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Abstract The concepts of relative permeability and capillary pressure are crucial for the
accepted traditional theory of two phase flow in porous media. Recently, a theoretical
approach was introduced that does not require these concepts as input (Hilfer, Physica A,
359:119–128, 2006a; Phys. Rev. E, 73:016307, 2006b). Instead it was based on the concept of
hydraulic percolation of fluid phases. This paper presents the first numerical solutions of the
coupled nonlinear partial differential equations introduced in Hilfer (Phys. Rev. E, 73:016307,
2006b). Approximate numerical results for saturation profiles in one spatial dimension have
been calculated. Long time limits of dynamic time-dependent profiles are compared to sta-
tionary solutions of the traditional theory. The initial and boundary conditions are chosen to
model the displacement processes that occur when a closed porous column containing two
immiscible fluids of different density is raised from a horizontal to a vertical position in a
gravitational field. The nature of the displacement process may change locally in space and
time between drainage and imbibition. The theory gives local saturations for nonpercolating
trapped fluids near the endpoint of the displacement.

Keywords Capillarity · Hysteresis · Residual saturation · Multiphase flow ·
Porous media · Immiscible displacement

1 Introduction

Almost all accepted and applied theories of multiphase flow in porous media are based
on generalized Darcy laws and the concurrent concept of relative permeabilities (Wyckoff
and Botset 1936). Despite the fact that Wyckoff and Botset (1936) strongly emphasized the
variation of hydraulically disconnected fluid regions (Jamin 1860), almost all subsequent
applications of the relative permeability concept treat the residual nonwetting (or irreducible
wetting) saturations as material constants (Bear 1972; Collins 1961; Dullien 1992; Helmig
1997; de Wiest 1969; Scheidegger 1957; Marsily 1986)

R. Hilfer (B) · F. Doster
ICP, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
e-mail: hilfer@ica1.uni-stuttgart.de

123



R. Hilfer, F. Doster

Modern theories of multiphase flow in porous media often resort to microscopic models
(e.g., network models) (Bear et al. 1987; Blunt et al. 1992; Bryant et al. 1993; Dias and
Payatakes 1986; van Dijke and Sorbie 2002; Fatt 1956; Ferer et al. 2003; Hidajat et al. 2001;
Hilfer 1996; Jerauld and Salter 1990; Payatakes and Neira 1977). An important motiva-
tion is the need to derive or estimate macroscopic relative permeabilities from pore scale
parameters. It was emphasized in Wyckoff and Botset (1936), however, that the “possibil-
ity of determining the overall dynamical behavior of nonhomogeneous fluids from a study
of microscopic details” is remote (Wyckoff and Botset 1936, p. 326). One should instead
consider saturation, velocities, and pressure gradient “to derive therefrom the overall or
macroscopic behavior of the system” (Wyckoff and Botset 1936). Rather surprisingly, the
authors of (Wyckoff and Botset 1936) emphasize the important difference between “contin-
uous moving” fluids and “stationary or locked” fluids in their introduction, but later cease
to distinguish between them in the main body of the paper. Experimentally, the volume frac-
tion of stationary, locked, trapped, or nonpercolating fluid phases varies strongly with time
and position (Abrams 1975; Avraam and Payatakes 1995; Taber 1969; Wyckoff and Botset
1936). Modeling such variations of trapped or nonpercolating fluid phases explicitly is the
main objective of this paper.

Dispersed droplets, bubbles, or ganglia of one fluid phase obstruct the motion of the other
fluid phase. Extensive experimental and theoretical studies of this simple phenomenon exist
(Avraam and Payatakes 1999; Gardescu 1930; Jamin 1860; McKellar and Wardlaw 1982;
Øren et al. 1992; Oxaal 1991; Oxaal et al. 1991; Payatakes 1982). It is, therefore, surprising
that the concept of hydraulic percolation has been neglected in the modeling of two phase
flow until 10 years ago (Hilfer 1998).

