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INTRODUCTION 
 
This paper deals with numerical simulation of the impact response of injection-moulded parts, and the 
mechanical testing associated with this. The automotive industry is a driving force in this field, and a 
standard for obtaining tensile properties at high strain rates was recently published [1].  
 
Some comments to justify this paper being presented at a conference on polymer processing: The anisotropy 
and inhomogeneity of injection-moulded parts is a challenge when trying to model and simulate their 
mechanical response at large strains. The goal is to simulate of the mechanical response with local 
mechanical parameters from a simulation of the moulding process, but this has so far only been demonstrated 
for simple geometries and/or small strains. Even for simple test specimens there are several questions: Is it 
OK to compare different materials, with e.g. different molecular weight, moulded with the same machine 
settings? Can we assume that specimens with different thicknesses (e.g. 2 mm and 4 mm) have the same 
effective morphology? How do differences in morphology, anisotropy etc interfere with the stress 
distribution? Does the skin layer affect the test results? How about residual stresses from the moulding 
process? 
 
This paper presents experimental results, and simulated responses with different material models, based on a 
study with a mineral and elastomer modified polypropylene (PP) material. The main objective of the work 
was to investigate the validity of linear-elastic viscoplastic constitutive equations. A Mises type model and a 
pressure sensitive model were implemented in LS-DYNA. Model parameters were obtained by tensile testing 
over five decades of strain rate, as well as quasi-static compression. The model was then checked by 
simulating two tests: Three-point bending of beams and central loading of circular plates.  
 
Numerical simulation of impact loading of polymer materials is of increasing interest as these materials are 
frequently applied in critical applications and constructions. In particular, the response to impact loads is of 
interest for automotive applications related to passenger and pedestrian safety where the material may 
undergo large multiaxial deformations at high strain rates. Also electronic casings and various ‘everyday’ 
products must be designed to resist impact loads. Various commercial simulation codes have suitable 
numerical techniques to simulate the dynamic event of an impact. However, most of the constitutive models 
in these codes were developed for metals and little work has been published in the literature in order to verify 
these models for polymer materials. Verification of a model for simulating impact should as a minimum 
include different stress states, e.g. bending and biaxial stress, at a range of different loading rates. Polymer 
materials used in components designed to withstand impact and/or absorb impact energy are usually highly 
ductile. Ductile polymeric materials show a complex behavior in impact loading involving large strains. The 
complexity applies to the micromechanical mechanisms as well as the macroscopic response.  
 
In the literature on simulation of impact loading of solid polymers, early models were based on the 
traditional linear-elastic viscoplastic formulation with a von Mises based yield criterion and flow rule. With 
such models several authors concluded that quasi-static tensile tests at different strain rates are insufficient to 
determine the parameters for impact simulations. Duan et al. [2] applied a viscoplastic material model fitted 
to uniaxial compression tests at low strain rates, and included a pressure dependendent yield curve, and 



 

material failure at a maximum plastic strain. They reported reasonable results for a falling weight test, but 
only for one speed. Pyttel and Weyer [3] applied a non-isothermal elastic-viscoplastic G’Sell model with a 
small initial yield stress to simulate impact on a honeycomb plate. They obtained reasonable simulations of 
impact on honeycomb plates at 4.0 and 5.3 m/s for both loading and unloading. Dean and Wright [4] applied 
an elastic-viscoplastic model with a linear Drucker-Prager yield criterion and a non-associative flow rule 
implying plastic dilatation. The viscoplastic model was fitted to experiments at a range of strain rates up to 
100 s-1. Simulations of a plate loaded at constant velocities between 0.1 mm/s and 1 m/s showed good 
correlation with experiments. Dean and Crocker [5,6] have also introduced a new model taking into account 
the effect of cavitation on the plastic deformation. Finally, the model of Du Bois et al. [7,8] must be 
mentioned. The aim of this model, the semi-analytical model for polymers with C1-differentiable yield 
surface (SAMP-1), is to ‘include all relevant experimentally observed effects in one model’. 
 
