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In this project, a ground heat exchanger system (GHE) has been simulated using the Modelica
language in the Dymola environment. This GHE is a component that later is to be incorporated
into a larger system. It is therefore desired to use a complex model of the GHE to produce a simple
model that can be used in a larger system. In this manner, the computation time in the larger
system can be greatly reduced. A B2G model was used, because this produced much more accurate
results during short-term simulations, which often are of interest in control systems ([1], [2], [3]).

Introduction

Ground coupled heat systems (GHE) consisting of ver-
tical boreholes drilled into the ground can contribute to
reduce consumption of primary energy all around the
world. It is therefore an important contribution to reduce
emissions of COy and hence the undesirable impacts such
constumption has on the environment. The system’s pri-
mary function is to provide heating and cooling to build-
ings, and it may be incorporated as a component into a
larger system consisting of several other units.

The BHE model used in this work is the Borehole-to-
Ground (B2G) model, which has been developed at the
Universitat Politenica de Valencia [2].

Experimental setup of model

Description

The model consists of three types of entities:

e Buildingblocks: the basic units that are used to
construct larger components.

e Components: these are more complex entities
that are contstructed from buildingblocks.

e Testers: these are codes that simulate the com-
ponents interacting together and set up the overall
environment for a simulation.

Buildingblocks

The most basic building block in the model is the bore-
HoleSegments. These are transeverse intersections of the
boreHole itself. In order to build this compoent, the B2G
model was used. The abstract representation of such a
cross section can be seen in figure 1 and the implemented
version in Dymola in figure 2. The boreHoleSegment is
circular and there are two smaller circular pipes inside
of it. The borehole is filled with water, while the pipes
are filled with an aqueous solution of 20 volume percent
ethanol. In Dymola, the two pipes are represented with
two pipe elements, as seen in figure 2.
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FIG. 2: Model of the boreHoleSegment cross section in Dy-
mola.

Components

In order to represent the entire borehole, several bore-
HoleSegment buildingblocks are connected together in
the boreHole component. Each segment has a connec-
tion between its pipe_0 and the pipe_0 of the next el-
ement (downward flow), and likewise with the pipe_1’s
(upward flow). The lowest segment has a connection be-



tween flowPort_b0 and flowPort_al, closing the U-loop
(see figure 2). In addition, the heatPort of each seg-
ment is connected to the corresponding heatport element
in the heatport array heatPort (line 3 in the first for-
loop) of figure 4. The top segment has its flowPort_a0
connected to the flowPort a_0 of the boreHole compo-
nent, and the flowPort_bl connected to the boreHole
flowPort_bl. The flowPort_a0 of the boreHole compo-
nent is again connected to a fluid circulation pump, while
flowPort_bl of the boreHole is connected to a pipe out-
side of the boreHole, effectively connecting the inlet pipe
pipe_0 and outlet pipe pipe_1 of the top segment to a
circulation pump and a pipe outside the boreHole, re-
spectively. See figure 3 for a conceptual figure of the
boreHole component, and figure 4 for the code use to es-
tablish the connections between the boreHoleSegments.
See figure 7 for an overview of the connections between
the circulation pump, the boreHole and the pipe outside
the boreHole.

FIG. 3: boreHole model.

for i in 1:(nzWell-1l) lcocp
connect | segment[i] .flowPort_al, segment[i+l] . flowPort _bl);
connect | segment[i] .flowPort_bl, segment[i+l] . flowPort_al);
connect { heatPort[i], segmentl[i] _heatPort);
end for;
connect { segment [nzWell] .flowPort_sl, segment[nzWell] . flowPFort_bd);
segment [1] .flowPort_ a0, flowPort_al);
segment [1] .flowPort_bkl, flowPert _bl):
{ heatPort[nzWell], segment[nzWell] .heatPort):;

connect |
connect (
connect

FIG. 4: boreHole connections.

Next, to represent the ground itself, the groundSeg-
ment component is used. First, a groundSegment build-
ingblock was constructed, and these buildingblocks were
connected together to form a groundSegment component.
However, it was found that this configuration was inef-
fective, and hence the groundSegment component was
instead constructed by defining an array of temperature
nodes, Tnode[nx,ny,nz]. Resistances between the ele-
ments in the Tnode array were defined, and then the
following heat balance equation was defined, as in figure
6. The heatbalance equation is
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where Qeyt is the heat escaping from the element. Note
that the mass of the Tnodes are adjusted if there is a
boreHole at a given coordinate. That is, the volume of
the boreHole at that coordinate is accounted for. The
array massFrac2 takes care of this, as can be seen in
figure 5.