Given that the basic concept of hydraulic percolation for macroscopic capillarity has been
discussed extensively in (Hilfer 2006a, b, c) our objective in this paper is to find approximate
numerical solutions of the mathematical model. Let us, therefore, begin the discussion by
formulating a set of mathematical equations for the hydraulic percolation approach in Sect.2.
One also needs to specify initial and boundary conditions representing a realistic experiment.
Raising a closed column from a horizontal to a vertical orientation causes simultaneous imbi-
bition and drainage processes inside the medium as emphasized already in Hilfer (2006b).
In this paper, we report approximate numerical results for the full time evolution of such
simultaneous imbibition and drainage processes. As expected, the resulting equilibrium sat-
urations depend strongly on the initial conditions. Moreover, they differ significantly from
the equilibrium profiles of the traditional theory.

2 Formulation of the Model

2.1 Balance Laws

Consider a one-dimensional, homogeneous, isotropic, and incompressible porous column
filled with two immiscible Newtonian fluids. In a one-dimensional model transversal vari-
ations and column thickness are neglected. Let SW = SW(x, t) denote the saturation of
wetting fluid (called water), and SO = SO(x, t) the saturation of nonwetting fluid (called
oil). Here, time is t ≥ 0, and x ∈ [0, L] is the position in a column of length L . Each of
the two fluid phases is considered to consist of a continuous, mobile, percolating subphase,
and of a discontinuous, isolated, trapped, or nonpercolating subphase as discussed in Hilfer
(1998); Hilfer and Besserer (2000a); Hilfer (2006a, b, c). Following the notation of Hilfer
(2006b), the percolating phase of water is indexed by i = 1 and its nonpercolating phase is
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indexed by i = 2. The water saturation is then SW = S1 + S2. The percolating oil phase is
indexed as i = 3 and its nonpercolating phase by i = 4. The oil saturation is SO = S3 + S4.
The volume fraction φi of phase i is defined as φi = φSi , where the volume fraction of the
pore space, also called porosity, is φ. The volume fraction of the solid matrix is denoted as
φ5 = 1 − φ. Volume conservation requires

φ1 + φ2 + φ3 + φ4 + φ5 = 1 (1a)

S1 + S2 + S3 + S4 = 1 (1b)

to hold.
The mass balance of fluid phase i can be expressed in differential form as

∂(φi�i )

∂t
+ ∂(φi�ivi )

∂x
= Mi , (2)

where �i (x, t), φi (x, t), vi (x, t) are mass density, volume fraction and velocity of phase i as
functions of position x ∈ S = [0, L] ⊂ R, and time t ∈ R+. Mi is the mass transfer rate
from all other phases into phase i .

The momentum balance is written as (i = 1, 2, 3, 4)

φi�i
Di

Dt
vi − φi

∂�i

∂x
− φi Fi = mi − vi Mi , (3)

where �i is the stress tensor in the i th phase, Fi is the body force per unit volume acting
on the i th phase, mi is the momentum transfer into phase i from all the other phases, and
Di/Dt = ∂/∂t + vi∂/∂x denotes the material derivative for phase i . The stress tensor for the
nonpercolating phases is defined as the momentum flux across surfaces in the three-dimen-
sional continuum (see Hilfer and Besserer (2000b) for more discussion).

2.2 Constitutive Assumptions

For a macroscopically homogeneous porous medium

φ(x) = φ = const (4)

is assumed. Incompressible fluids are assumed, so that their densities

�1(x, t) = �W (5a)

�2(x, t) = �W (5b)

�3(x, t) = �O (5c)

�4(x, t) = �O (5d)

are independent of x, t .
The percolating and the nonpercolating phases are able to exchange mass through breakup

and coalescence of droplets, ganglia, and clusters. The mass transfer rates must depend on
rates of saturation change. They are, here, assumed to be

M1 = −M2 = η2φ�W

(
S2 − S2

∗

SW
∗ − SW

)
∂SW

∂t
(6a)

M3 = −M4 = η4φ�O

(
S4 − S4

∗

SO
∗ − SO

)
∂SO

∂t
, (6b)
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where η2, η4 are constants. The parameters, SW
∗, SO

∗, S2
∗, and S4

∗, are defined by

SW
∗ = (1 − SO r)� (∂t SW) + SW i [1 − �(∂t SW)] (7a)

SO
∗ = 1 − SW

∗ (7b)

S2
∗ = SW i [1 − �(∂t SW)] (7c)

S4
∗ = SO r�(∂t SW) , (7d)

where SW i, SO r are limiting saturations for S2, S4. In Eq. 7, the shorthand ∂t = ∂/∂t is used
and

