O2, (HO)2 or 'HOHO'.

Surface species can be defined by prepending the greater than symbol > to the elements. For instance
'>SiOH'.

The parser determines the charge of species by the '+/-' and any subsequent numbers which appear at
the end of the species name. The following are acceptable ways to define a specie’s charge: 'H+', 'H+1',
'SO4-2', 'SO4--', '>FeO-1/2', and '>FeOH-1.5'.

2.3 Reactions

Reactions are defined in the reactions entry to ChemicalModel as a cell array of “key”/value pairs with
the “key” being the string of the chemical reaction and the value being the equilibrium constant.

4

reactions = {'H2O = H+ + OH-', 10ˆ-14*mol/litre,...
'Na+ + Cl- = NaCl', 10ˆ1/(mol/litre)};

reactions must be a cell array with dimensions {1 × 2N} where N is the number of reactions. The
equilibrium constants of the reaction must be written in SI units, therefore concentrations would be in
mol/m3. MRST provides a number of built in constants for conversion. In the above example the multiplier
mol/litre converts from mol/litre to mol/m3. Most published values of reaction constants assume units
of mol/litre, as in the example above. Note how the units of the reaction constants differ for the H2O and
NaCl reactions based on the structure of the reaction. If the user so chooses, the reaction constant can also
be a vector, the length of which must match the length of the input as described in Section 3.1. This may be
useful if the user wants to explore the effect of a reaction constant on the equilibrium distribution of species.

Multiples and fractions of species can be written just like any equation by multiplying or dividing by
the appropriate number, for instance 'Mg+2 + 2*Cl- = MgCl2'. The MATLAB® multiplication symbol *
must be used, the reaction 'Mg+2 + 2Cl- = MgCl2' would throw an error, unless '2Cl-' was an entry in
speciesNames.

The parser will search the reaction strings for exact, non-case-sensitive matches to entries of elementNames.
Therefore, species must be written consistently throughout the chemical system. This includes the way charge
is written.

Reactions must be written as “products = reactants”, with an equals sign (=) separating the two. The
direction of the reaction does not matter from the parser standpoint, but care should be taken to write the
equilibrium constant correctly as its value depends on the reaction direction. The parser is insensitive to
spacing and capitalization.

Note that in the laws of mass action, surface activities are mole fractions, as defined by model 3 in ? and
are therefore surface activities are dimensionless. If the units of the reaction constant are not in SI, then
care should be taken in surface reactions, see surface chemistry examples for details.

The parser will verify that charge and the mass of each element is conserved within the reaction.

2.4 Surfaces

Surfaces in MATCH are defined by an additional “key”/value pair entry to ChemicalModel during the model
instatiation:

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surfaces', surfInfo);

where 'surfaces' is the “key” (alternatively any fraction of the word surfaces 's', 'surf' etc.), and
surfInfo is cell array containing information pertinent to the surfaces in the system.

There are many parameters for surface chemistry models, and so the construction of surfInfo is a bit
complex. We will start with the most simplistic model, the Langmuir model, and build from there.

Special care should be taken when defining the reaction constant of a surface reaction. In the laws of
mass action, surface species are defined as mole fractions (model 3 of ?). Therefore, surface species are
dimensionless.

2.4.1 Langmuir

The surfInfo cell has at minimum 3 entries: the name of the surface functional group (similar to the entries
of elementNames), the geometry of the surface, and the type of surface model.

surfInfo = {'>FeO', {geometry, 'langmuir'}};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

Within surfInfo is the “key”/value pair of the surface functional group name and the corresponding surface
information. Multiple surface functional groups can be defined in this way.

Within the information cell is the surface geometry and the surface model type. In the above example
we consider an iron oxide and treat it as a Langmuir type surface by providing the 'langmuir' flag.

5

The geometry variable is a {1×3} vector containing the surface site density, specific surface area, and
slurry density, in that order. For example

geometry = [1*site/(nano*meter)ˆ2 50*meterˆ2/gram 1000*grams/litre];

defines a surface with a site density of 1 site/nm2, a specific surface area of 50 m2/g and slurry density
of 1000 g/L. The entries of geometry must be in SI units. Many conversion multipliers are provided within
MRST to make this conversion convenient. The geometry information is used to calculate the total molar
concentration of the surface functional group. For example the total concentration of FeO sites would
calculated as the product of all entries of geometry with a conversion from site to moles. geometry can also
be a matrix with the same length as the input vector described in Section 3.1 so that the surface geometry
may be varied. This may be useful in understanding the effect of say specific surface area on the distribution
of surface species.

For a Langmuir surface no other entries are needed in surfInfo besides the geometry and surface model
flag.

2.4.2 Ion exchange

Ion exchange is an important surface chemistry model in the fields of contaminant transport and radionuclide
storage. The fundamental difference between the Langmuir and ion exchange models is that no free sites
may exist, such that the surface is always neutralized by sorbed species. An ion exchange surface can be
specified by the 'ie' model flag in surfInfo.

reactions = {'>SiOH + Na+ = >SiONa + H+', K1};

surfInfo = {'>SiO', {geometry, 'ie'}};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

The parser will ensure that surface species associated with an ion exchange surface does not have a charge.
Note how the surface reaction is defined in reactions such that the surface is always neutral. Note that the
ion exchange reaction constant abover is dimensionless as '>SiOH' and '>SiONa' are dimensionless and
the units of 'H+' and 'Na+' cancel in the law of mass action.

2.4.3 Triple layer model

The triple layer model attempts to capture the electrostatic behavior of the mineral surface by considering
the mineral-liquid interface as three capacitors in series. The capacitance layers are segmented by charge
accumulation planes. The two inner most layers have a constant capacitance and the outermost layer (the
diffuse layer) has a variable capacitance which depends on the temperature and salinity of the bulk aqueous
phase ???.

To use the triple layer model within MATCH the model tag 'tlm' must be used after the geometry
variable. An additional input must be included in surfInfo for the triple layer model, a vector of the
capacitance densities of the inner and stern layers

cap = [1 0.2];

surfInfo = {'>FeO', {geometry, 'tlm', cap}};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

The cap variable is a 1×2 vector containing the capacitance densities of the inner and stern layers in SI
units (coulombs/m2). The basic Stern model is a limit of the triple layer model where the potential drop is
negligible in the stern layer. This can be approximated by setting the capacitance density of the stern layer
to a large value cap = [1 1e3];. The diffuse layer model is a limit of the triple layer model where all the

6

potential drop occurs in the diffuse layer. This can be approximated by setting both the inner and stern
layer capacitance densities to large values cap = [1e3 1e3];.

A unique feature of the triple layer model is charge distribution, where a surface species can simultaneously
contribute charge to multiple layers depending on if sorption is inner or outersphere. Consider the chemical
reactions

reactions = {'>SiOH = >SiO- + H+', K1,...
'>SiOH + H+ = >SiOH2+', K2,...
'>SiO- + Na+ = >SiONa', Kna,...
'>SiOH2+ + Cl- = >SiOH2Cl', Kcl};

The sorption of H+ to the silica surface site is considered a so called inner sphere complex, meaning that
these surface species contribute charge directly to the mineral surface. On the other hand, Na+ and Cl–

are geometrically limited due to their waters of hydration. They are considered to sorb at the so called
inner Helmholtz plane, and are called outersphere complexes. The sorbed species SiOH2Cl and SiONa then
contribute charge to both the surface and the inner Helmholtz plane.

To input this information in the surfInfo variable we insert additional “key”/value pairs, where the
“key” is the surface species name and the value is the charge distribution vector:

surfInfo = {'>SiO', {geometry, 'tlm', cap, '>SiONa', [-1 1], '>SiOH2Cl', [1 -1]}};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

In the above example we show that SiONa contributes -1 charge to the surface and +1 charge to the inner
Helmholtz plane. If a species also contributes to the outer Helmholtz plane the user would put a third entry
in the charge distribution vector. The parser by default assumes this entry is 0. Similarly if the species
only contributes to the surface charge, then only 1 entry to the charge distribution vector is necessary. Only
species who have charge distribution need to be listed in sufInfo, by default the parser will take the charge
of the surface species as determined by the species name, and contribute all of the charge to the surface.

For example, we do not need to include SiO– in surfInfo because it has a charge of -1 and all of that
charge is on the mineral surface. However,he species can be included in surfInfo and the default will be
overwritten.

The parser checks that the entries of the charge distribution vector sum to the overall charge of the
species. For example, SiOH2Cl has an overall charge of 0, as determined by its name '>SiOH2Cl'. The
parser sums the entries of its charge distribution vector, [1 -1] and checks that it is indeed 0.

Partial charges can also be written in the charge distribution vector as is common in the triple layer and
CD-MUSIC models, for example [0.5 -1]. The multisite aspect of the CD-MUSIC model can be included
by grouping surfaces which is discussed in Section 2.4.5.

Note that mole fraction is used for surface species in the laws of mass action.

2.4.4 Constant capacitance model

The constant capacitance model is the high ionic strength limit of the triple layer model. However, unlike the
basic stern and diffuse layer model the constant capacitance model can not be simulated by an adjustment of
the capacitance density values as was done above. Instead the constant capacitance model must be specified
by the 'ccm' model flag.

cap = 1;

surfInfo = {'>FeO', {geometry, 'ccm', cap}};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

As with the triple layer model, the capacitance density is a required parameter of the constant capacitance
model. However, only one capacitance density is needed.