 
MODELLING 
 
Summary of the material model 
 
The model used in this study can be summarised as follows: 
 

• A linear-elastic–viscoplastic model with pressure sensitivity and plastic dilatation.  
• For the elastic response, non-linearity and rate effects are neglected. 
• ‘Viscoplastic’ means rate dependent yield stress and plastic flow. 
• The Raghava yield criterion [9] was used. This is a modification of the von Mises criterion, and it 

accounts for yielding being sensitive to the hydrostatic stress (pressure), giving different yield 
stresses in tension and compression. A part of the molecular basis for this can be that the chains are 
disentangled in tension, but not in compression. 

• The flow rule (plastic strain vs stress) was obtained from a Drucker-Prager flow potential. This flow 
rule accounts for volume change (dilatation) during plastic flow. The plastic dilatation observed for 
polymers is due to cavitation/crazing (for shear yielding the volume is constant). 

• This linear-elastic–viscoplastic model was implemented in LS-DYNA as a modification of the 
material model MAT24 (piecewise linear plasticity).  

 
Yield criterion 
 
The initial yielding of a wide range of crystalline and amorphous polymers can be described by the Raghava 
criterion [9]. This criterion, which is a modification of the von Mises criterion, accounts for different yield 
stresses in tension and compression. Yielding not only depends on the shear stress (as in the von Mises 
criterion), but also on the hydrostatic stress:  
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Here,  
 

• 21 ,σσ  and 3σ  are the principal stresses 
• Cσ and Tσ  are the yield stresses in tension and compression (note that the von Mises equation is 

recovered when setting Cσ = Tσ ).  
 
Introducing 
 

• TC σσ=λ , the pressure sensitivity parameter  
• 2J , the second deviatoric stress invariant 
• 1I , the first stress invariant  



 

Eq. ( 1 ) can be rewritten as: 
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In this definition, 
 

• R
eqσ  represents the equivalent stress in the Raghava sense 

• )( P
eqT εσ  represents the softening/hardening function which can be generalised using a tabular form 

of true stress vs. true plastic strain values.  
 
Thus, this yield criterion requires two main inputs: The uniaxial stress-strain curve (in tension) and the 
pressure sensitivity parameter λ .  

Flow rule 

In the elastic-plastic framework, a flow rule is used for the determination of plastic strains. The components 
of the plastic strain tensor are assumed to be proportional to the derivative of a potential function G with 
respect to the components of the stress tensor. In this work, we use a non-associative linear Drucker-Prager 
model as the flow potential, as proposed by Dean and Wright [4]. The potential function can be expressed as   
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Here, α  is a material parameter that we will return to below. The plastic strain tensor can then be calculated 
as: 
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Here 

• p
ijdε  is the incremental plastic strain tensor 

• ξd  is the plastic multiplier 
• ijσ  is the stress tensor  

• ijS  is the deviatoric stress tensor 

• ijδ is the Kronecker delta function 

• α  is a material parameter defined as the the volumetric plastic strain divided by the equivalent                     
von Mises plastic strain  

 
For uniaxial tension, α  can be related to the ‘plastic’ Poisson’s ratio pν (the ratio between the transversal 
and longitudinal plastic strains, for large strains): 
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DETERMINATION OF MATERIAL PARAMETERS 
 
Material 
 
The material used in this study was a mineral and elastomer modified polypropylene (PP) compound 
provided by Borealis. The density was 940 kg/m3 and the melt flow rate (230°C/2.16kg) was 17 g/10 min. 
This material is typically used in injection-molded automotive applications. Recently three more materials 
were tested and simulated as described below, but this paper will focus on the PP material mentioned above. 
 