�(x) =
{

1, x > 0

0, x ≤ 0
(8)

denotes the Heaviside unit step function. Equation (7) follows from the form used in Hilfer
(2006b) for small rates of saturation change. The mass exchange depends on the sign of
∂t SW. The sign determines the type of process. It can switch locally between drainage and
imbibition. This results in hysteresis. The structure of the mass exchange term was chosen
with hindsight such that theoretical results obtained in the residual decoupling approximation
agree with experimental measurements of capillary pressure. The mass exchange terms have
recently been further generalized to reproduce not only capillary pressure but also experi-
mental capillary desaturation curves (Hilfer 2009).

Turning to the momentum balance, note first that the inertial term will not be neglected
in this paper. The stress tensor for the four phases are specified as

�1 = −P1 (9a)

�2 = −P3 + γ P∗
2 Sγ−1

2 (9b)

�3 = −P3 (9c)

�4 = −P1 + δP∗
4 Sδ−1

4 , (9d)

where P1 and P3 are the fluid pressures in the percolating phases. The constants P∗
2 , P∗

4 , and
exponents γ, δ are constitutive parameters. The assumptions for the nonpercolating phases
reflect their modified pressure. This phenomenon seems to have been observed in experiment
(Ataie-Ashtiani et al. 2003, Fig. 1, p. 233).1 In applications, the parameters P∗

2 , P∗
4 , and γ, δ

are determined by measuring capillary pressure curves (see below). The body forces are
assumed to be given by gravity and capillarity. They are specified as

F1 = �1g sin ϑ (10a)

F2 = �2g sin ϑ + 
a
∂S−α

1

∂x
(10b)

F3 = �3g sin ϑ (10c)

F4 = �4g sin ϑ + 
b
∂S−β

3

∂x
(10d)

with constitutive constants 
a,
b, and exponents α, β > 0. The angle 0 ≤ ϑ ≤ π/2 is
the angle between the direction of the column and the direction of gravity with ϑ = π/2

1 Figure 2 in Ataie-Ashtiani et al. (2003) shows that the pressure measured by the pore pressure transducers
PPT3 and PPT4 rebounds after the end of the infiltration, i.e., when the DNAPL has passed and the transducers
measure the pressure of water and residual PCE.
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Fig. 1 Raising a closed column according to the protocol of (14). Initially, the column is oriented horizontally
and the saturations are constant. Regions of high water saturation are indicated in darker shade, and regions of
high oil saturation are indicated in lighter shade. The last two columns illustrate the simultaneous imbibition
(lower part of column) and drainage (upper part of column) processes that finally result in the formation of a
capillary fringe

corresponding to alignment. In applications, the parameters 
a,
b, and α, β are determined
by measuring capillary pressure curves. The capillary body forces in Eq. 10 reflect the wet-
ting properties of the medium. They oppose gravity and reduce buoyancy driven flows of the
disconnected phases. This is illustrated in the figures below.

Finally, the momentum transfer terms are assumed to be given by linear viscous drag
characterized by constitutive resistance coefficients Ri j through the equations

m1 = R13(v3 − v1) + R14(v4 − v1) − R15v1 (11a)

m2 = R23(v3 − v2) + R24(v4 − v2) − R25v2 (11b)

m3 = R31(v1 − v3) + R32(v2 − v3) − R35v3 (11c)

m4 = R41(v1 − v4) + R42(v2 − v4) − R45v4, (11d)

where R12 = 0 and R34 = 0 was used because there is no common interface and hence,
no direct viscous interaction between these phase pairs. Remember that the index i = 5
represents the rock matrix. For more details on these constitutive assumptions the reader is
referred to the original papers (Hilfer 2006a, b, c).

The balance laws (1b), (2), and (3) combined with the constitutive assumptions given
above provide 9 equations for the 10 unknowns Si , vi , P1, P3 with i = 1, 2, 3, 4. To close
the system of equations the conditions v2 = 0 or v4 = 0 could be used. These conditions
apply when the nonpercolating phases are immobile as it is often observed in experiment.
It turns out, however, that there exists a less restrictive and, in our opinion, more natural
self-consistent closure.

