MARINTEK do Brasil - Opening Seminar
19th April 2007, Rio de Janeiro

Advances in Design, Installation and Operation Analysis of Offshore Pipelines

Egil Giertsen, MARINTEK

Presentation Outline

- Background
 - Offshore pipeline R&D projects
 - The Ormen Lange gas field

- SIMLA development strategy

- SIMLA analysis functionality - highlights
 - Examples from the Ormen Lange project

- Use in the oil and gas industry

- Plans
PIPESTAB JIP (1983-1988)

- Executive partners: MARINTEK
- Sponsors: ExxonMobil, Statoil
- Objectives:
 - State of the art before PIPESTAB: *Dnv 1981 Rules for Submarine Pipeline Systems* => High concrete coating costs
- Outcome:
 - Reduced concrete coating thickness => Cost savings
 - Computer programs PIPE and PONDUS => CARISIMA/Beta
 - DnV RP E305

SUPERB JIP (1992-1996)

- Executive partners: MARINTEK, Snamprogetti and DNV
- Sponsors: ExxonMobil, Conoco, Statoil, EMC, HSE, Agip, Norsk Hydro, NPD, Shell
- Objectives:
 - Reliability based design of Submarine Pipelines
 - State of the art before SUPERB: *DnV 1981 Rules for Submarine Pipeline Systems* => High steel costs
- Outcome:
 - Code calibration resulted in increased utilization (0.72 -> 0.80)
 - Reduced wall thickness => Cost savings
 - DnV Offshore Standard F101 (DnV 1996)
DEEPIPE JIP (1996-1999)

- **Executive partners:** MARINTEK, JP Kenny and DNV
- **Sponsors:** NFR, Conoco, Statoil, Phillips, Allseas, ETPM McDermott
- **Objectives:**
 - Qualify existing Lay vessels for Deep Water Laying allowing overbend strains up to 1%
 - DnV 1996 ⇒ Maximum strain during installation of 0.5%
- **Outcome:**
 - Increased allowable strain (0.5% -> 1.0%)
 - Possibility of using existing lay vessels also in deeper waters
 - DnV Guideline for Deep Water Pipelines

CARISIMA JIP (1999-2002)

- **Executive partners:** MARINTEK, Statoil
- **Sponsors:** Norsk Hydro, Statoil, Conoco, BP, Texaco, ExxonMobil, Agip, Petrobras, Halliburton, Technip-Coflexip
- **Objectives:**
 - Develop a pipe-soil interaction model suitable for detailed analysis of TDP effects for catenary risers
 - Verify the numerical model by 2D geotechnical small-scale tests (performed at NGI)
 - Validate the model by back-calculation of monitored in-situ full scale test data
- **Outcome:**
 - A numerical pipe-soil interaction model applicable for on-bottom pipeline stability and TDP effects for catenary risers
 - More accurate prediction of fatigue life and extreme stresses
INT-STAB JIP (2003-2006)

- **Executive partners:** DNV, MARINTEK and DHI
- **Sponsors:** Statoil, Norsk Hydro, Woodside, PRCI
- **Objectives:**
 - A Recommended Practice for On-bottom Stability Design (replacing DNV RP E305)
 - Up-to-date know-how with respect to sediment transport
 - A new PONDUS database for clay type soil
 - A completely revised version of the PIPE software for on-bottom stability analysis
- **Outcome:**
 - DNV RP F109 (currently on external hearing)
 - New PIPE version v3.02

DEEPLINE SIP (2003-2006)

- **Executive partners:** MARINTEK
- **Sponsors:** RCN, Norsk Hydro, Statoil
- **Objectives:**
 - Development of new analysis tools for offshore pipelines
- **Outcome:**
 - SIMLA – a special purpose computer tool for engineering analysis of offshore pipelines during design, installation and operation
CORROSION FATIGUE JIP (2001-2008)

- **Executive partners:** MARINTEK, SINTEF
- **Sponsors:** Petrobras, Statoil, ConocoPhillips, Total, Norsk Hydro, Aker Solutions, Technip, NKT, Wellstream