Note that mole fraction is used for surface species in the laws of mass action.

7

2.4.5 Surface groups

In the triple layer model, specifically the CD-MUSIC variation, it is common to have multiple surface
functional groups belonging to a single electrostatic surface. An example of this would be the different iron
oxide functional groups of the goethite surface. To group these different functional groups into a single
surface an additional “key”/value pair is included in surfInfo

surfGroups = {'Goe', {'>FeO', '>Fe2O','>Fe3O'}};

surfInfo = {'>FeO', {feoGeometry, 'tlm', cap},...
'>Fe2O' {fe2oGeometry, 'tlm', cap},...
'>Fe3O' {fe3oGeometry, 'tlm', cap},...
'groups', surfGroups};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'surf', surfInfo);

In this example the surface functional groups '>FeO', '>Fe2O' and '>Fe3O' are all combined into one
surface called 'Goe', short for goethite. In this formulation all the surface species of the three functional
groups contribute charge to the 'Goe' surface and therefore the activities of all their associated species are
determined by the electrostatics of the 'Goe' surface. If functional groups are clustered into a single surface
their electrostatic properties must be identical (i.e. same surface chemistry model, in this case 'tlm' and
the same value for capacitance. The parser will throw an error otherwise. The geometries of each functional
group can be different even if they are in the same electrostatic surface group.

The variable surfGroups must be a cell array of size {1× 2N} where N is the number of surface groups.
Any number of surface groups can be specified. By default each surface functional group is considered to be
a distinct electrostatic surface surface.

2.5 Linear combinations

In aqueous chemistry it is often of interest to consider linear combinations of aqueous species. Alkalinity is
a common example of this. To define a linear combination an additional “key”/value pair must be passed
to ChemicalModel

comboGroups = {'alk', 'HCO3- + 2*CO3-2 + OH- - H+'}

chem = ChemicalModel(elementNames, speciesNames, reactions, 'combinations', comboGroups);

The variable comboGroups is a cell array of strings of size {1 × 2N} where N is the number of linear
combinations. The key 'combinations' can also be written as any shortening of the word (i.e. 'comb' or
'c'). In the above example we have defined the linear combination 'alk' (alkalinity) as the summation of
hydrogen bearing species, which we will call the combination string. The species listed in the combination
string must written exactly as they appear in the speciesNames variable. Any number of linear combinations
can be specified. Just like total element and species concentrations, the value of the linear combination can
be specified as an input by appending an asterisk to the name.

comboGroups = {'alk*', 'HCO3- + 2*CO3-2 + OH- - H+'}

The user would then provide the concentration of alkalinity as an input.
The name of the linear combination is arbitrary, the variable 'alk' has no significance inside the chemical

solver, the linear combination could just as well be called 'alkalinity' or 'potato'.

2.6 Redox chemistry

Redox chemistry and half reactions can easily be entered into the chemical system by specifying 'e' as a
basis component in the elementNames variable. The electron, 'e-', can then be written into elementNames

and half reactions in the same way as normal species are considered in reactions

8

elementNames = {'H', 'O', 'e'};

speciesNames = {'H2', 'O2', 'H2O', 'e-'};

reactions ={'2*H2O = 4*H+ + 4*e- + O2', 10ˆ-86*(mol/litre)ˆ7};

chem = ChemicalModel(elementNames, speciesNames, reactions);

Just as with linear combinations, elements, and species, the total concentration of electrons can be specified
as an input by appending an asterisk to the name. Whether 'e' or 'e-' is chosen as an input is irrelevant
because 'e-' is the only species that contains 'e' as far as the mass constraint equation is concerned.
However, the convergence of the numerical solver will be more robust if the element/basis component entry
is chosen as the input.

If the user would like to specify the total concentration of a particular element in a particular oxidation
state, this can be done through a linear combination

elementNames = {'H', 'O', 'e'};

speciesNames = {'H2', 'O2', 'H2O', 'e-'};

reactions ={'2*H2O = 4*H+ + 4*e- + O2', 10ˆ-86*(mol/litre)ˆ7};

comboGroups = {'H(+1)*', 'H+ + 2*H2O',...
'H(0)', 'H2'};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'comb', comboGroups);

In the above example we have specified that the total concentration of hydrogen in the +1 oxidation state
will be an input. The name of the linear combination is arbitrary, and does not have to correspond to the
oxidation state in any way.

2.7 Solid and gas phase chemistry

Equilibrium with solid and gas phases can be specified by listing the phases as species in speciesNames and
in reactions. Consider the carbonate system

elementNames = {'C', 'O', 'H','Ca*'};

speciesNames = {'CO2', 'CO2(g)*', 'CO3-2', 'HCO3-', 'H2CO3', 'H2O*', 'CaCO3(s)', 'H+*', 'Ca+2'};

reactions ={'CO2(g) = CO2', Kh,...
'CO2 + H2O = H2CO3', Kco2,...
'H2CO3 = H+ + HCO3-', K1,...
'HCO3- = H+ + CO3-2', K2,...
'CaCO3(s) = Ca+2 + CO3-2', Ksp};

Gas phases are identified by the parser by '(g)' at the end of the species names, while solids are identified
by '(s)'.

The partitioning of CO2 between the aqueous and gas phase is controlled by a Henry’s law partitioning
coefficient. Note that the equilibrium constant must be in SI units, the SI unit of pressure being pascal. The
atm and barsa multipliers can convert from atmospheres and bars to pascals respectively.

Equilibrium with the solid phase is defined in a similar way. The equilibrium reaction is written as any
other reaction, though the units of the solid phase component should not enter into the equilibrium constant
because the ion activation product is the product of only the aqueous species concentrations.

As with elements, species, and linear components, the solid and gas phase can be specified as inputs by
appending an asterisk to the component name in speciesNames. In the above example 'CO2(g)' is specified
as an input. If a gas phase is specified as an input the partial pressure of the component should be provided.
If a solid phase is specified as an input, the saturation index, SI, should be provided

9

SI =
IAP

Ksp
(1)

where IAP is the ion activation product and Ksp is the equilibrium constant of the precipitation reaction.
When SI = 1 the solution is saturated, when SI > 1 the solution is supersaturated and when SI < 1 the
solution is undersaturated. It is important to note that in some programs SI = log10(IAP/Ksp). Mind that
here it is not in log form.

2.8 Visualizing the system

Once the chemical model has been instatiated the system of equations can be visualized with printChemicalSystem

elementNames = {'O', 'H', 'Na*', 'Cl*'};

speciesNames = {'H+*', 'OH-', 'Na+', 'Cl-', 'NaCl', 'H2O*'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaCl = Na+ + Cl-', 10ˆ1*mol/litre};

comboComps = {'TOTH', 'H+ - OH-'};

chem = ChemicalModel(elementNames, speciesNames, reactions, 'combinations', comboComps);

chem.printChemicalSystem;

the result being the tableau of equations that are solved in the system.

===
|Equations | H+ | OH- | Na+ | Cl- | NaCl | H2O |
===
sum(O)	0	1	0	0	0	1
sum(H)	1	1	0	0	0	2
sum(Na)	0	0	1	0	1	0
sum(Cl)	0	0	0	1	1	0
===						
H2O=H++OH-	1	1	0	0	0	-1
NaCl=Na++Cl-	0	0	1	1	-1	0
===						
TOTH	1	-1	0	0	0	0
===

The top row is the chemical species in the system. The first set of equations being the mass constraints of
each element/basis component, the second set being the laws of mass action for the chemical reactions, and
the final set being the linear combinations.

3 Solving the chemical system

As we have been defining the chemical system we have chosen variables, either elements, species, linear
combinations, or phases as inputs. Based on these inputs the parser within ChemicalModel has set up the
solver such that the analytic residual and Jacobian can be computed.

The ChemicalModel class uses the function initState to numerically solve the chemical system using
Newton’s method given the values of inputs.

chem = ChemicalModel(elementNames, species, reactions);

state = chem.initState(inputs)

10

initState is a function within the ChemicalModel class and therefore chem must be used when calling
initState. Alternatively state = initState(chem, inputs) could be used.

initState takes a matrix of input values corresponding to the input variables the user chose when the
chemical model was instantiated. initState returns the variable state which is a structure whose fields
correspond to solved variables of the chemical system:

elements the total concentration of each element in the system [mol/m3]

species the concentration of each species in the system, including surface species [mol/m3]

combinationComponents the concentration of user defined linear combinations [mol/m3]

partialPressures the partial pressures of each gas phase [pascal]

saturationIndicies the saturation indicies of each solid phase [-]

surfaceActivityCoefficients value of surface activity coefficient multiplier for each plane of each electrostatic surface
group [-]

state also contains the loge values of each of the above, with ’log’ prepended to the above field names
(i.e. ’logPartialPressures’). the log form of combinationComponents is excluded as a linear combinations can
take on negative values. All values returned by initState are in SI units, that is mol/m3 for concentration,
volts for potential, coulombs/m2 for charge density, and pascals for partial pressure.