FIG. 5: In this example, 2x3 boreHoles are placed in the Tn-
ode array. The arrays ixWell and iyWell contains the coordi-
nates of the boreHoles, and massFrac[x,y,z] is set to pipeMass-
Frac if there is a boreHole at Tnode[x,y,z]. Otherwise it is set
to 1.

FIG. 6: Heat balance equation satisfied by the Tnode array,
representing the piece of ground containing the boreHoles.

Testers

An overview of the test setup used for validating the
model can be seen in figure 7. A pumpsource is con-
nected to a boreHole component. The pumpsource is
connected to a pulse source, which initiates the pumping
after 3 days, and keeps it going for 3 days. As can be
seen in the code in figure 8, all the boreholes (nxWell
and nyWell) are iterated over. These are specified man-
ually by the user. All the boreHoles are stored in a one-
dimensional array. The argument (i — 1) - neWell + j in
the boreHole array increases as 1,2,3,4,5 when the loop
iterates over i and then j. On the other hand, the ar-
guments nxStart + (i — 1) - (caseData.nzGap + 1) and
nyStart + (i — 1) - (caseData.nyGap + 1) in the ground-
Segment 2D-array both increases by (nxGap + 1) and
(nyGap+1) in the x- and y-directions, respecitvely. This
is to make sure that there are nxGap elements between
each boreHole in the x-direction and nyGap between each
boreHole in the y-direction. Also, note that the iteration
over the groundSegment heatPort array starts at nzStart
and nyStart, given in figure 9. This is to make sure that



the boreHoles are located in the middle of the ground-
Segment, and not close to the edges, to avoid edge effects
as much as possible.

Each boreHoleSegment k has its heatPort connected to
element k of the heatport array heatPort of the boreHole
it is a part of, as described earlier. Element k in this ar-
ray is again connected to the heatPort_ext array element
(i,7,k) in the groundSegment component to establish a
connection between the boreHole and the ground it is
embedded into. Also note in figure 8 that flowPort a_0
in the boreHole component is connected to the circula-
tion pump and flowport b_1 in the boreHole component
is connected to the outside pipe element, as mentioned
earlier. This is the case for all of the boreHoles in the
boreHole array, and they are thus connected in parallel.
Also note that most of the parameters necessary to use in
the buildingblocks, such as the resistance values, are cal-
culated in the tester and then passed down to the build-
ingblocks. This is to avoid doing the computations sev-
eral times in each buildingblocks, because the resistance
values are the same. Also, a lot of parameters are not
sent down at all, because they are not needed on the
buildingblock level (e.g. Reynold’s number, Prusselt’s
number, Prandtl’s number etc.).
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FIG. 7: Overview of the simulation setup.

FIG. 8: Code for connecting the components in figure 7 to-
gether.
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FIG. 9: Start position in x- and y-directions for first boreHole
in the groundSegment.

Plotting

In order to make an animation of the simulation, the
temperatures of the Tnodes are logged and saved to
file every plotTimeStep. Averaging between the Tn-
odes are used to get extra points on the faces of the
Tnodes and thus increase the resolution. These plots
are collected from the xy-plane at z_plot, from the yz-
plane at x_plot and from the xz-plane at y_plot. Note
that in order to produce an animation, the Ground-
Segment_FastPlotExtraPointsXYZ_animate needs to be
used instead of GroundSegment_Fast. Also, note that
the simulation time is severly increased when this fea-
ture is enabled. See figure 10 for a demonstration of this
feature.

FIG. 10: Animation of the xy-plane, xz-plane and yz-
plane for a 9x11x6 array with 2x3 boreHoles (boreHoleAr-
ray_ComplexModel_ComplexModel_Array_Tprofile). The
ground has the initial temperature profile from 16 and each
boreHole is heated up by 9 kW.

