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Validation
Tensile testing at strain rates up to 5 m/s
Good agreement between simulation and experiments
Compression testing (quasi-static)
Only initial behaviour was well predicted. Above the yield point the simulations 
(based on flow curves in tension) overpredicted the strain hardening
Three-point bending (instrumented ‘falling weight’ used for rates ≥ 1 m/s)
Standard von Mises yield criterion (              ) gave better prediction than Raghava
(the latter overestimated the compressive stresses)

Centrally loaded plates (using instrumented ‘falling weight’)
Raghava model gave better prediction than von Mises. At low rates the force curves 
are overpredicted and the unloading occurs to early. At high rates the predictions are 
OK up to half maximum force.
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Mechanical response of injection-moulded parts at high strain rates
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Material model
Linear-elastic–viscoplastic with pressure sensitivity and plastic dilatation 
Elastic rate effects are neglected
‘Viscoplastic’ means rate dependent yield stress and plastic flow
Yield sensitive to hydrostatic stress (Raghava yield criterion): 

A modification of the von Mises criterion: Yielding is sensitive to the hydrostatic 
stress (pressure), giving different yield stresses in tension and compression. 
Molecular basis: Chains are disentangled in tension, but not in compression
Flow rule (plastic strain vs stress) obtained from a Drucker-Prager
flow potential 
This flow rule accounts for volume change (dilatation) during plastic flow.                     
The plastic dilatation is due to cavitation/crazing (for shear yielding the volume                  
is constant).
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Material
Mineral and elastomer modified polypropylene (PP) (from Borealis) 
Density 940 kg/m3

MFI (230 °C/2.16 kg) 17 g/10 min

5 m/s

1 m/s

500 mm/min

5 mm/min

Rate sensitivity True stress-strain

Uniaxial tension
Injection-moulded test specimens with cross-section 4 mm × 10 mm
Video extensiometer used for obtaining true stress-strain
The plastic Poisson’s ratio                         decreases with strain           
(Drucker-Prager model assumes constant Poisson’s ratio)
Rate sensitivity of yield stress and post-yield stress at a given nominal 
strain can be represented by an Eyring equation 10 ln AA += εσ &
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Uniaxial compression
Specimens (10 mm long and cross-section 4 mm × 10 mm) were milled 
from injection-moulded multipurpose specimens (same as for tension)
Compression and tension stress-strain curves show similar initial                   
strain hardening
Yield point in compression is at higher nominal stress and strain than              
in tension
Pressure sensitivity parameter
(obtained from ratio of maximum nominal stresses)

35.1TC == σσλ

Application
Simulation of crash test with an artificial leg (NCAP test) 
Good agreement between experiment and simulation
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