Uniaxial tensile testing 
 
Uniaxial tensile testing was conducted at a range of different strain rates using standard injection-moulded 
test specimens (type 1A of ISO 527-2) with cross-section 4 mm × 10 mm. The crosshead speeds ranged from 
5 mm/min (8.33 x 10-5 m/s) to 5 m/s. For crosshead speeds up to 500 mm/min a Zwick Z250 machine was 
used, and the elongation was measured with a conventional extensiometer. At higher rates a modified 
Schenk/Instron VHS was used, and the elongation was taken as the displacement of the crosshead. Fig. 1 
shows the nominal stress-strain data, as defined by 
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where 
 

• F  is the measured force 
• 0A  is the initial cross-section of the specimen (prior to loading) 
• LΔ  is the elongation of the specimen 
• 0L  is the initial length of the specimen 

 
At 5 m/s some oscillations appeared in the recorded force, which we attribute to resonance of the instrument. 
Fig. 1 shows that the stress level increases with the loading rate. The rate sensitivity of the yield stress, as 
well as post-yield stress at a given nominal strain, can be represented by an Eyring equation: 
 
     10 ln AA +ε=σ &  ( 8 ) 
 
Some necking was observed. Hence, video recording and image analysis was used to calculate true stress-
strain curves and plastic Poisson’s ratios. At quasi-static conditions a camera with resolution 1024 × 1024 
pixels and recording rate 40 frames per second (fps) was used, while a 8000 fps camera was used at high 
strain rates (not reported in this paper). The specimens were black and they were marked with white stripes 
for the video recording and image analysis. From the image analysis, the longitudinal (axial) strains, and the 
transversal strains in the width direction, were determined. The transversal strain in the thickness direction 
was assumed to be similar to that in the width direction (this was checked for some specimens with a 
conventional extensiometer). Hence, true stresses and plastic Poisson’s ratios could be determined with the 
following equations:  
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where 
 

• F  is the measured force 
• 0W  is the initial width of the specimen 
• W  is the measured width during testing 



 

• 0H  is the initial thickness of the specimen 

• T
pε  and L

pε  are the true transversal and longitudinal plastic strains 
 

Fig. 2 shows the ‘standard’ true stress-strain, assuming homogenous deformation and constant volume in 
plastic deformation (i.e. assuming a plastic Poisson’s ratio equal to 0.5), and the true stress-strain as 
determined by video image analysis. There are significant differences. Fig. 2 also shows the calculated 
plastic Poisson’s ratio based on Eq. ( 10 ). The value decreases with strain, starting at ~0.3 at 20% strain. 
However, the Drucker-Prager model in Eqs. ( 4 )-( 6 ) considers a constant plastic Poisson’s ratio. Therefore, 
an effective plastic Poisson’s ratio was defined, so that the true stress-strain calculated with this (constant) 
effective plastic Poisson’s ratio agreed with the stress-strain determined with the video extensiometer. As 
shown in Fig. 2, using a plastic Poisson’s ratio of 0.25 gave a reasonable agreement. However, there was a 
deviation at small strains, which was caused by the relatively coarse resolution of the video camera. 
Therefore, the actual flow curve used in simulations was based on strains measured with the conventional 
extensiometer for small strains, and strains from the video measurements at larger strains. 
 
 

 
Figure 1  Nominal tensile stress versus nominal tensile strain with different crosshead speeds. 
 

 

 
 

Figure 2  Measured true stress-strain and Poisson’s ratio at a nominal strain rate 
of 9.3 x 10-3 s-1. See main text for details. 

 



 

In the simulations, the flow curve in Fig. 2 was scaled to a nominal strain rate of 9.3 x 10-4 s-1 using the 
Eyring parameters, and this reference curve was then given as data points to LS-DYNA which interpolated 
for strains between the individual points, and scaled the stress with the strain rate according to the Eyring 
equation  
 
     ( ) ( )[ ]100 ln, BB += εεσεεσ &&  ( 11 ) 
 
where ( )εσ 0  is the reference flow curve at the nominal strain rate of 9.3 x 10-4 s-1.  
 