3.1 Input format

Consider a simple example chemical system

elementNames = {'O', 'H', 'Na*', 'Cl*'};

speciesNames = {'H+*', 'OH-', 'Na+', 'Cl-', 'NaCl', 'H2O*'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaCl = Na+ + Cl-', 10ˆ1*mol/litre};

chem = ChemicalModel(elementNames, speciesNames, reactions);

Here 'Na', 'Cl', 'H+' and 'H2O' have been chosen as inputs, that is the total elemental concentration of
sodium and chlorine, as well as the concentration of the species H+ and H2O. To determine the order of
inputs variables to pass to initState the user can query chem.inputs

>> chem.inputs

ans =

'Na' 'Cl' 'H+' 'H2O'

this is the same order as the inputs were defined in elementNames and speciesNames. MATCH has a
vectorized implementation, meaning that a single scenario or a sweep of the input variables can be explored.
For example, to solve the batch reaction of 1 mM sodium, 1 mM chlorine, 1 M H2O and pH 7

Na = 1*milli*mol/litre;
Cl = 1*milli*mol/litre;
H2O = 1*mol/litre;
H = 1e-7*mol/litre;

inputs = [Na, Cl, H, H2O];

state = chem.initState(inputs);

inputs must be in SI units, and have dimensions {M ×N} where M is the number of evaluations (in this
case one) and N is the number of inputs. The variable state is then populated with the solution of the
chemical system:

11

>> state

state =

temperature: 298
elements: [1.0000e+03 2.0000e+03 1.0000 1.0000]
species: [1.0000e-04 1.0739e-04 0.9999 0.9999 9.3099e-05 1.0000e+03]

combinationComponents: [1x0 double]
partialPressures: [1x0 double]

logPartialPressures: [1x0 double]
saturationIndicies: [1x0 double]

logSaturationIndicies: [1x0 double]
logElements: [6.9078 7.6009 -2.2204e-16 -2.2204e-16]
logSpecies: [-9.2103 -9.1390 -9.2855e-05 -9.2855e-05 -9.2819 6.9078]

Here we see that the default temperature of 298 °K is used. There are 4 columns in elements field, and
6 columns in the species field which correspond to the number of elements and species in the system
respectively. Notice the partialPressures, combinationComponents and saturationIndicies fields are
empty as no phases or linear combinations were specified.

A sweep of the input space can also be done.

n = 100;

Na = ones(n,1)*mili*mol/litre;
Cl = ones(n,1)*mili*mol/litre;
H2O = ones(n,1)*mol/litre;
H = logspace(-2, -12, n)'*mol/litre;

inputs = [Na, Cl, H, H2O];

state = chem.initState(inputs);

Here we keep all inputs constant but vary the H+ concentration from 10−2 M to 10−12 M (pH 2 - 12) by
100 logarithmically spaced steps. Now inputs is a {100× 4} matrix. The resulting state being

>> state

state =

temperature: [100x1 double]
elements: [100x4 double]
species: [100x6 double]

combinationComponents: [100x0 double]
partialPressures: [100x0 double]

logPartialPressures: [100x0 double]
saturationIndicies: [100x0 double]

logSaturationIndicies: [100x0 double]
logElements: [100x4 double]
logSpecies: [100x6 double]

The number of columns of each field is the same, but the number of rows has increased to accommodate for
the chemical conditions specified in inputs.

3.2 Temperature

In the formulation of the chemical model temperature has two effects 1) the activity of aqueous species as
determined by the extended Davies equation and 2) the electrostatic behavior of the diffuse layer of surfaces.
By default the temperature of the system is 298 °K. To specify a non-default temperature an additional
“key”/value pair must be passed to initState.

12

n = 100;

T = linspace(250, 350, n)';

state = chem.initState(inputs, 'temperature', T);

The “key” 'temperature' (alternatively 'temp', 't' etc.) is followed by a scalar or vector with the user
specified temperature. Just like the entries in inputs, a range of temperatures can be specified to conduct
a sweep. If T is a vector then the length of inputs must equal the number of elements in T or equal 1 (i.e.
any(size(inputs, 1)== [1, size(T,1)]).

3.3 Charge balance

By default charge balance is not enforced in MATCH. To include the charge balance equation as an additional
constraint on the chemical system an additional “key”/value pair must be passed to initState

state = chem.initState(inputs, 'chargeBalance', component);

The “key” 'chargeBalance' (alternatively 'charge', 'c' etc.) is followed by a string containing the
name of an element, species, linear combination, or gas in the system that will be used to balance charge,
hereafter called the charge variation component. The charge variation component must be associated with
at least one charged species. If the conditions specified by the user do not result in a charge balanced system
the solver will add or subtract mass from the total concentration of the charge variation component. The
solver puts a lower bound on the charge variation component at realmin.

If charge balance can not be obtained under these constraints the solver will throw a warning and instead
return the results of the solver without the constraint of charge balance. If the solver fails to converge
consider increasing the mass of the charge variation component, or choosing a different component (one with
the opposite charge) as the charge variation component.

3.4 Solver options

A number of options can be specified pertaining to the solver, these include
plotIterations plotting of variable values on each iteration [false]

nonLinearMinIterations minimum iterations for the nonlinear solver [1]

nonLinearMaxIterations maximum iterations for the nonlinear solver [25]

nonLinearTolerance residual tolerance of the nonlinear system [10−12]

linearTolerance residual tolerance of the linear system [10−8]

linearMaxIterations maximum number of iterations for the linear solver [25]

where the default is shown in brackets. These parameters can be set before initState is called by
populating the field with the desired value (i.e. chem.linearTolerance = 1e-12).

MRST includes a verbose mode, which displays the value of the residual of each equation for every
iteration of the nonlinear solver in a table that is printed to the command window. This option can be
enabled by including the line mrstVerbose on within the MATLAB® script, before initState is called.
This is a useful tool for determining which equations are not converging if the solver fails.

3.5 Exploring variable and parameter space

MATCH’s vectorized implementation allows the user to easily explore parameter and variable space. The
vector formulation of inputs to initState was shown in Section 3.1, where the system simultaneously solved
for a range of pH values. We can take advantage of this functionality to sweep over multiple parameters. As
an example consider an ion-exchange between protons and sodium:

elements = {'O', 'H', 'Na*', 'Cl*'};

species = {'H+*', 'OH-', 'Na+', 'Cl-', 'H2O*', '>XH', '>XNa'};

13

reactions ={'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'>XH + Na+ = >XNa + H+', 10ˆ-8};

geometry = [1*site/(nano*meter)ˆ2 50*meterˆ2/gram 1e3*gram/litre];
sioInfo = {geometry, 'ie',};
surfaces ={ '>X', sioInfo };

chem = ChemicalModel(elements, species, reactions, 'surf', surfaces);

We can take advantage of the vecotrized implementation to explore variation of pH and salinity on the
surface chemistry behavior

n = 50; m = 30;

H = logspace(-4, -10, n)';
Hrep = repmat(H, m, 1);

Na = logspace(-4, -1, m);
Narep = repmat(Na, n, 1);
Narep = Narep(:);

Cl = Narep;
H2O = ones(n*m,1);

userInput = [Narep Cl Hrep H2O]*mol/litre;

[state, report, model] = chem.initState(userInput);

initState then simultaneously solves for all variable conditions

[H+] / M

[N
a+] /

 M

10−10 10−8 10−6 10−4
10−4

10−3

10−2

10−1

[X
H

] /
 M

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

[H+] / M

[N
a+] /

 M

10−10 10−8 10−6 10−4
10−4

10−3

10−2

10−1

[X
N

a]
 /

M
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 1: The effect of pH and salinity on chemistry of ion-exchange surface.

This functionality makes the solver especially well suited for transport calculations where the chemistry
of every cell in the mesh must be solved. If the user is so inclined, temperature, reaction constants, and
surface geometry parameters can all accept vector inputs.

4 Post processing

In solving the chemical system initState populates state with the determined values for total element
concentration and species concentrations. Depending on the chemical system state may also contain linear
combination concentrations, gas phase pressures, solid phase saturation indices, and surface activity coeffi-
cient multipliers. MATCH provides additional tools to further gleam information from the state variables,
including additional calculations.

14

4.1 Accessing information in state

The structure state contains an abundance of information. To access the variables MRST provides the
getProps tool. Given the ChemicalModel object and the state structure any solved variable can be easily
extracted.

Inside of the ChemicalModel object are lists of variable names, as well as the field in which they live
within state. The position of the variable name within the list corresponds to the column that variable
occupies within the appropriate field. Using this information, getProps can retrieve the value of any variable
from state. Take the simple example

elementNames = {'O', 'H', 'Na*', 'Cl*'};

speciesNames = {'H+*', 'OH-', 'Na+', 'Cl-', 'NaCl', 'H2O*'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaCl = Na+ + Cl-', 10ˆ1*mol/litre};

chem = ChemicalModel(elementNames, speciesNames, reactions);

Na = 1*milli*mol/litre;
Cl = 1*milli*mol/litre;
H2O = 1*mol/litre;
H = 1e-7*mol/litre;

inputs = [Na, Cl, H, H2O];

state = chem.initState(inputs);

The user can now retrieve the value of any of the un/knowns from state without any knowledge of the
variable’s location within state using the variable names as they are defined in the chemical model. For
instance to determine the concentration of hydroxide

>>chem.getProps(state, 'OH-')

ans =

1.0739e-04

Remember that all variables are stored in SI units, and so concentrations are mol/m3. To retrieve multiple
variables at once use the function getProps.