The self-consistent closure condition used in this paper follows naturally from many lim-
iting cases. One such limit is the residual decoupling approximation close to hydrostatic
equilibrium described in detail in (Hilfer 2006b, Sect. 5, p.216ff). A second, more general
limiting case is the limit of vanishing velocities, i.e., vi → 0 for i = 1, 2, 3, 4. Here, we
formulate the self-consistent closure condition in its most general form as

0 =
(

R13

φ1
+ R14

φ1
+ R15

φ1
+ R31

φ3
− R41

φ4
+ M1

φ1

)
v1 + �1

D1

Dt
v1

+
(

− R23

φ2
− R24

φ2
− R25

φ2
+ R32

φ3
− R42

φ4
+ M1

φ2

)
v2 − �2

D2

Dt
v2

+
(

− R13

φ1
+ R23

φ2
− R31

φ3
− R32

φ3
− R35

φ3
− M3

φ3

)
v3 − �3

D3

Dt
v3

+
(

− R14

φ1
+ R24

φ2
+ R41

φ4
+ R42

φ4
+ R45

φ4
− M3

φ4

)
v4 + �4

D4

Dt
v4. (12)
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This condition follows self-consistently from the constitutive theory. It expresses the experi-
mental observation that the pressure difference P3 − P1 depends more strongly on saturations
than on velocities, and that it remains nonzero even for vanishing velocities. Adding Eq. 3
for i = 2 and i = 3 and subtracting Eq. 3 with i = 1 and i = 4 from the result gives

∂ P3

∂x
= ∂ P1

∂x
+ ∂

2∂x

[

a S−α

1 − 
bS−β
3 + γ P∗

2 Sγ−1
2 − δP∗

4 Sδ−1
4

]
. (13)

In this form, the self-consistent closure has been used in the numerical calculation below.
The mathematical model defined above was introduced and discussed in Hilfer (2006a,

b, c). It was recently extended to include surface tension (Hilfer 2009). Notation and model
formulation in this paper follow (Hilfer 2006b). Approximations and analytical solutions for
some special cases were given in Hilfer (2006a, b, c). Here, the system of equations will be
solved by numerical methods. To this end, initial and boundary conditions are needed and
will be discussed next.

3 Initial Conditions, Boundary Conditions, and Model Parameters

Consider a cylindrical column containing a homogeneous, isotropic, and incompressible
porous medium. The column is closed at both ends and filled with two immiscible fluids.
Assume that the surface and interfacial tensions are such that the capillary fringe is much
thicker than the column diameter, so that a one-dimensional description is appropriate.

The experimental situation considered here is that of raising a closed column as described
in (Hilfer 2006b, p. 223). It is illustrated in Fig. 1. Initially, at instant t = 0, both fluids
are at rest. The column is oriented horizontally (ϑ = 0), i.e., perpendicular to the direction
of gravity. The displacement processes are initiated by rotating the column into a vertical
position. The time protocol for rotating the column may be written as

ϑ(t) = arcsin

{
1

2

[
tanh

(
t − t∗

t∗∗

)
+ 1

]}
, (14)

where t∗ is the instant of most rapid rotation and t∗∗ is the inverse rate of the rotation.
The constitutive equations yield the following system of 10 coupled nonlinear partial

differential equations

∂S1

∂t
+ ∂(S1v1)

∂x
= η2

(
S2 − S2

∗

SW
∗ − SW

)
∂SW

∂t
(15a)

∂S2

∂t
+ ∂(S2v2)

∂x
= −η2

(
S2 − S2

∗

SW
∗ − SW

)
∂SW

∂t
(15b)

∂S3

∂t
+ ∂(S3v3)

∂x
= η4

(
S4 − S4

∗

SO
∗ − SO

)
∂SO

∂t
(15c)

∂S4

∂t
+ ∂(S4v4)

∂x
= −η4

(
S4 − S4

∗

SO
∗ − SO

)
∂SO

∂t
(15d)

�W

D1

Dt
v1 + ∂ P1

∂x
− �Wg sin ϑ

=
5∑

j=1

R1 j

φS1
(v j − v1) − η2v1

S1

(
S2 − S2

∗

SW
∗ − SW

)
∂SW

∂t
(15e)
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�W

D2

Dt
v2 + ∂

∂x
(P3 − γ P∗

2 Sγ−1
2 − 
a S−α

1 ) − �Wg sin ϑ

=
5∑

j=1

R2 j

φS2
(v j − v2) + η2v2

S2

(
S2 − S2

∗

SW
∗ − SW

)
∂SW

∂t
(15f)