Parameter values

The different resistances and capacitances presented
here can be seen in figures 1 and 2. Each pipe contains
a mass given by

m=T- TIQJipe,inner ~dz - Pethanol-water solution (2)
where dz is the height of each pipe segment.
The capacitance of the water in the borehole segments,
excluding the pipes, is distributed in the capacitances Cy;
and Cps, and is calculated as
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(3)
based on equation (9) in [1].
The resistance between the two pipes, one leading wa-
ter up and the other down, in each segment, is calculated
as

W — Dpipe,outer
Dpipe,outer ~dz - kb

R,y = (4)
based on equation (18) in [1].
The resistance between the two capacitances Cyp and Cya
is

w

Dpipe,oute’r) dz
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based on equation (19) in [1].
The resistance between the pipes and the capacitances
Chp1 and Chg, is calculated as

RpipesToWater =Rp+ Ry (6)

FIG. 11: Figure 3 d) in [1].

based on figure 11. Here, R}, is a conductive resistance
given by

]n( DD; )
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(7)
(equation 16, [1]), where k; is the borehole conductivity,
which is equal to the conductivity of water as it is filled
with water (according to [5], most boreholes in Sweden
are filled with water, in particular the one that is used to
confirm this model). D., is an equivalent surface to the
surface of the two pipes, as shown in figure 12 a).

4w
Deq = Dpipe,outer . — +1 (8)

7Tl)]!)ipe,outer

(equation (15) in [1]).

According to figure 1 a), if 7, is the radial position of
the capacitances Cy1 and Cyo, D, = 2r, is the diame-
ter of the circle intersecting them. At first, the radial
position r, was chosen as the center of mass of a semi-
circular disk. This seemed natural, because the boreHole
is split into two capacitance nodes. If we align r’ along
the x-axis,
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(9)
However, this turned out to not be a good appoximation,
since according to (1], Deq < Dy < Dyorehote, and it is
there concluded that D, = Dporenoie actually gives the
best approximation. Thus,
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Fig. 4. Geometrical model characteristics to calculate (a) the equivalent diameter [33], b) grout nodes position, (<) pipe to pipe thermal resistance, and (d) grout node to.
grout node thermal resistance.

FIG. 12: Figure 4 in [1].

was chosen. Ry, is the convective resistance of the water
inside the pipes, and it is given by

1

Ry=———
T rdz Nu-k

(11)

(equation (13), [1]), where Nu is the Nusselt number and
k is the conductivity of the medium inside the pipe, an
aqueous ethanol solution. For a circular pipe, the Nusselt
number is given by

3.657 | 0-0499
tanh(2.264X5 + 1.7X3) X

anh(X),
(12)

NuLaminar =

(equation (54) in section B1 in [4]), and

NuTurbulent =0.024 - ReynoldO'S . Prandtl% (13)
(equation (56) in section B1 in [4]), where

dz
X = ) 14
D;m'pe,inner . Reynold - Prandtl ( )

Furthermore, Reynold’s number for flow in a circular
pipe is given by

Do
Reynold = W' “pipe, inner mher (15)
v
(equation (10) section B1 in [4]). Note that the diameter
of the pipe is the characteristic length L. w is the water
velocity in the pipes, given by

v
W=, (16)
- 7ﬂ;n'pe,z"rwzer
where V is the volume flow rate through the pipes. v
is the kinematic viscosity of the medium (water). The

Prandtl number is given by



v-p-cp

water

Prandtl = ) (17)
according to (12) in section B1 of [4].

Furthermore, the fraction of laminar flow is denoted
by x, where

1 if Reynold < 2300.
z = Lo Renold - jf 2300 < Reynold < 10000. (18)
0 if Reynold > 10000.

based on the fact that fluid flow in pipes is laminar if
Reynold < 2300, mixed if 2300 < Reynold < 10000, and
turbulent if Reynold > 10000 (based on [4], section B1,
page 25).

Then, finally

Nu==x- NuLaminar + (1 - l‘) . NuTurbulent- (19)

Next, the pressure losses were calculated. The pipe
component has two pressure losses: dpLaminar and dp-
Nominal for laminar and turbulent flow respectively. Ac-
cording to [4] section L1.2, the pressure loss of a medium
flowing in a circular pipe is

dz pw? dz pV?2
Bp= (5t P = 2
Dpipe,inner 2 Dpipe,inner 2.7 TPipE,inner
(20)
where
64
inar — &5 117 21
SLamina Reynold (21)
and
0.3164
CTurbulent = _1- (22)
Reynold*
,/
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FIG. 13: Descriptive picture of the Modelica heated pipe com-
ponent.