[OH minus, H tot] =chem.getProps(state, 'OH-', 'H')

The above code returns the concentration of hydroxide and the total concentration of hydrogen in the system.
Similarly, lists of names can used to pull multiple variables from state. For instance the concentration of
all species can be grabbed simultaneously:

speciesConc = cell(1, numel(chem.speciesNames));

[speciesConc{:}] =chem.getProps(state, chem.speciesNames{:});

The ChemicalModel object contains a number of useful lists by default including

elementNames names of elements (basis components)

speciesNames names of species

solidNames names of solid phases

gasNames names of gas phases

15

surfaceActivityCoefficientNames names of surface potential multipliers

combinationNames names of combination components

Additionally there are lists of the log names of each variable (i.e. logElementNames). For instance the loge
of the hydroxide concentration can be retrieved by asking getProps for 'logOH-'. There is no log form of
the entries of combinationNames as the value of combination components can be negative.

The user can also ask for the contents of an entire field by asking getProps for the field name (i.e.
chem.getProp(state, 'elements') to get all element concentrations).

4.2 Additional calculations

MATCH includes several tools to aid in processing the results of the chemical system solver. These include

computeActivities computes the activity of aqueous species storing the results in state.activities.

computeChargeBalance computes the charge balance of the system, storing the results in state.chargeBalance.

computeSurfacePotentials computes the electric potential of each plane of each electrostatic surface
group, storing the results in state.surfacePotentials

computeSurfaceCharges computes the charge of each plane of each electrostatic surface group, stor-
ing the results in state.surfaceCharges

computeAqueousConcentrations computes the aqueous concentration of each element, excluding gas,
solid, and surface concentrations, the results are stored in state.aqueousConcentrations

computeSurfaceConcentrations computes the surface concentration of each element state.surfaceConcentrations

changeUnits changes the units of any field of state

4.2.1 computeActivities

In MATCH the activity of aqueous species is calculated by the extended Davies equation. The activity of
each aqueous species can be retrieved once the chemical solver has populated state by

[state, chem] = chem.computeActivities(state);

The above code returns state with the additional field activities. The ChemicalModel object is also
returned with the additional field activityNames. The activity of aqueous species can be retrieved from
state by asking getProps for the species name prepended with ’a’ (i.e. chem.getProp(state, 'aH+') for
the activity of H+). The activity of surface species is not added to state.activities. The activity of all
aqueous species can be retrieved by chem.getProps(state,'activities'). The activity of electrons e–

is also included, but e– does not contribute to the ionic strength of the solution.

4.2.2 computeChargeBalance

The charge balance of the aqueous system can be retrieved once the chemical solver has populated state by

[state, chem] = chem.computeChargeBalance(state);

The above code returns state with the additional field chargeBalance. The ChemicalModel ob-
ject is also returned and made aware of the new field in state. The charge balance of the system can
be retrieved from state by asking getProps for the 'chargeBalance' (i.e. chem.getProp(state, ...

'chargeBalance')). The charge of electrons e– does not contribute to charge balance.

16

4.2.3 computeSurfacePotentials

In MATCH the potential of each electrostatic surface group and layer therein can be retrieved once the
chemical solver has populated state by

[state, chem] = chem.computeSurfacePotentials(state);

The above code returns state with the additional field surfacePotentials. The ChemicalModel object
is also returned with the additional field surfacePotentialNames. The potential of each surface and layer
can be retrieved from state by asking getProps for the surface name, as determined by the groups key, or
by the surface functional group name, appended by ' Psi #' where ’#’ is the layer of the surface. 'Psi' is
used as the surface potential is often denoted as Ψ in the literature. As an example, to retrieve the potential
of a triple layer surface SiO

chem.getProps(state, '>SiO Psi 0', '>SiO Psi 1', '>SiO Psi 2');

where '>SiO Psi 0' is the potential of the mineral surface, '>SiO Psi 1' is the potential of the inner
Helmholtz plane and '>SiO Psi 2' is the potential of the outer Helmholtz plane. If the constant capacitance
model was used, only one surface potential exists and can be retrieved by chem.getProps(state, ...

'>SiO Psi'), where no number is appended. The electric potential of surfaces is given in volts, the SI unit.
The potential of Langmuir and ion exchange surfaces is not computed. If a surface was defined using the
’groups’ key inside of surfaces then the group name would be used. For example, as above, several oxide
surfaces were grouped in the 'Goe' (goethite) surface. To retrieve the value of the mineral surface potential
the user would ask for chem.getProps(state, 'Goe Psi 0').

4.2.4 computeSurfaceCharges

In MATCH the charge density of each surface and layer therein can be retrieved once the chemical solver
has populated state by

[state, chem] = chem.computeSurfaceCharges(state);

The above code returns state with the additional field surfaceCharges. The ChemicalModel object is also
returned with the additional field surfaceChargeNames. The charge density of each surface and layer can
be retrieved from state by asking getProp for the surface name, as determined by the groups key, or by
the surface functional group name, appended by ' sig #' where ’#’ is the layer of the surface. sig is used
as the surface charge density is often denoted as σ in the literature. As an example, to retrieve the charges
of a triple layer surface SiO

chem.getProps(state, '>SiO sig 0', '>SiO sig 1', '>SiO sig 2');

where '>SiO sig 0' is the charge density of the mineral surface, '>SiO sig 1' is the charge density of
the inner Helmholtz plane and '>SiO sig 2' is the charge density of the outer Helmholtz plane. The
surface charge density is given in C/m2, the SI unit. If the Langmuir or constant capacitance model was
used, only one surface charge density exists and can be retrieved by chem.getProps(state, '>SiO sig'),
where no number is appended. The surface charge density of all surface except ion exchange surfaces can be
retrieved using computeSurfaceCharges. If a surface was defined using the ’groups’ key inside of surfaces
then the group name would be used. For example, as above, several oxide surfaces were grouped in the
'Goe' (goethite) surface. To retrieve the value of the mineral surface charge density the user would ask for
chem.getProps(state, 'Goe sig 0').

4.2.5 computeAqueousConcentrations

In MATCH the total aqueous concentration of an element can be retrieved once the chemical solver has
populated state by

17

[state, chem] = chem.computeAqueousConcentrations(state);

The above code returns state with the additional field aqueousConcentrations. The ChemicalModel object
is also returned with the additional field aqueousConcentrationNames. The total aqueous concentration
of an element can be retrieved from state by asking getProp for the element name appended by '(aq)'

(i.e. chem.getProp(state, 'H(aq)') for the total aqueous concentration of hydrogen). The total aqueous
concentration of all elements can be retrieved by chem.getProp(state,'aqueousConcentrations'). The
total aqueous concentration of surface functional groups is not added to aqueousConcentrations.

4.2.6 computeSurfaceConcentrations

In MATCH the total surface concentration of an element can be retrieved once the chemical solver has
populated state by

[state, chem] = chem.computeSurfaceConcentrations(state);

The above code returns state with the additional field surfaceConcentrations. The ChemicalModel object
is also returned with the additional field surfaceConcentrationNames. The total surface concentration of
an element can be retrieved from state by asking getProp for the element name appended by '(surf)'

(i.e. chem.getProp(state, 'H(surf)') for the total surface concentration of hydrogen). The total surface
concentration of all elements can be retrieved by chem.getProp(state,'surfaceConcentrations'). The
total surface concentration of surface functional groups is not added to surfaceConcentrations as this
would be equivalent to the total concentration, as surface functional groups do not reside in the liquid.

4.2.7 changeUnits

changeUnits is not a function inside of the ChemicalModel object, and so should be called with the object
name:

state = changeUnits(state, fields, unit conv);

where fields is a cell array of field names that are inside of state and unit_conv is a scalar or vector of the
unit conversion. Take for instance the conversion of all species concentrations from the SI unit of mol/m3

to the more common mol/litre

state = changeUnits(state, {'species'}, mol/litre);

If you want to do the same conversion to multiple fields, unit_conv can stay as a scalar

state = changeUnits(state, {'species', 'elements', 'activities'}, mol/litre);

Or each field can have different units

state = changeUnits(state, {'species', 'elements', 'activities'}, [mol/litre, ...
milli*mol/litre, kilo*mol/(nano*meter)ˆ3]);

5 Transport simulations

MATCH has the ability to simulate the advection-reaction equation on arbitrary domains using a fully
implicit upwind finite volume scheme. The procedure for such a simulation follows the steps

1. define a domain geometry

18

2. define fluid and rock properties

3. define a chemical system

4. solve the chemical system for the conditions in the domain

5. specify boundary conditions, wells, and source terms

6. define a time stepping schedule

7. run the simulation

The MRST guidebook has a wealth of knowledge for the grid generation ?, and several examples are
provided for reference. We will use a simple system as an example to introduce the above concepts

close all;
clear;

mrstModule add ad-core ad-props ad-blackoil geochemistry mrst-gui

%% Define the grid
G = cartGrid([100, 1, 1], [1, 1, 1]);
G = computeGeometry(G);

Here we loaded the necessary modules for the transport simulation and have defined a 1D domain of size
1m×1m×1m, and a discretization of 100×1×1 cells.

We must now define a fluid and rock so that the transport properties of the porous medium can be
calculated

%% Define the rock
rock.perm = 1*darcy*ones(G.cells.num, 1);
rock.poro = 0.5*ones(G.cells.num, 1);

%% Define the fluid
pRef = 0*barsa;
fluid = initSimpleADIFluid('phases', 'W', 'mu', 1*centi*poise, 'rho', ...

