The research project <u>MaritimeNH3</u> is part of to the industry-led Green Platform project <u>Ammonia Fuel Bunkering Network</u>. In MaritimeNH3, SINTEF develop and disseminate new knowledge to facilitate the implementation of ammonia (NH₃) as a zero-carbon ship fuel.

Webinar series

Below, you find some highlights from our three webinars. The webinar uptakes are available Events.

Webinar#1: Use of NH₃ for ship propulsion: crucial issues in engines and fuel cells

Part 1: Solid Oxide Fuel Cells (SOFSs) – presented by Vegard Øygarden.

- > Direct operation of a SOFC with NH₃ shows equivalent electrochemical performance as for H₂.
- > The preliminary short-term tests show no, or low, impact on cell durability due to degradation.
- > Degradation of stack components will be further explored.
- > A test rig for exploring nitridation and corrosion of metal parts are currently being built.

Part 2: Reciprocating engines - presented by Andrea Gruber

 Key factors in combustion system design include: Stability & Stability & the combustion velocity (flame speed) > the fuel reactivity and flammability (time, composition and energy needed for ignition) > the flame temperature (controlling dilatation and acceleration of the working fluid) Emissions					
	Stoichiometric combustion properties at 1 bar and 300 K	CH4	H ₂	NH ₃	
	Flame Speed	40 cm/s	300 cm/s	6 cm/s	
	Flame Temperature	~2200 K	~2400 K	~2050K	
	Flammability Limits (by volume %)	5-15	4-75	15-28	
	Ignition Energy (mJ)	0.28	0.011	680	
	Ignition Delay Time (ms) @ 1000K/17bar	45.6	6.2	N/A	
	LHV (MJ/Kg)	50	120	18	CONTER ONTONI
		Standard	Too reactive!	Too little reactive!	Cy SINTEF UNINU

- ▶ NH₃ is a viable maritime fuel but strategies for improved ignition and combustion are needed.
- The current project focus is on performing "large-eddy simulations" (LES) of a spark-ignited H₂ pre-chamber with port injection and ignition of pre-vaporized NH₃ (pre-mixed combustion).
- Significant emissions of NO_x and N₂O can occur if fuel-lean combustion is present.
- > Chemical reaction kinetics of ammonia flames is still uncertain and needs further validation.

Webinar#2: Modelling a Norwegian NH₃ value chain for maritime transport.

- Presented by Miguel Muñoz Ortiz and Truls Flatberg

- > The approach for modelling a NH_3 value chain (from production to bunkering) was described.
- Input data for a simplified national case was presented, such as spatial and time resolution (five Norwegian regions, 18 operational periods) and the expected maritime NH₃ demand.
- Some, very preliminary, results were shown in terms of regional NH₃ demand and production, electricity demand and H₂ production, as well as CO₂ emissions, and NH₃ production method.

- Next modelling steps are to add maritime-based transport of NH₃ and H₂ (costs an emissions), and fully implement the new NH₃ production model, with its updates on production costs.
- A sensitivity analysis will be performed, by varying parameters like NH₃ demand, electricity price, and availability of blue H₂, as well as increasing the operational period resolution.

MaritimeNH3 - Ammonia as maritime fuel NEWSLETTER #2

Webinar#3: Release of refrigerated NH₃: modelling and safety analysis

Presented by

- Hans L. Skarsvåg
- Marta Bucelli
- Martin S. Grønli
- Ailo Aasen

<u>1. Loss of containment analysis of a stationary, refrigerated, double containment tank</u>

Leakage rates for 4 accident scenarios were estimated: catastrophic tank rupture, loss of tank connections (pipe, valve) and instrumentation, and bunkering pipe rupture in the retention pit.

2. Modelling of spill and evaporation rate from a refrigerated atmospheric tank (-33°C)

- The open-source modelling tool enables to describe the spill radius on solid ground and the local evaporation rates, being important input to modelling NH₃ dispersion in the atmosphere.
- The model can handle different geometries and is applicable to other fluids, like LH₂.

3. Thermodynamic modelling and analysis on the behaviour of NH₃ release in humid air

- To estimate the buoyancy of NH₃ dispersed into humid air it is important to understand the amount of NH₃ gas being dissolved in water droplets or adsorbed on the droplet surfaces.
- Modelling results shows that mixtures of NH₃ (-30°C) and humid air (5°C) are always buoyant, and that 99% of the NH₃ gas is found in the vapor phase, 1% in droplets and 0.01% on droplet surface.

Some news from our industry partners

Ammonia, and the AFBN project, are well represented in this year's <u>Maritime Hydrogen Conference</u>, arranged by Ocean Hyway Cluster. Håkon Skjerstad, Azane Fuel Solution, participates in the panel debate "*Ammonia safety at sea*", and Olav Hansen, HYEX Safety, is among the speakers.

Equinor has started a NH_3 bunkering study together with Amon Maritime. In the project, <u>AFNO 2030</u>, it will be studied how clean NH_3 can be introduced as a fuel to decarbonize the Norwegian offshore sector. It will cover logistical optimization, operational planning, and safety aspects.

In September it was announced that <u>Yara Clean Ammonia</u> and North Sea Container Line (NCL) have received Enova support for the construction of a clean NH_3 -fuelled container vessel. The NH_3 are to be delivered from the bunkering barge developed in the AFBN project.

Some other "Ammonia News"

IEA (International Energy Agency) has updated their <u>Net Zero Roadmap</u>, where they suggest that NH_3 must emerge as the key shipping fuel if the industry is to reach net-zero emissions by 2050.

The estimated NH_3 share in the fuel mix for international shipping is 15% in 2035 and 44% in 2050.

EMSA (European Maritime Safety Agency) has updated their report on the <u>Potential of Ammonia as Fuel in Shipping</u>, including a number of advantages that NH₃ would have over other low-flashpoint fuels, as well as technology and regulatory gaps that would prevent its immediate application, and some incentives that would encourage its adoption.

Progress on safety guidelines for hydrogen- and ammonia-fuelled ships Within the "Nordic Roadmap project", led by DNV, a complete base document for draft *Interim Guidelines for the Safety of Ships using Ammonia as Fuel* has been developed and <u>submitted to IMO</u>, on behalf of the Nordic Countries. The <u>interim guidelines</u> are expected to be finalised by IMO in the end of 2024.