As can be seen in the modelica pipe component in fig-
ure 13, V_flowLaminar ( henceforth denoted Viaminar) and

5

V_flowNominal (henceforth denoted VTurbulem) are the
flow rates at which the flow in the pipe goes from lam-
inar to mixed and mixed to turbulent, respectively. In
our case, since from (15) and (16)

V - Dpipe, | 4V
o pipe, inner
Reynold = ———— = D (23)
v-m Tpipc,inncr v-m pipe, 1nner

we have based on this and on (18)

2300 -v - Dpipe, inner

‘./laminar = 4 (24)
and

. 10000'V'7T'Dieinner

Viominal = 4 — . (25)

Thus, combining equations (20), (21) and (22)

APlaminar = D) D 5 pQ larillnar 7
300 pipe,inner & * T~ * rpipe,inner
0.3164 dz V? )
ApProminal = P noznnal

1 2 :
100004 Dpipe,inner 2.m=- " pipe,inner

Finally, combining this with equations (24) and (25)
gives

d 2
APlaminar = 736005 27— (26)
pipe,inner
dzpv?
Apnominal == 158200037 (27)

pipe,inner

Next, the thermal capacitance C, of the ground as well
as the thermal resistance R, (between the water in the
boreHole and the ground) both had to be computed. In
[1], this is done by first defining D, as the penetration
radius of the boreHole. This means the extent to which
heat is stored in the surrounding soil around the bore-
Hole. That is, how much of the surronding soil responds
in time and can thus be included in the capacitance.
This obviously depends on simulation time. However,
since this project is based on a dynamic model where the
groundSegment nodes interact, it should not be necessary
to specify such a capacitance. Each boreholeSegment is
connected to a groundSegment temperature node, and
can exchange heat with the capacitance element of that
groundSegment. Then this groundSegment interact with
the surronding ones and so on. In addition, each bore-
HoleSegment has its own internal capacitances Cp; and
Ch2, as can be seen in figure 2. Hence, the capacitance of
the ground increases with simulation time, and is thus de-
termined in a dynamical manner in this model. However,
it does become necessary to define R, since it occurs in
the equations of this model. Equation (22) in [1] gives

Rgl = RgQ = Rg = Rac + Rbg; (28)



where R, is the thermal resistance between the capaci-
tance nodes Cp; and Cps of the borehole and the borehole
wall, given by equation (17) in [1],

ln( Dbo[r)ehole )
R,=———=2—=0, 29
mkydz (29)

(because Diyorenote = Dy in our model) and Ry is the
thermal resistance between the borehole wall and the sur-
rounding ground, given by equation (21) in [1],

1 D,

Ry, = |
bg mkgdz n(DboreHole)7

(30)

where D, is the diameter of a circle placed in the mid-
dle between the circle with diameter Dg, (penetration
diameter) and Dporemoe (borehole diameter), see figure
12 b). In the current model, the borehole is embedded in
the same groundsegment node that it is connected to. It
would therefore be logical to represent the corresponding
D, as the diameter of a circle midway between a circle
tangent to the sides of the groundSegment and a circle
with a diameter of the boreHole. The sidelength of the
groundSegment in the x-direction is used to get the tan-
gential circle, and it would therefore be convenient if the
sidelength in the y-direction is the same to make it tan-
gent in the y-direction as well, that i 1s . This is to
avoid different geometries in the xz- plane and yz-plane.
The formula used is thus,

L,

Na

DboreHole

5 (31)

Dg = DboreHole +
Note that the groundSegment obviously should be larger
than the boreHole. I. e. % = % > Dyorehole-
x y

MODEL VALIDATION FOR SHORT TIMES
(DAYS)

Qualitative testing

In order to confirm the short term behaviour of the
model, it was necessary to confirm that it agrees to [1]
when using the same parameter values. A qualitative test
was done to confirm that the model behaves similarly to
the B2G model.

As mentioned in [1] and [2], if the output temperature
and input temperature is plotted versus time, and there
is a temperature increase in the input, the B2G model
correctly incorporates the time delay due to the fact that
the circulating fluid needs to travel through the U-tube.
As can be seen in firgure 14, our model also show such
a delay in the response. Also note that the pipes clearly
lose heat to the surrounding groundSegment capaci-
tances and the boreHole capacitances. This is reflected
from the fact that the increase in temperature is greatest

FIG. 14: Results from the first qualitative testing of the
model, 10/7/2015. The temperatures of all the pipes have
been plotted. The temperature is 22 degrees celsius every-
where, when the temperature pumped into the system sud-
denly is increased linearly.