�O

D3

Dt
v3 + ∂ P3

∂x
− �Og sin ϑ

=
5∑

j=1

R3 j

φS3
(v j − v3) − η4v3

S3

(
S4 − S4

∗

SO
∗ − SO

)
∂SO

∂t
(15g)

�O

D4

Dt
v4 + ∂

∂x
(P1 − δP∗

4 Sδ−1
4 − 
bS−β

3 ) − �Og sin ϑ

=
5∑

j=1

R4 j

φS4
(v j − v4) + η4v4

S4

(
S4 − S4

∗

SO
∗ − SO

)
∂SO

∂t
(15h)

S1 + S2 + S3 + S4 = 1 (15i)
∂ P3

∂x
= ∂ P1

∂x
+ ∂

2∂x

[

a S−α

1 − 
bS−β
3 + γ P∗

2 Sγ−1
2 − δP∗

4 Sδ−1
4

]
, (15j)

where v5 = 0, R12 = 0, R34 = 0, and the quantities SW
∗, SO

∗, S2
∗, S4

∗ are defined in Eq. 7.
This system of 10 equations is reduced to a system of only 9 equations by inserting Eq. 15j into
Eqs. 15f and 15g to eliminate ∂ P3/∂x . The remaining 9 unknowns are Si , vi , (i = 1, 2, 3, 4)

and P1.
The system (15) has to be solved subject to initial and boundary data. No flow boundary

conditions at both ends require

vi (0, t) = 0, i = 1, 2, 3, 4 (16a)

vi (L , t) = 0, i = 1, 2, 3, 4. (16b)

The fluids are incompressible. Hence, the reference pressure can be fixed to zero at the left
boundary

P1(0, t) = 0. (17)

The saturations remain free at the boundaries of the column.
Initially, the fluids are at rest and their velocities vanish. The initial conditions are (i =

1, 2, 3, 4)

vi (x, 0) = v0
i (x) = 0 (18a)

P1(x, 0) = P0
1 (x) = 0 (18b)

Si (x, 0) = S0
i (x) = S0

i . (18c)

In the present study, the initial saturations will be taken as constants, i.e., independent of x .
The model parameters are chosen largely identical to the parameters in Hilfer (2006b).

They describe experimental data obtained at the Versuchseinrichtung zur Grundwasser- und
Altlastensanierung (VEGAS) at the Universität Stuttgart (Sheta 1999). The model parame-
ters are �W = 1, 000 kg m−3, �O = 800 kg m−3, φ = 0.34, SW i = 0.15, SO r = 0.19, η2 =
4, η4 = 3, α = 0.52, β = 0.90, γ = 1.5, δ = 3.5,
a = 1, 620 Pa,
b = 25 Pa, P∗

2 =
2, 500 Pa, and P∗

4 = 400 Pa. In Hilfer (2006b), only stationary and quasistationary solutions
were considered, and the viscous resistance coefficients remained unspecified. In order to
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find realistic values remember that R31 + R41 + R15 = 2µWφ2/k (Hilfer 2006a, b). Realis-
tic values for the viscosity and permeability are µW = 0.001kg m−1s−1 and k = 10−12m2.
Based on these orders of magnitude, the viscous resistance coefficients are specified as R13 =
R31 = R14 = R41 = R23 = R32 = R24 = R42 = R15 = R35 = 1.7 × 108 kg m−3s−1, and
R25 = R45 = 1.7 × 1016 kg m−3s−1.

The column is filled with water having total saturation SW = 0.45 and oil with satura-
tion SO = 0.55. Two different initial conditions will be investigated that differ in relative
abundance of the nonpercolating phase. The saturations for initial condition A and B are in
obvious notation given as

S0A
1 = 0.449, S0B

1 = 0.302 (19a)

S0A
2 = 0.001, S0B

2 = 0.148 (19b)

S0A
3 = 0.377, S0B

3 = 0.549 (19c)

S0A
4 = 0.173, S0B

4 = 0.001. (19d)

These phase distributions can be prepared experimentally by an imbibition process for A or
by a drainage process for initial condition B. The values for the nonpercolating saturations
were chosen from the nonpercolating saturations predicted within the residual decoupling
approximation. They can be read off from Fig. 5 in Hilfer (2006b). The values for the per-
colating phases follow from the requirement that the total water saturation is 0.45. The time
scales for raising the column are chosen as t∗ = 50,000 s, t∗∗ = 10,000 s corresponding to
roughly 3 h.