1000*kilogram/meterˆ3, 'c', 1e-10, 'cR', 4e-10, ...
'pRef', pRef);

Here we have defined a rock object with a permeability of 1 Darcy and porosity of 0.5 as well as a single
liquid phase, water. For more information on the fluid and rock objects see the MRST book ?.

In this example we will simulate the injection of a fluid with distinct composition into a resovoir at
equilibrium with a fluid of a different composition. We define the system chemical system as before, but
solve for two composition, one for in initial fluid, and one for the injected.

%% Define the chemistry
elements = {'O', 'H', 'Na*','Cl*'};

species = {'H+*', 'OH-', 'Na+', 'H2O*', 'NaCl','Cl-'};

reactions ={'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaCl = Na+ + Cl-', 10ˆ1*mol/litre};

% instantiate chemical model
chemModel = ChemicalModel(elements, species, reactions);

% initial chemistry
Nai = 1e-3;
Cli = Nai;
Hi = 1e-7;
H2Oi = 1;

19

initial = [Nai Cli Hi H2Oi]*mol/litre;

[initChemState, initReport]= chemModel.initState(repmat(initial, G.cells.num, 1), 'charge', ...
'Cl');

% injected chemistry
Naf = 1e-3;
Clf = Naf;
Hf = 1e-10;
H2Of = 1;

injected = [Naf Clf Hf H2Of]*mol/litre;

[injChemState, injreport]= chemModel.initState(injected, 'charge', 'Cl');

The transport equation evolves the total element concentration. The flow field is calculated by solving
the pressure field. Thus pressure must be added to the state structure.

initChemState.pressure = pRef*ones(G.cells.num, 1);

The transport model object is instantiated using the ChemicalTransportModel command

model = ChemicalTransportModel(G, rock, fluid, chemModel);

and accepts the domain geoemtry, rock, fluid and chemical model objects. Next the boundary conditions
must be specified. In this example we will be injecting the new fluid into the first cell via a Neumann
boundary condition on the left hand side. On the right hande side of the domain we specify a Dirchlet
boundary condition with a reference pressure of 0.

src = [];
src = addSource(src, 1, 1*meterˆ3/day, 'sat', 1);
src.elements = injChemState.elements(end,:);
src.logElements = injChemState.logElements(end,:);

bc = [];
bc = pside(bc, 'east', 0*barsa, 'sat', 1);
bc.elements = initChemState.elements(end,:); % (will not used if outflow)
bc.logElements = initChemState.logElements(end,:); % (will not used if outflow)

Note that the element concentrations will only be used if the boundary condition is an inflow. If the
chemical system involves surface species, their concentration should not be added to the boundary condition.
The transport model object contains a matrix multiplier called fluidMat which can be used to remove their
contribution. See the example file surfaceSystemTransport.m for a demonstration.

Next an injection schedule must be specified

%% Define the schedule
schedule.step.val = [0.01*day*ones(5, 1); 0.1*day*ones(5,1); 1*day*ones(5, 1); 5*day*ones(10, ...

1)];
schedule.step.control = ones(numel(schedule.step.val), 1);
schedule.control = struct('bc', bc, 'src', src, 'W', []);

Here we take five steps of 0.01 days, 5 steps of 0.1 days, 5 steps of 1 day and then 10 steps of 5 days.
The transport solver will have an easier time converging is the time stepping is ramped up in such a way.

Finally, the transport simulation can be run.

[wellsols, states, scheduleReport] = simulateScheduleAD(initChemState, model, schedule);

The function will return a cell array of state structures corresponding to every time state in the system,
as well as a solver report for each of the steps. In the case that a well is also specified the well solutions will
be returned.

20

The results of the simulation can be visualized with the plotToolbar function.
The simulation progress can be visualized by toggling the two options model.plotIter and model.plotFinal.

Both options are set to false by default. With these options the solver will plot the elements and species
distribution in the domain for each iteration of the newton solver, and at each time step once the solver has
converged.

6 Equations of the chemical system

The chemical system is determined by the following equation

• conservation of mass for each basis component/element

• laws of mass action relating species concentrations through chemical reactions

• equilibrium between gas-liquid and solid-liquid phases

• aqueous charge balance [optional]

• surface charge balance [depending on surface chemistry model]

• transport law [optional]

Below we will formally introduce these equations. For convenience the variables and nomenclature are
presented in Table 1.

Table 1: Nomenclature of variables used in equations.

variable unit index description

Ni mol/m3 i = {1 . . . nb} total concentration of element i
cj mol/m3 or [-] j = {1 . . . nc} concentration or mole fraction of species j
γj - - activity coefficient of species j
αi,j - - mass contribution of element i to species j
zj - - charge of species j
gk Pa k = {1 . . . ng} partial pressure of gas phase k
Kl dependent on l l = {1 . . . nr} equilibrium constant of reaction l, excluding solid phase reactions
βj,l - - stoichiometric coefficient of species j in reaction l
Sm - m = {1 . . . ns} saturation index of solid phase m
Qm dependent on m - equilibrium constant of solid phase reaction m
ηj,m - - stoichiometric coefficient of species j in solid phase reaction m
So m2/kg o = {1 . . . ne} specific surface area of electrostatic surface o
ao kg/m3 - slurry density of electrostatic surface o
Co,q F/m2 q = {1 . . . nl} capacitance of layer q of electrostatic surface o
σo,p C/m2 p = {1 . . . np} charge density of plane p of electrostatic surface o
Ψo,p V - electric potential of plane p of electrostatic surface o
ζj,o,p - - charge contribution of species j to plane p of electrostatic surface o
Lu mol/m3 u = {1 . . . nw} concentration of linear combination u
ξj, u - - mass contribution of species j to linear combination u
Ui mol/(m2s) - flux of element i
Fi mol/(m3s) - source of element i
~U m3/(m2s) - volumetric flow rate of element i

And the parameters used within MATCH are presented in Table 2

21

Table 2: Parameters and constants used in MATCH.

parameter value units description

An 6.022140857× 1023 #/mol Avagadro’s number
eo 8.8854187817× 10−12 F/m permitivity of free space
ew - - dielectric constant of water
F 96485.33289 C/mol Faraday’s constant
R 8.3144598 J/(K mol) ideal gas constant
T - K temperature
I - mol/m3 ionic strength of solution

6.1 Conservation of mass

In the absence of sink and source terms the conservation of total element concentration in the system is
constant

Ni =

nc∑
j=1

αi,jcj , (2)

where Ni is the concentration of element i, nc is the number of total number of species, αi,j is the mass
contribution of element i to species j, and cj is the concentration of species j. The variables c and N includes
surface functional groups and surface bound species. Note that the mass of elements in the gas a solid phase
do not contribute to the mass constraint in the model formulation. In the conservation of mass equations,
all species concentrations cj are in units of moles/m3 including surface species.

6.2 Laws of mass action

The laws of mass action determine the equilibrium distribution of species under the constrain of local chemical
equilibrium

Kl =

nc∏
j=1

(γjcj)
βj,l . (3)

Where Kl is the equilibrium constant of reaction l, γj is the activity coefficient of species j, and βj,l is the
stoichiometric coefficient of species j in reaction l. Note that β can be positive, negative, or zero if the
species is a reactant, a product, or absent respectively. Note that K does not include solid phase reactions,
but does include gas phase reactions, surface reactions, and aqueous reactions. For the laws of mass actions,
if species j resides on the surface cj is the mole fraction of the surface species as defined by model 3 in ?.
This is the case for all the surface models used in MATCH.

6.3 Activity of aqueous species

The activity of aqueous species γj is determined by the extended Davies equation

log10 (γj) = Az2j

(
I1/2

1 + I1/2
− 0.3I

)
, (4)

where zj is the charge of species j, and I is the ionic strength of the bulk solution. The parameter A being
determined by

A = 1.82× 106 (ewT)
−3/2

. (5)

22

where ew is the relative permeability of water, and T is the temperature of the bulk solution ?. The dielectric
constant of water is determined by the polynomial function

ew = 87.740− 0.4008(T − 273.15) + 9.398× 10−4(T − 273.15)2 − 1.410× 10−6(T − 273.15)3 (6)

as presented by ?. The ionic strength of the solution is calculated by

I =
1

2

nc∑
j=1

zjcjδj (7)

where in this case δ removes the contribution of charge from surface species, and the electron e– .

δj =

{
0, if species j on a surface or is e– ,

1, otherwise.
(8)

6.4 Activity of surface species

The activity of surface species depends on the surface chemistry model that is employed. The activity of
species associated with a Langmuir type surface is 1.

6.4.1 Ion exchange surfaces

The activity of species associated with ion exchange type surfaces is determined by their active fraction
consistent with the Gaines-Thomas convention ?.

6.4.2 Electrostatic surface

The activity of species associated with an electrostatic surface (such as the triple layer and constant capac-
itance models) are determined by the potential and charge of the planes which the species occupy,

γj = exp

(
F
∑np

p=1 ζj,o,pΨo,p

RT

)
(9)

where F is Faraday’s constant, ζj,o,p is the charge contribution of species j to plane p of electrostatic surface
o, Ψo,p, is the electric potential of the pth plane of the oth electrostatic surface and R is the ideal gas
constant ?. Note that a surface species can be associated with multiple surface functional groups, but only
one electrostatic surface

6.5 Electrostatics of the surface

For a full description and comparison of different surface chemistry models consult ?, which is the text that
the constitutive relationships shown here are pulled from.