Objectives:
- Steel armour layer of a flexible riser/umbilical subjected to fatigue loading
- The environment in the annulus may become corrosive:
 - Sea water ingress due to damage of outer sheath
 - Diffusion of CO2 or H2S from bore
 - Diffusion of water vapour from bore
- Fatigue design criteria for these environments are needed

Outcome:
- Provide basis for fatigue strength assessment of armour wire in annulus environments

UMBILICAL JIP (2005-2007)

- **Executive partners:** MARINTEK
- **Sponsors:** Petrobras, Norsk Hydro, BP, Shell, Nexans

Objectives:
- Development of next-generation software tools for stress and fatigue analysis of umbilicals
- Verification and validation by full-scale testing
- Case studies

Outcome:
- The UFLEX Program System
- Laboratory test results
- Case study reports
FLEXIBLE RISER DESIGN FORMAT JIP (2003-2007)

- **Executive partners:** MARINTEK
- **Sponsors:** Petrobras, Statoil, BP, Wellstream

Objectives:
- Enhanced Fatigue Design Formats for Flexible Risers
 - Establish refined statistical models of relevant parameters
 - Perform additional case studies
 - Develop simplified case-based procedure
 - Evaluation and categorization of safety factors

Outcome:
- Guideline on case specific fatigue design factors
- Measurements and analysis results from field test data, full-scale laboratory tests and small-scale tests
- Case study reports

Ormen Lange – Location
Ormen Lange, concept selected 2002

- 2 x 30” Import Pipelines (ca. 120 km)
- 2 x 6⅝” MEG Lines (ca. 120 km)
- 2 x Umbilicals (ca. 120 km)
- 1 x 6⅝” Infield MEG Line (ca. 3 km)
- 1 x Infield Umbilical (ca. 3 km)
- 1 x 42” Export Pipeline (ca. 1 200 km)

Ormen Lange ... the ultimate challenge for offshore pipe laying

- Extreme seabed topography
- Large water depth
- Strong current
- Low temperature

Key Points:
- KP 98
- KP 102
- KP 105
- KP 114
- KP 118
- Water depth = 250 m
- Water depth = 850 m
SIMLA
a special purpose computer tool for engineering analysis of offshore pipelines during design, installation and operation

- Nonlinear 3D FEM static and dynamic analysis
- Simulation of pipe laying
- Evaluation of laying stability
- Upheaval buckling and snaking analysis
- Inspection and evaluation of free spans
- Training and familiarization
- Route planning and optimalization
- Seabed interventions
- Prediction of vessel position
- Operator guidance

Development Strategy
Technology Development Philosophy

World-class Special Purpose Numerical Methods

World-class 3D Visualization
Lifecycle Approach

Field development
- Concept development
- Technology and concept evaluation
- Environmental issues
- Risk

Design
- Routing/optimization
- Seabed intervention

Installation
- Interventions (rock dumping, trenching, dredging)
- Installation procedures
- Pipe installation

Operation
- Monitoring
- Remaining fatigue life
- Change in seabed topography
- Change in operational conditions

Basic Analysis Functionality

[Diagram showing database and storage with connections to high-level architecture (HLA) and run-time infrastructure (RTI)]
Installing a 42” Export Line (Nearshore)

Pipe sliding in trench
Dynamic stability

Expansion Control Analysis
Back-calculation of snake lay design OL PL-A

Defining the 3D numerical route corridor (1)
Defining the 3D numerical route corridor (2)

Use in The Oil and Gas Industry
SIMLA in Ormen Lange

OLFP - Major Offshore Contracts

- Pipeline detail engineering
 Reinertsen
- EPC Subsea system
 FKS
- Shallow water installation
 30” & 42”
 Allseas
- Coating (weight and corrosion)
 Bredero Shaw
- Survey
 Geoconsult
- Rock installation
 Van Oord ACZ

Contractors using SIMLA

- MEG installation
 Aercgy
- Deep water installation
 30” & tie-in
 Saipem
- Umbilical production
 Nexans
- Umbilical installation
 Subsea 7
- Heavy lift
 Heerema
- Dredging
 Nexans

Contractors with SIMLA installed
Installation Analysis of Umbilical - Static

Installation Analysis of Umbilical - Dynamic
Use of the SIMLA Program System in the Ormen Lange field project has been - and is - a success

- Communication
 - Partners
 - Media

- Familiarization
 - Project team
 - Contractors

- Design and construction
 - Verification and validation (specialist analysis)
 - Interface meetings with contractors
 - Company representative on board lay vessels

A 3D visual model of the complete field layout has grown as the project has moved forward, and is now believed to be used also during operation.