4 Numerical Implementation

The coupled system of nonlinear partial differential and algebraic equations is solved numer-
ically using an adaptive moving grid solver (Zegeling and Blom 1992; Blom and Zegeling
1994; Dam and Zegeling 2006). Its FORTRAN implementation was described in Blom and
Zegeling (1994). Space is discretized by finite differences. The time integration within this
algorithm is performed using the public domain differential algebraic solver DASSL, which
is a higher order implicit backward Euler scheme.

The mathematical model does not fit exactly the structure of the solver. The following
reformulations and adaptations had to be imposed: Elimination of time derivatives, regu-
larizations of saturation, flux symmetrization, and pressure stabilization using the pressure
projection method (Chorin 1967). In addition, an adaptive algorithm contains parameters reg-
ulating the spatial smoothing or the adaptivity of the moving grid. Details of the numerical
implementation will be given elsewhere (Doster et al. 2009). Although a thorough sensitivity
analysis with respect to all artificial parameters shows that the solutions are insensitive to
the parameters over a wide range, it is clear that the numerical solutions presented below are
approximate at best. They are given mainly to illustrate qualitatively the differences between
the present theory and the accepted traditional theory.

5 Results

Figure 2 shows the time evolution of the saturation profile starting from initial conditions
A (left figure) and B (right figure). Time instants shown are t = 0 s, t = 6 × 106 s (solid
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Fig. 2 Approximate numerical solutions of Eq. 15 showing time evolution of saturation profiles
S2(x, t), SW(x, t), and 1 − S4(x, t) at times t = 0 s, t = 6 × 106 s (solid lines), and t = 105, 2.5 × 105, 5 ×
105, 7.5×105 s (dashed lines), respectively, when raising a closed column of length L = 4 m from a horizontal
to a vertical orientation. The left figure shows the time evolution starting from initial condition A in Eq. 19,
the right figure for initial condition B. Solid vertical lines correspond to t = 0 when the column is horizontal.
Dashed lines correspond to intermediate times. The first dashed line corresponding to instant t = 105 s is the
time when the column has just reached a vertical orientation. Solid curves show the quasistationary solution
for t = 6 × 106 s. While the upper part of the column is drained, imbibition takes place simultaneously in the
lower part. Near x = 2.5 m, drainage takes place initially but is later followed by imbibition

lines) as well as t = 105 s, t = 2.5 × 105 s, t = 5 × 105 s, and t = 106 s (dashed lines).
Gravity is oriented downward along the ordinate. A complete saturation profile consists of
three curves. The leftmost curve of a triple is S2(x, t), the middle curve is SW(x, t), and the
rightmost curve is 1 − S4(x, t). From these curves the saturations are easily read off using
Eq. 1b. Namely, at fixed height x , the distance from the ordinate to the first curve of a triple
represents S2(x), the distance between the first and the second curve represents S1(x), the
distance between the second and the third represents S3(x), and the distance between the third
curve and 1 represents S4(x). The initial saturations at t = 0 correspond to vertical straight
lines. Subsequent profiles at t = 105, 2.5 × 105, 5 × 105, and 7.5 × 105 s are represented by
four triples of dashed curves. The final quasistationary profile at t = 6 × 106 s is represented
by one triple of solid curves.