6.5.1 Constant Capacitance model

Only one layer exists in the constant capacitance model, the mineral surface. The charge of the mineral
surface, σ, is calculated as the linear combination of charged species which reside on the surface

σo,p=1 =
F

Soao

nc∑
j=1

cjζj,o,p=1 (10)

23

where σo,p=1 is the charge density of the mineral surface of the oth electrostatic surface (which is a constant
capacitance surface), and So and ao are the specific surface area and slurry density of electrostatic surface o.
Note the charge contribution of a species to an electrostatic surface on which it does not reside will be zero.

The constant capacitance model simulates the mineral-liquid interface as a capacitor. The potential is
therefore determined by the capacitance density of the interface

Ψo,p=1 =
σo,p=1

Co,q=1
(11)

where Co,q=1 is the capacitance density of the oth electrostatic surface, being of type constant capacitance.
And where q is the index of the layer, the constant capacitance model only having one.

Note that charge neutrality is not enforced for constant capacitance surfaces.

6.5.2 Triple layer model

The triple layer model approximates the mineral-liquid interface as three capacitors in series. The first two,
starting from the mineral surface have a constant capacitance density, the outer most layer has a variable
capacitance density as determined by the properties of the bulk solution according to the Grahame equation.
Just as in the constant capacitance model the charge of a plane is the linear summation of charged species
that reside of the plane. While the charge density of the outer layer is determined by the Grahme equation

σo,p =
F

Soao

nc∑
j=1

cjζj,p − (8× 103RTIeoew)
1/2 sinh

(
FΨo,p

2RT

)
δm (12)

where

δm =

{
1, if m=3,

0, otherwise.
(13)

The charge-potential relationship for the triple layer surface is then determined by

σo,p=1 = Co,q=1 (Ψo,p=1 −Ψo,p=2) (14)

σo,p=3 = Co,q=2 (Ψo,p=3 −Ψo,p=2) (15)

Finally the triple layer surface must be charge neutral

0 =

np∑
i=1

σi,p. (16)

6.6 Equilibrium with solid phases

Strictly speaking, equilibrium with solid phases is not enforced, rather the saturation index is. The saturation
index, SI, is the ratio of the ion association product and the equilibrium constant of the precipitation reaction

SIm =

∏nc

j=1 (γjcj)
ηj,m

Qm
, (17)

where SIm is the saturation index of solid phase m, ηj,m is the stoichiometric coefficient of species j in solid
phase reaction m, and Qm is the equilibrium constant of solid phase reaction m. When SIm < 1 the solution
is undersaturated with respect to the solid phase, when SI = 1 the solution is saturated and when SI > 1
the solution is supersaturated. Note that some chemical solvers use the log10 of the above ratio.

24

6.7 Linear combinations

MATCH allows the user to define custom linear combination components L

L̂u =

nc∑
j=1

ξj,ucj , (18)

where Lu is the concentration of linear combination u, ξj,u is the stoichiometric contribution of species j to
linear combination u. MATCH does not allow solid and gas phases to enter into linear combinations.

6.8 Charge balance

The user may choose whether to enforce charge balance. Charge balance only considers the charge of aqueous
species, disregarding the contribution of surface species and the electron e– . There should be no charged
species in the gas and solid phases. The sum of all positive and negative charges should be equal when
charge balance is enforced

0 =

nc∑
j=1

zjcjδj (19)

where δ turns off the contribution of e– , and surface species

δj =

{
0, if species j is on a surface or is e– ,

1, otherwise.
(20)

It is possible that charge balance can not be achieved with the mass constraints specified by the user, as
the addition of the charge balance equation makes the system over determined. Therefore to achieve charge
balance and a well posed problem we relax the user supplied constraint on the charge variation component
so that it is an unknown. This ensure there are an equal number of unknowns and equations.

6.9 Transport

The governing equations for the transport of chemical elements can be written

∂Ni

∂t
+∇ · ~Ui = Fi(N) (21)

where the flux Ui is defined by

~Ui =

nc∑
j=1

αi,jcj ~Uδj (22)

where δ here is defined as

δj =

{
1 if the component j is a dissolved species,

0 if the component j is a solid, gas, or surface species
(23)

The determination of the flow field ~U depends on the physical system. For a detailed discussion of these
physics see the MRST book ?. The transport law is solved fully implicitly, with a upwind difference scheme
in space.

25

6.10 a priori bounds on variables

The structure of the chemical system allows for natural a priori bounds on variables of the nonlinear system.
The total concentration of basis components in the system is bound by

realmin ≤ Ni ≤ 300, 000 mol/m3. (24)

The concentration of water in water typically being around 55,000 mol/m3, which corresponds to a total
hydrogen concentration of 110,000 mol/m3. It is unlikely that any other species would appreciablly raise the
total concentration of elements close to this upper bound.

The maximum concentration of a species can obtain is the proportional summation of all elements/basis
components which comprise that species

ĉj =

nb∑
i=1

α−1
i,j Ni (25)

where ĉj is the maximum value of cj . Entries of α that are zero are removed prior to the operation. The
species concentration is bounded by

realmin ≤ cj ≤ ĉj (26)

Similarly, the maximum value of linear combinations is linear summation of the elements and species that
make up the components

L̂u =

nc∑
j=1

ĉj |ξj,u|, (27)

where L is bounded by

−|L̂u| ≤ Lu ≤ |L̂u|. (28)

For the triple layer model the maximum potential of surface layers is calculated by first determining the
maximum charge of the mineral surface

σ̂o,p=1 = max
j,p

(|ζj,o,p|)
F

Soao

nb∑
i=1

Niδi. (29)

where σ̂o,p is the maximum value of σo,p and δi = 1 if element i is a functional group associated with electro-
static surface o and δi = 0 otherwise. The maximum values of potential are obtained from a simplification
of (12)-(16)

σ̂o,p=3 = σ̂o,p=1, (30)

Ψ̂o,p=3 =
2RT

F
sinh−1

(
−σ̂o,p=3

(8× 103RTIeoew)1/2

)
, (31)

Ψ̂o,p=2 = Ψ̂o,p=3 (32)

Ψ̂o,p=1 = Ψ̂o,p=3. (33)

The electric potential is bounded by

−|Ψ̂o,p| ≤ Ψo,p ≤ |Ψ̂o,p|. (34)

26

6.11 log transformation of variables

The numerical solution of chemical systems is made difficult by the large condition number of the nonlinear
system. To mediate this problem MATCH performs a loge transformation on all variables except CVC,
and L. The unknowns of the chemical system are then the loge of concentrations, potential, saturation
indices and partial pressures. The transformation reduces the reaction equations to a set of linear equations,
however, the linear combination and mass constraint equations are now nonlinear, though slightly (we think)
better behaved than the original nonlinearity in the reaction equations. Another important point is that
the loge transformation reduces the surface activity multiplier, as seen in (9), from exponential to linear.
The original values are retrieved by taking the exponential of all transformed variables after the solver has
converged.

We hope to present the full mathematical analysis of the loge system in the coming months, along with
numerical tests.

7 Examples

Several example scripts are provided in the examples folder of the repository. All files include examples
of defining the chemical system, choosing components as inputs, creating input vectors and passing those
inputs to the solver.

simpleSystem.m Calculates aqueous speciation of H2O and NaCl under varying pH conditions.

alkalinity.m Carbonate speciation with alkalinity as an input, using linear combination.

constantCapacitance.m Boron adsorption onto soil using the constant capacitance model.

tripleLayerModel.m Silica surface speciation using the triple layer model.

ionExchange.m Competition of protons and sodium for an ion exchange site.

phases.m Carbonate system with precipitation and gas phase equilibrium.

redoxChemsitry.m Speciation of nitrogen between oxidation states as a function of pe and pH.

simpleSystemTransport.m Transport of the H2O and NaCl system on a 2D domain with source
terms.

surfaceSystemTransport.m Transport on a 1D domain of a system with sorption.

solidSystemTransport.m Transport on a 1D domain of a system with solid phase.

8 Comparison to PHREEQC

Here we present several examples which test the functionality within MATCH by a comparison to solutions
obtained using the USGS maintained program PHREEQC ?.