The Pluto Field - Overview

Woodside Energy Ltd
Planned Development Solution

Woodside Energy Ltd

The Seabed at The Deepwater Area
The MEDGAZ Project (www.medgaz.com)

Capacity: 8 billion m3/year
Length: 200 km
Diameter: 24 inches
Maximum WD: 2,160 meters
Investment: € 900 million
Workforce: Over 2,000 people will be involved in the construction phase

What now…

Photo: Geir Endal
SIMLA.INSTALLATION

On board monitoring, analysis and decision support during offshore pipe lay operation

Status: DEMO’2000 Application (2007-02-21)

Lifecycle Approach

Field development
- Concept development
- Technology and concept evaluation
- Environmental issues
- Risk

Design
- Routing/optimization
- Seabed intervention
- Free span evaluation
- Installation analysis

Installation
- Interventions (rock dumping, trenching)
- Monitoring
- Remaining fatigue life
- Change in seabed topography
- Change in operational conditions

Operation

High Level Architecture (HLA) / Run-Time Infrastructure (RTI)

Storage and retrieval

Database
Lifecycle Approach

Field development
- Concept development
- Technology and concept evaluation
- Environmental issues
- Risk

Design
- Routing/optimization
- Seabed intervention
- Free span evaluation
- Installation analysis

Installation
- Interventions (rock dumping, trenching, dredging)
- Installation procedures
- Pipe installation

Operation
- Monitoring
- Remaining fatigue life

High Level Architecture (HLA) / Run-Time Infrastructure (RTI)

Database

Storage and retrieval

SIMLA.Installation - Main Objectives

1. Generate, collect and store calculated key installation parameters from a selected set of design analyses (as designed datasets)
2. Generate, collect and store an equivalent set of key installation parameters from available on board control and monitoring systems (as installed datasets)
3. Create an on board decision support system by combining as designed datasets with real-time information
4. Calculate accumulated fatigue damage due to the installation, from the as designed and/or as installed datasets, as a function of pipeline route position
5. Apply as installed information as start-up condition for re-assessment analysis during operation
SIMLA.Installation - Potential

- On board 3D FEM analysis real-time, to support decisions related to specific events or emerging situations (bad weather + curves)
- Evaluation of laying stability, both for the current position and as forecast for the next section of the as-designed pipe route
- Generation of the As-built deliverable in a direct reusable form, also including key parameters from real-time 3D FEM analysis
- Connect via satellite link from onshore control rooms, and view the whole operation, including 3D FEM results, positions of supporting vessels, ROV’s, etc
- For familiarization/HAZID/HAZOP, produce a complete 3D scenario (including 3D FEM results, laying stability evaluation, etc) of the installation process prior to the actual offshore operation
- For de-briefing, play back the installation process from the As-built log
- Based on the As-built log, calculate the accumulated fatigue damage due to installation, store it as a function of pipe route position and apply it as startup condition for fatigue assessment of critical areas during operation
- Assessment of on-bottom stability during operation
- Assessment of upheaval buckling and snaking during operation

On board monitoring, analysis and decision support during offshore pipe lay operation
Network Link to External Users

- Numerics
- FE Results
- Terrain

Control System
Interface Layer

HLA
NMEA 0183
Others

Network Link to External Users

On board Logging and Analysis

Analysis at Other Locations

Onshore Monitoring of Electrical Connection on Troll Pilot
Recorded Online 27. September 2006. Time: 06:30-07:15, Place: Home Office
Thank you for your attention!