At t = 0 the column is oriented horizontally and at t = 105 s the column has just reached
its vertical position. As the water begins to imbibe the lower part of the column the upper part
is simultaneously drained. As the oil rises upward it merges with the residual oil and creates
irreducible water (left figure). Equivalently, the process may be viewed as leaving behind
residual oil (see the lower right corner of the right figure). Similarly, the water falling to the
bottom may be viewed as leaving behind irreducible water (see the upper left corner of the left
figure), or as merging with the irreducible water thereby creating residual oil as seen in the
right figure. Note also that in the region around x = 2.5 m the process can change with time
from drainage to imbibition. Therefore, in the process of raising a closed column the nature
of the displacement (imbibition vs. drainage) is not only position but also time-dependent.
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Fig. 3 Initial (t = 0) and quasistationary (t = 6 × 106 s) saturation profiles Si (x, t) as a function of height
x after raising a closed column of length L = 4 m. Two triples of curves (solid and dashed) are shown. In
each triple, the leftmost curve shows S2(x), the center curve shows SW(x), and the rightmost curve shows
1 − S4(x). The triple of dashed vertical straight lines represents the saturation profile at t = 0 for initial
condition A in Eq. 19, while the triple of solid vertical lines represents initial condition B (the rightmost solid
line and leftmost dashed line coincide almost with the bounding box). Note that the dashed and solid lines at
S = 0.45 coincide. The triple of dashed curves represents the quasistationary saturation profile for t → ∞
resulting from initial condition A, while the triple of solid curves represents the stationary saturation profile
for t → ∞ resulting from initial condition B. The figure illustrates that the quasistationary profiles depend
strongly on the initial condition

Figure 3 compares the quasistationary (t = 6 × 106 s) saturation profiles for different
initial conditions. Dashed lines and curves correspond to initial condition A in Eq. 19, while
solid lines and curves show results for initial condition B. The straight vertical line at 0.45
is a double line. It represents the initial water saturation of 0.45 for both initial conditions.
Figure 3 shows a strong dependence on the initial distribution of nonpercolating fluids. In
particular, the nonpercolating nonwetting fluid depends strongly on the initial condition. Ini-
tial condition A represents a fluid distribution that could ensue after an imbibition, while
initial condition B could be realistic after a drainage.

Figure 4 illustrates the differences between the present theory and the traditional theory.
It shows the two quasistationary profiles (solid and dashed middle curves) as in Fig. 3 calcu-
lated dynamically from the present theory and compares them to stationary solutions of the
traditional theory based on the capillary pressure concept. In the traditional theory, the water
saturation in hydrostatic equilibrium in a vertical column is given as (Bear 1972)

SW(x) = P−1
c (C + (�O − �W)gx), (20)

where Pc is the capillary pressure and C is an integration constant. In view of the boundary
conditions (closed column), the integration constant is fixed such that

123



Percolation as a Basic Concept for Macroscopic Capillarity

Fig. 4 Comparison of the
quasistationary water saturation
curves shown in Fig. 3 with the
traditional theory for two phase
flow. The dashed and solid curves
are identical to the corresponding
curves in Fig. 3. The
dashed-dotted curve shows the
hydrostatic equilibrium
calculated from Eq. 20 using the
appropriate secondary drainage
capillary pressure function
obtained in the residual
decoupling approximation with
the same parameters in Hilfer
(2006b). The dotted curve shows
the hydrostatic equilibrium water
saturation profile calculated from
Eq. 20 using the secondary
imbibition capillary pressure
function

L∫
0

SW(x)dx = 0.45L (21)

is the total water volume. The dash-dotted curve in Fig. 4 is obtained in this way by specify-
ing for Pc the appropriate secondary drainage curve for the porous medium. This secondary
drainage curve was obtained in Hilfer (2006b) and can be seen in Fig. 1 of Hilfer (2006b).
The dotted curve in Fig. 4 is obtained by specifying for Pc the secondary imbibition curve
for the medium. This imbibition curve can be seen also in Fig. 1 of Hilfer (2006b). The com-
parison shows that the quasistationary solutions obtained from Eq. 15 differ significantly in
the region of the capillary fringe from the equilibrium profiles predicted by the traditional
theory.

6 Conclusion

Numerical solutions were calculated for the coupled system (15) of nonlinear partial dif-
ferential equations obtained by macroscopic constitutive modeling of two phase flow. The
equations are based on the concept of hydraulic percolation of fluid phases. The results
illustrate the ability of the new theory to describe drainage and imbibition occurring simulta-
neously within the same sample, or sequentially at the same position inside a porous medium.
Stationary solutions are compared to predictions from the traditional theory and signifi-
cant differences are found. We emphasize that the numerical solutions are approximate. We
encourage experimental groups to measure residual fluid distributions during or after immis-
cible displacement. Such measurements would allow us to test our theoretical predictions
against experiment.
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