Uniaxial compression 
 
Finally, compression tests based on ISO 604 were conducted using specimens milled from the injection 
moulded multipurpose specimens. The specimens used in the compression tests were 10 mm high (loading 
direction) with a cross-section of 4 mm x 10 mm. Nominal stress strain curves for two different crosshead 
speeds are shown in Fig. 3, together with tensile data scaled to the same nominal strain rates. As expected, a 
higher yield stress is observed in the compression test. There are various methods to extract the pressure 
sensitivity parameter λ  from these experiments, but as a first approximation one may apply the ratio of the 
yield points (i.e. the maximum nominal stresses). This gives a pressure sensitivity λ = 1.35. The nominal 
stress-strain curves for compression and tension show similar strain hardening, except that the yield point in 
compression appears at a higher strain than in tension. At high strains – typically above ~25% – the 
specimens start buckling. 
 
In order to assess the compression test, injection-moulded specimens of two more PP grades (compounds for 
the automotive market) were tested. Also compression-moulded specimens with different cross-sections 
(same height of 10 mm) were tested. The three PP grades had quite similar stress-strain curves (Fig. 4). 
Compression-moulded specimens (Fig. 5) showed more pronounced strain hardening than injection-moulded 
specimens. The different cross-sections of the compression-moulded specimens gave similar stress-strain 
curves, but the differences were experimentally significant (Fig. 5). 
 
Material parameters  
 
The actual input parameters to the model are given in Table 1. Additionally, some of the tests to be simulated 
involved friction between the polymer and steel tools. For simplicity, Colomb friction was assumed, and the 
static and dynamic friction coefficients were set to the same value. The values used are mentioned for the 
respective cases in the next section. 
 
 

Table 1  Material parameters used in the simulations. 
 

Young’s modulus E  2500 MPa 
Elastic Poisson’s ratio ν  0.4 [-] 
Initial yield stress 0yσ  2 MPa 

Density ρ  940 kg/m3  
Plastic Poisson’s ratio pν  0.25 [-] 

Strain rate sensitivity 0B  0.0954 [-] 

Strain rate sensitivity 1B  1.67 [-] 

Pressure sensitivity λ  1.35 [-] 
 



 

 
Figure 3 Stress-strain curves for compression and tension at the same strain rates. 
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Figure 4  Data from compression testing of three PP materials (PP-1 is the main material in this paper). 
Injection-moulded specimens with cross-section 4 x 10 mm2. Nominal strain rate 3.3 x 10-3 s-1. End of test is 
arbitrary (but always above a strain of 0.2). 
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Figure 5  Data from compression testing of compress-moulded specimens with different cross-sections as 
indicated in the legend. Nominal strain rate 3.3 x 10-3 s-1. Test parallels are indicated by dotted lines (same 
colour for same cross-section). End of test is arbitrary (but always above a strain of 0.2). 



 

SIMULATIONS VS. EXPERIMENTS 
 
The tests listed below (FEM meshes shown in Fig. 6) were simulated and compared to experiments: 
 

• Tensile testing at strain rates up to 5 m/s 
• Compression testing (quasi-static) 
• Three-point bending at speeds up to 4 m/s 
• Centrally loaded circular plate (biaxial loading), at speeds up to 4 m/s 

 
 

 
Uniaxial tensile testing.                                  
Cross-section of specimen: 4 mm x 10 mm.  

 
 
 
 
 

 
 
 
Uniaxial compression testing. Specimen height: 10 
mm. Specimen cross-section: 4 mm x 10 mm 

 
Three-point bending. Only one half of the 
specimen (red) and one of the supports (blue) are 
shown). Specimen cross-section: 4 mm x 10 mm. 
Distance between supports: 40 mm. 

 

 
 
Centrally loaded plate with thickness 2 mm and 
diameter 60 mm. Both freely supported and clamped 
plates were tested, see main text. 

 

Figure 6  Geometries and meshes for the tests. 
 
 
Uniaxial tension: Simulations of the tensile tests, using the parameters in Table 1, are shown in Fig. 7. As 
one should expect, there is a good agreement between simulations and experiments. Similar good correlation 
was also obtained with a von Mises type model – i.e. with a plastic Poisson’s ratio of 0.5 and no pressure 
dependence. However, in the experiments there was a slight necking, which was more pronounced at high 
strain rates, while the simulations showed uniform deformation. 
 