8.1 Aqueous speciation

Here we explore the chemical system

H2O = H+ +OH− (35)

NaOH = Na+ +OH− (36)

HCl = H+ +Cl− (37)

Ca+2 +H2O = CaOH+ +H+ (38)

27

including charge balance. We provide the system with inputs

ΣNa = 1× 10−2 M (39)

ΣCl = 1× 10−2 M (40)

ΣCa = 1× 10−3 M (41)

[H+] = logspace(-3, -11, 100) M (42)

[H2O] = 1 M (43)

where Σ represents the total concentration of the element, and brackets, [], represent concentrations. The
MATCH script used for this test is

elements = {'O', 'H', 'Na*', 'Cl*', 'Ca*'};

species = {'H+*', 'OH-', 'H2O*',...
'Na+', 'Cl-', 'NaOH',...
'Ca+2', 'CaOH+'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaOH = Na+ + OH-', 10ˆ10*mol/litre,...
'Ca+2 + H2O = CaOH+ + H+', 10ˆ-12.78};

chem = ChemicalModel(elements, species, reactions);

n = 100;

Na = 1e-2*ones(n,1);
Cl = 1e-2*ones(n,1);
H2O = ones(n,1);
Ca = 1e-3*ones(n,1);
H = logspace(-3, -11,n)';

inputs = [Na, Cl, Ca, H, H2O]*mol/litre;

[state, report, chem] = chem.initState(inputs, 'chargeBalance', 'Na');

and the PHREEQC input file is

PHASES

Fix_H+

H+ = H+

log_k 0.0

END

SOLUTION 1

-units mol/l

pH 3

Na 1e-2

Cl 1e-2

Ca 1e-3

SELECTED_OUTPUT

-file aqueousSpeciation.out

-reset false

USER_PUNCH

10 FOR i = 3 to 11 STEP 0.1

20 a$ = EOL$ + "USE SOLUTION 1" + CHR$(59)+ EOL$

30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$

40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH" + EOL$

50 a$ = a$ + "END" + EOL$

60 PUNCH a$

70 NEXT i

END

SELECTED_OUTPUT

-file aqueousSpeciation.sel

-high_precision true

28

-user_punch true

-molalities H+ OH- H2O Na+ Cl- NaOH Ca+2 CaOH+

-ph

USER_PUNCH

INCLUDE$ aqueousSpeciation.out

END

The results of the concentration of aqueous species are plotted in Figure 2

pH
3 4 5 6 7 8 9 10 11

co
nc
en
tra
tio
n
[m
ol
/L
]

10 -25

10 -20

10 -15

10 -10

10 -5

100

H+
OH-
H2O
Na+
Cl-
NaOH
Ca+2
CaOH+

Figure 2: Comparison of MATCH and PHREEQC for the aqueous speciation test case. Dashed lines are
the results of the PHREEQC simulation.

8.2 Equilibrium with phases

Here we explore the chemical system

H2O = H+ +OH− (44)

NaOH = Na+ +OH− (45)

CaCO3(s) = CO3−2 + Ca+2 (46)

CO3
−2 +H+ = HCO3

− (47)

CO3
−2 + 2H+ = CO2 +H2O (48)

CO2(g) = CO2 (49)

Na+ +HCO3
− = NaHCO3 (50)

Na+ +CO3
−2 = NaCO3

− (51)

Ca+2 +CO3
−2 +H+ = CaHCO3

+ (52)

Ca+2 +CO3
−2 = CaCO3 (53)

Ca+2 +H2O = CaOH+ +H+ (54)

29

including charge balance. We explore the effect of CO2 partial pressure on the distribution of species and
saturation index of calcite by the inputs

ΣNa = 1× 10−2 M (55)

ΣCl = 1× 10−2 M (56)

ΣCa = 1× 10−3 M (57)

[H+] = 1× 10−7 M (58)

[H2O] = 1 M (59)

CO2(g) = logspace(-3,-1, 100) atm (60)

(61)

The MATCH script is

elements = {'O', 'H', 'Na*', 'Cl*', 'Ca*', 'C'};

species = {'H+*', 'OH-', 'Na+', 'Cl-', 'NaOH', 'H2O*',...
'Ca+2', 'CO3-2', 'HCO3-', 'CO2',...
'CaCO3(s)', 'CO2(g)*', 'NaHCO3', 'CaCO3', 'CaHCO3+','CaOH+', 'NaCO3-'};

reactions ={'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaOH = Na+ + OH-', 10ˆ10*mol/litre,...
'CaCO3(s) = CO3-2 + Ca+2', 10ˆ-8.48*(mol/litre)ˆ2,...
'CO3-2 + H+ = HCO3-', 10ˆ10.329/(mol/litre),...
'CO3-2 + 2*H+ = CO2 + H2O', 10ˆ16.681/(mol/litre),...
'CO2(g) = CO2', 10ˆ-1.468*(mol/litre)/atm,...
'Na+ + HCO3- = NaHCO3', 10ˆ-0.25/(mol/litre),...
'Na+ + CO3-2 = NaCO3-', 10ˆ1.27/(mol/litre),...
'Ca+2 + CO3-2 + H+ = CaHCO3+', 10ˆ11.435/(mol/litre)ˆ2,...
'Ca+2 + CO3-2 = CaCO3', 10ˆ3.224/(mol/litre),...
'Ca+2 + H2O = CaOH+ + H+', 10ˆ-12.78};

chem = ChemicalModel(elements, species, reactions);

n = 100;

Na = 1e-2*ones(n,1)*mol/litre;
Cl = 1e-2*ones(n,1)*mol/litre;
Ca = 1e-3*ones(n,1)*mol/litre;
H = 1e-7*ones(n,1)*mol/litre;
H2O = ones(n,1)*mol/litre;
CO2 = logspace(-3,-1,n)'*atm;

state = chem.initState([Na, Cl, Ca, H, H2O, CO2], 'ChargeBalance', 'Na');

and the PHREEQC input file is

PHASES

Fix_H+

H+ = H+

log_k 0.0

END

SOLUTION 1

-units mol/l

pH 7

Na 1e-2 charge

Cl 1e-2

Ca 1e-3

SELECTED_OUTPUT

-file phasesTest.out

-reset false

USER_PUNCH

30

10 FOR i = -3 to -1 STEP 0.01

20 a$ = EOL$ + "USE SOLUTION 1" + CHR$(59) + EOL$

30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$

40 a$ = a$ + " CO2(g) " + STR$(i) + EOL$

50 a$ = a$ + " Fix_H+ -7 NaOH 100" + EOL$

60 a$ = a$ + "END" + EOL$

70 PUNCH a$

80 NEXT i

END

#

SELECTED_OUTPUT

-file phasesTest.sel

-high_precision true

-user_punch true

-molalities H+ OH- Na+ Cl- Ca+2 NaOH CO3-2 HCO3- CO2 CaOH+ NaCO3- CaHCO3+ NaHCO3 CaCO3

-ph

-si CO2(g) Calcite

USER_PUNCH

INCLUDE$ phasesTest.out

END

The aqueous speciation and saturation index as a function of CO2(g) partial pressure are plotted in Figure
3

CO2(g) [atm]
10-3 10-2 10-1

co
nc

en
tra

tio
n

[m
ol

/L
]

10-20

10-15

10-10

10-5

100

H+
OH-
Na+
Cl-
NaOH
H2O
Ca+2
CO3-2
HCO3-
CO2
NaHCO3
CaCO3
CaHCO3+
CaOH+
NaCO3-

(a) aqueous speciation

CO2(g) [atm]
10-3 10-2 10-1

sa
tu

ra
tio

n
in

de
x

10-2

10-1

100

101

CaCO3(s)

(b) saturation index

Figure 3: Comparison of MATCH and PHREEQC for the phases test case for a) aqueous speciation and b)
saturation indices. Dashed lines are the results of the PHREEQC simulation.

It seems the disagreement in the saturation index is likely due to the activity of non-charged species
which are calculated by the WATEQ Debye-Hückel equation in PHREEQC, and are ignored in MATCH.

8.3 Surface chemistry

8.3.1 Langmuir model

Here we explore the chemical system

31

H2O = H+ +OH− (62)

NaOH = Na+ +OH− (63)

SiOH = H+ + SiO− (64)

SiOH + H+ = SiOH2
+ (65)

including charge balance. We explore the effect of pH on surface and aqueous speciation by specifying the
inputs

ΣNa = 1× 10−2 M (66)

ΣCl = 1× 10−2 M (67)

ΣSiO = 1.66× 10−6 M (68)

[H+] = logspace(-3, -11, 100) M (69)

[H2O] = 1 M (70)

The MATCH script is

elements = {'O', 'H', 'Na*', 'Cl*'};

species = {'H+*', 'OH-', 'H2O*', '>SiO-', '>SiOH', '>SiOH2+', 'Na+', 'Cl-','NaOH'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'>SiOH = >SiO- + H+', 10ˆ-7.5*mol/litre,...
'>SiOH + H+ = >SiOH2+', 10ˆ3/(mol/litre),...
'NaOH = Na+ + OH-', 10ˆ10*mol/litre};

surfInfo = {'>SiO', {[1*site/(nano*meter)ˆ2 1*meterˆ2/gram 1*gram/litre], 'langmuir'}};

chem = ChemicalModel(elements, species, reactions, 'surfaces', surfInfo);

n = 100;

H2O = ones(n,1);
H = logspace(-3, -11,n)';
Na = 1e-2*ones(n,1);
Cl = Na;

inputs = [Na, Cl, H, H2O]*mol/litre;

[state, report, chem] = chem.initState(inputs, 'chargeBalance', 'Na');

and the PHREEQC input file is

SURFACE_MASTER_SPECIES

Surf_s Surf_sOH

SURFACE_SPECIES

Surf_sOH = Surf_sOH

log_k = 0

Surf_sOH = Surf_sO- + H+

log_k -7.5

Surf_sOH + H+= Surf_sOH2+

log_k 3

SURFACE 1

Surf_sOH 1 1 1

-sites_units density

-no_edl

END

32

PHASES

Fix_H+

H+ = H+

log_k 0.0

END

SOLUTION 1

-units mol/l

pH 3

Na 1e-2 charge

Cl 1e-2

SELECTED_OUTPUT

-file langmuirTest.out

-reset false

USER_PUNCH

10 FOR i = 3 to 11 STEP 0.1

20 a$ = EOL$ + "USE SOLUTION 1" + CHR$(59) + " USE SURFACE 1" + EOL$

30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$

40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH" + EOL$

50 a$ = a$ + "END" + EOL$

60 PUNCH a$

70 NEXT i

END

#

SELECTED_OUTPUT

-file langmuirTest.sel

-high_precision true

-user_punch true

-molalities H+ OH- Surf_sO- Surf_sOH Surf_sOH2+ Na+ Cl- NaOH

-ph

USER_PUNCH

INCLUDE$ langmuirTest.out

END

The results aqueous and surface speciation are plotted in Figure 4

pH
3 4 5 6 7 8 9 10 11

co
nc
en
tra
tio
n
[m
ol
/L
]

10 -25

10 -20

10 -15

10 -10

10 -5

100

H+
OH-
H2O
>SiO-
>SiOH
>SiOH2+
Na+
Cl-
NaOH

Figure 4: Comparison of MATCH and PHREEQC for the Langmuir test case. Dashed lines are the results
of the PHREEQC simulation.