Uniaxial compression: The compression tests were simulated using a Colomb friction factor of 0.25. Only 
the initial behavior was well predicted. Beyond the yield point the simulations (based on the flow curve in 
tension) overpredicted the strain hardening.  



 

 
Three-point bending: Beams were subjected to three-point bending using a Charpy fixture as indicated in 
Fig. 6. In the simulations the friction coefficient was set to 0.15. Tests were conducted at a range of 
velocities from 5 mm/min to 4 m/s. For tests with loading rates up to 500 mm/min a constant rate was 
maintained during the experiment. At higher loading rates a free-falling impactor (mass 3.15 kg) equipped 
with a piezo-electric load cell was used. Fig. 8 shows experimental and simulated force versus displacement. 
The standard von Mises elastic-viscoplastic assumptions (a plastic Poisson’s ratio of 0.5 and no pressure 
dependence) gave a better prediction than the modified model for this case, and it is the simulations with the 
von Mises model that are shown in Fig. 8. The reason why the modified model is inferior is probably due to 
the compressive stresses being overestimated, as mentioned above. Some of the deformed specimens are 
shown in Fig. 9. At 4 m/s the beam was squeezed down between the supports. 
 
Centrally loaded circular plate: These 2 mm thick plates were loaded at rates between 5 mm/min and 4 
m/s. Tests with loading rates below 500 mm/min were conducted with constant crosshead speed and the plate 
was freely supported. At higher loading rates, the tests were conducted with an instrumented free-falling 
impactor (the same as used for the three-point bending) on a clamped plate. Fig. 10 shows the experimental 
and simulated force versus displacement for the highest loading rates. The simulations in Fig. 10 are based 
on the pressure sensitive model (Table 1) which for this case is slightly better than the model based on von 
Mises. Fig. 11 shows the deformed plates after testing. Note that the plate was perforated when the impactor 
had a speed of 4 m/s (impactor mass 3.15 kg), ref. the solid blue curve in Fig. 10. For the impact speeds 0.7 
m/s and 1 m/s the force curves are overpredicted, and the unloading occurs to early.and overpredicted at the 
two highest impact rates. the unloading stage. For the impact speeds 2 m/s and 4 m/s the predictions are OK 
up to half the maximum force. After this the force is overpredicted. Again the unloading is not predicted, but 
this could not be expected with the present model. 
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Figure 7 Tensile testing: Experimental data (solid lines) and simulated response (dashed lines) with 
parameters given in Table 1. Crosshead speeds as given in the legend.  
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Figure 8  Force vs. displacement for three-point bending. Experimental results (solid lines) 
and simulations (dashed lines) using a von Mises based model. Loading rates in legend. 

 

 

 
4 m/s (free-falling impactor) 

 
1 m/s (free-falling impactor) 

 
500 mm/min (constant speed) 
 

Figure 9  Deformed specimens after three-point bending tests at different loading rates. 
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Figure 10  Impact force vs. displacement for centrally loaded plate. Experimental results 
(solid lines) and simulations (dashed lines) using the model with parameters in Table 1. 
Impact speeds in legend. 
 

 
Figure 11  Deformed plates after testing with impact rates 1, 2 and 4 m/s (left to right). 
 



 

DISCUSSION 
 
The results reported in this paper are preliminary. There are room for improvements, in particular when it 
comes to the input parameters (testing and analysis). Also, only results for one material is reported. Work in 
progress considers additional materials (similar PP grades) 
 
The loading and unloading phases must be discussed separately. During loading, the simulations with both 
the von Mises based model and the pressure sensitive model showed reasonable good agreement with the 
measurements, for both the three-point bending and the centrally loaded plate, at different loading rates. 
However, the pressure sensitive model was not overall significantly more accurate than the von Mises based 
model. In fact, for the three-point bending the latter model was slightly better. The reason for this may be 
systematic and/or non-systematic experimental errors (like non-ideal stress distributions, friction and 
adiabatic heating), as well as insufficiencies in the constitutive formulation. We have found that simulation 
of uniaxial compression, with both the von Mises based model and the pressure sensitive model, overpredicts 
the stresses at large strains. Also, the rate effects are slightly different in tension and compression. The 
pressure sensitive model amplifies the overprediction of compressive stresses, and this may be the reason 
why the von Mises based model appeared to be better than the pressure sensitive model in simulation of 
bending. Furthermore, in the simulations of the centrally loaded plate, the pressure sensitive model gave 
some stiffness reduction compared to the von Mises based model, due to the plastic dilatation effect. (Just as 
for a linear-elastic plate where reduction in the Poisson’s number reduces the stiffness.) Also, because the 
plate is dominated by membrane stresses, the possible shortcomings of the pressure sensitive model in 
compression have less effect. 
 
Concerning the unloading phase there is poor agreement with measurements for both models, as could be 
expected with linear-elastic models. In particular, we note that the recoverable strains are much larger than 
predicted. This was also observed in the uniaxial tensile tests where it was found that the recoverable elastic 
strains after fracture were large, especially at high loading rates. Typically the recoverable strain was 40% of 
the total strain at fracture and one or two decades larger than the predicted linear-elastic strain. Thus, it is 
clear that a non-linear viscoelastic model should be considered. However, a simpler and pragmatic approach, 
considering reduction of the elastic modulus with increasing strain (damage), has been suggested by Du Bois 
et al. [8]. 
 
For many systems of practical interest it will also be highly interesting to be able to simulate the failure of 
the material/component. It is expected that a failure model may be complicated and it should probably 
include the deformation history of the material in some way to be generally valid. A constitutive equation 
reflecting the real physical behavior of the deformation in a more realistic way is probably necessary – 
supporting the need for a viscoelastic constitutive model. 
 
CONCLUSION 
 
It has been shown that mechanical loading of a thermoplastic material like polypropylene at large strains and 
different loadings rate may be reasonably well simulated by use of a linear-elastic viscoplastic constitutive 
equation of von Mises type. However, it is clear that these materials deviate from the von Mises model, since 
their yield stress increases with hydrostatic pressure and plastic dilatation occurs in tension. Therefore a 
modified model with these properties was implemented in LS-DYNA. Simulations with this modified model 
resulted in improved agreement between simulations and measurements for impact on a plate due to lower 
stiffness. For three-point bending the agreement was poorer, possibly due to different strain hardening in 
compression and tension. In the unloading stage, however, it is clear that the recoverable strain is non-linear 
and at least one decade larger than predicted by the linear elastic model. 
 
ACKNOWLEDGEMENTS 
 
Kristin Kaspersen at SINTEF is acknowledged for assistance with the video recording and Reinhard 
Bardenheier at Instron is acknowledged for assistance with the high-speed tensile testing equipment. 



 

REFERENCES 
 
[1] ISO 18872:2007  ‘Plastics – Determination of tensile properties at high strain rates’ 

[2] Duan Y., Saigal A., Greif R., Zimmerman M.A., Polym. Eng. Sci., 42, 395 (2002) 

[3] Pyttel T. and Weyer S., Int. J. Crashworthiness, 8, 433 (2003). 

[4] Dean G. and Wright L., Polym. Testing, 22, 625 (2003) 

[5] Dean G. and Crocker L., Plast. Rubber Composites, 36, 1 (2007) 

[6] Crocker L. and Dean G., Plast. Rubber Composites, 36, 14 (2007) 

[7] Kolling S., Haufe A., Feucht M., Du Bois P.A., 4th German LS-DYNA Users’ Conference,   
       Bamberg, Germany, 2005, pp. A-II-27 to A-II-52 

[8] Du Bois, P.A., Kolling S., Koesters M., Frank T., Int. J. Impact Eng., 32, 725 (2006) 

[9] Raghava R.S., Caddell R.M., Yeh G.S.Y., J. Mater. Sci., 8, 225 (1973) 