33

8.3.2 Ion exchange model

Here we explore the chemical system

H2O = H+ +OH− (71)

YH + Na+ = YNa + H+ (72)

NaOH = Na+ +OH− (73)

(74)

including charge balance, where Y is an exchange site. We explore the effect of pH on the surface and
aqueous speciation by specifying inputs as

ΣNa = 1× 10−2 M (75)

ΣCl = 1× 10−2 M (76)

ΣY = 1.66× 10−4 M (77)

[H+] = logspace(-3, -11, 100) M (78)

[H2O] = 1 M (79)

The MATCH script is

elements = {'O', 'H', 'Na*', 'Cl*'};

species = {'H+*', 'OH-', 'H2O*', '>YH', '>YNa', 'Na+', 'Cl-','NaOH'};

reactions = {'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'>YH + Na+ = >YNa + H+', 10ˆ-1,...
'NaOH = Na+ + OH-', 10ˆ10*mol/litre};

surfInfo = {'>Y', {[1*site/(nano*meter)ˆ2 100*meterˆ2/gram 1*gram/litre], 'ie'}};

chem = ChemicalModel(elements, species, reactions, 'surfaces', surfInfo);

n = 100;

H2O = ones(n,1);
H = logspace(-3, -11,n)';
Na = 1e-2*ones(n,1);
Cl = Na;

inputs = [Na, Cl, H, H2O]*mol/litre;

[state, report, chem] = chem.initState(inputs, 'chargeBalance', 'Na');

and the PHREEQC input file is

EXCHANGE_MASTER_SPECIES

Y Y-

EXCHANGE_SPECIES

Y- = Y-

-log_k 0

Na+ + Y- = YNa

-log_k 0

H+ + Y- = YH

-log_k 1

PHASES

Fix_H+

H+ = H+

log_k 0.0

34

END

EXCHANGE 1

Y 1.666e-4

END

SOLUTION 1

-units mol/l

pH 3

Na 1e-2 charge

Cl 1e-2

SELECTED_OUTPUT

-file exchangeTest.out

-reset false

USER_PUNCH

10 FOR i = 3 to 11 STEP 0.1

20 a$ = EOL$ + "USE SOLUTION 1" + CHR$(59) + " USE EXCHANGE 1" + EOL$

30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$

40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH" + EOL$

50 a$ = a$ + "END" + EOL$

60 PUNCH a$

70 NEXT i

END

#

SELECTED_OUTPUT

-file exchangeTest.sel

-high_precision true

-user_punch true

-molalities H+ OH- YH YNa Na+ Cl- NaOH

-ph

USER_PUNCH

INCLUDE$ exchangeTest.out

END

END

The speciation results are plotted in Figure 5

pH
3 4 5 6 7 8 9 10 11

co
nc

en
tra

tio
n

[m
ol

/L
]

10-25

10-20

10-15

10-10

10-5

100

H+
OH-
H2O
>YH
>YNa
Na+
Cl-
NaOH

Figure 5: Comparison of MATCH and PHREEQC for the ion exchange test case. Dashed lines are the
results of the PHREEQC simulation.

35

8.3.3 Triple layer model

Here we explore the chemical system

H2O = H+ +OH− (80)

NaOH = Na+ +OH− (81)

SiOH = H+ + SiO− (82)

SiOH + H+ = SiOH2
+ (83)

SiO− +Na+ = SiONa (84)

SiOH2
+ +Cl− = SiOH2Cl (85)

including charge balance. We explore the effect of pH on the surface and aqueous speciation by specifying
inputs as

ΣNa = 1× 10−2 M (86)

ΣCl = 1× 10−2 M (87)

ΣSiO = 1.66× 10−6 M (88)

[H+] = logspace(-3, -11, 100) M (89)

[H2O] = 1 M (90)

The MATCH script is

elements = {'O', 'H', 'Na*', 'Cl*'};

species = {'H+*', 'OH-', 'Na+', 'Cl-', 'NaOH', 'H2O*',...
'>SiO-', '>SiOH', '>SiOH2+', '>SiONa', '>SiOH2Cl'};

reactions ={'H2O = H+ + OH- ', 10ˆ-14*mol/litre, ...
'NaOH = Na+ + OH-', 10ˆ10*mol/litre,...
'>SiOH = >SiO- + H+', 10ˆ-7.5*mol/litre,...
'>SiOH + H+ = >SiOH2+', 10ˆ3/(mol/litre),...
'>SiO- + Na+ = >SiONa', 10ˆ-2/(mol/litre),...
'>SiOH2+ + Cl- = >SiOH2Cl', 10ˆ-2/(mol/litre)};

geometry = [1*site/(nano*meter)ˆ2 1*meterˆ2/gram 1*gram/litre];
sioInfo = {geometry, 'tlm', [1 0.2], '>SiONa', [-1 1], '>SiOH2Cl',[1 -1]};
surfaces ={ '>SiO', sioInfo };

chem = ChemicalModel(elements, species, reactions, 'surf', surfaces);

chem.printChemicalSystem;

n = 100;

Na = 1e-2*ones(n,1);
Cl = 1e-2*ones(n,1);
H = logspace(-3, -11, n)';
H2O = ones(n,1);

state = chem.initState([Na Cl H H2O]*mol/litre, 'chargeBalance', 'Na');

and the PHREEQC input file is

SURFACE_MASTER_SPECIES

Surf_s Surf_sOH

SURFACE_SPECIES

Surf_sOH = Surf_sOH

36

log_k = 0

Surf_sOH = Surf_sO- + H+

log_k -7.5

-cd_music -1 0 0

Surf_sOH + H+= Surf_sOH2+

log_k 3

-cd_music 1 0 0

Surf_sO- + Na+ = Surf_sONa

log_k -2

-cd_music 0 1 0

Surf_sOH2+ + Cl- = Surf_sOH2Cl

log_k -2

-cd_music 0 -1 0

SURFACE 1

Surf_sOH 1 1 1

-sites_units density

-cd_music

-capacitances 1 0.2

END

PHASES

Fix_H+

H+ = H+

log_k 0.0

END

SOLUTION 1

-units mol/l

pH 3

Na 1e-2 charge

Cl 1e-2

SELECTED_OUTPUT

-file tripleLayerTest.out

-reset false

USER_PUNCH

10 FOR i = 3 to 11 STEP 0.1

20 a$ = EOL$ + "USE SOLUTION 1" + CHR$(59) + " USE SURFACE 1" + EOL$

30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$

40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH" + EOL$

50 a$ = a$ + "END" + EOL$

60 PUNCH a$

70 NEXT i

END

#

SELECTED_OUTPUT

-file tripleLayerTest.sel

-high_precision true

-user_punch true

-molalities H+ OH- Surf_sO- Surf_sOH Surf_sOH2+ Surf_sONa Surf_sOH2Cl Na+ Cl- NaOH

-ph

USER_PUNCH

INCLUDE$ tripleLayerTest.out

END

The aqueous speciation results are plotted in Figure 6

37

pH
4 6 8 10

co
nc

en
tra

tio
n

[m
ol

/L
]

10-25

10-20

10-15

10-10

10-5

100

H+
OH-
Na+
Cl-
NaOH
H2O
>SiO-
>SiOH
>SiOH2+
>SiONa
>SiOH2Cl

Figure 6: Comparison of MATCH and PHREEQC for the triple layer model test case. Dashed lines are the
results of the PHREEQC simulation.

38

	Introduction
	Program capabilities
	Installation and usage

	Defining a chemical system
	Elements
	Species
	Reactions
	Surfaces
	Langmuir
	Ion exchange
	Triple layer model
	Constant capacitance model
	Surface groups

	Linear combinations
	Redox chemistry
	Solid and gas phase chemistry
	Visualizing the system

	Solving the chemical system
	Input format
	Temperature
	Charge balance
	Solver options
	Exploring variable and parameter space

	Post processing
	Accessing information in state
	Additional calculations
	computeActivities
	computeChargeBalance
	computeSurfacePotentials
	computeSurfaceCharges
	computeAqueousConcentrations
	computeSurfaceConcentrations
	changeUnits

	Transport simulations
	Equations of the chemical system
	Conservation of mass
	Laws of mass action
	Activity of aqueous species
	Activity of surface species
	Ion exchange surfaces
	Electrostatic surface

	Electrostatics of the surface
	Constant Capacitance model
	Triple layer model

	Equilibrium with solid phases
	Linear combinations
	Charge balance
	Transport
	a priori bounds on variables
	log transformation of variables

	Examples
	Comparison to PHREEQC
	Aqueous speciation
	Equilibrium with phases
	Surface chemistry
	Langmuir model
	Ion exchange model
	Triple layer model