FIG. 15: Results from the second qualititave testing of the
model, 10/7/2015. This time the pumped in water temper-
ature followed an exponenital pulse. A response that slowly
becomes smaller due to losses to the boreHole capacitance
and groundSegment capacitances can be seen, and a delay is
also present in this case

at the inlet, and then becomes smaller and smaller fur-
ther down the U-tube, being smallest at the outlet. Also
note the linear rise in temperature at the very beginning
of the simulation in the last few pipes. This is due to
heat transfer through R,,. The temperature of these
pipes starts to increase more rapidly later when the wa-
ter finally reaches them. All this can be seen in figure 14.

A similar test was done with a exponential pulse,
and the result can be seen in figure 15. All these
characteristics were also found in [1].

Quanitative testing

The next objective was to get quanitative agreement
with [1] and [2]. To provide more information about the
experimental setup, the references provided in [1] led to
[5] and [6]. One of the boreholes in [6] is based on the
experiment in [5].

[7] conducts a numerical analysis of the experiment in
[5]. To verfy the model, the results from [7] were first
reproduced in Modelica. A comparison was also done to
one of the results in [6].



In these experiments, distributed thermal response
tests (DTRTSs) are carried out. This means that the
temperature is measured at different depths along the
borehole while running a conventional thermal response
test. A laser pulse is sent through a fiber optic cable,
and the frequency shift due to Raman scattering and
the time delay of the signal are used to measure the
temperature and vertical position, respectively. See [5]
for more information about this.

The initial undisturbed temperature distribution
found in [7] can be seen in figure 16. The borehole can
be seen from the side in figure 17. This temperature pro-
file was used to initiate the temperature in the ground-
Segment Tnodes, the water in the boreHole and in the
medium in the U-tube.
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FIG. 16: Initial temperature profile from [7].

Figure 1. Borehole sectioning

FIG. 17: From [5].

The parameters used in Dymola were based on the
COMSOL model in [7]. This was again based on the
experimental data from [5]. The Dymola model was ad-
justed to have similar parameters as in that experiment:

e The borehole is 260 meters deep, and the ground-
water starts 5.5 meters down in the borehole, ac-
cording to [5]. In the Dymola model, a 260 meter
deep borehole was used, but it might be more cor-
rect to adjust it to 254.5 meters (active depth).

e The volumetric flow rate m was chosen to be 0.52
1/s based on [5].

e The shank spacing was not specified in [7], while
in [6] it is mentioned that 78 mm is used in BHE7.
In [5], it is mentioned that ”The lateral position of
the cable is not known, since there are no spacers
or similar on the cable.” W = 78mm was assumed
because it gave a good match with [6].

e The borehole is sectioned as in figure 17 from [5].
The Dymola model starts at the ground level and
goes 260 meters down. The sections are 21.67 me-
ters deep.

e The U-tube pipe was of type PE40x2.4 according
to [5]. This pipe has an outer diameter of 40 mm
and is SDR17 and thus has an inner diameter of
37.647 mm.

e BoreHole diameter is 140 mm according to [5].

e The test was done by 3 days with no circulation,
1 day with circulation and no heating, 2 days of
heating and circulation and then 24 hours recovery
according to [7].

e The thermal conductivity of the rock was set to the
optimized value in [7], 2.74W/(mK).

e The volumetric heat capactiy of the soil was set to

2;2%5 , which is common in Scandinavia according
to [9] and [10].

e The borehole was waterfilled, so the density and
specific heat capacity of the water in the borehole
were chosen to be equal to those of water.

e However, according to [11], the effective conductiv-
ity can increase by a factor of 3-10 due to ground
water flow. It was assumed that this factor should
be around 3 in our model, because according to [6],
there is little ground water flow in the borehole, so
the smallest factor of 3 was chosen.

Finally, the medium in U-tube in [7] used an aqueous
solution with 20 % volume fraction ethanol. [12], section
4.4 provides graphs of thermal properties for different
weight fractions and temperatures of ethanol in water.
By using

fvolume * Pethanol

J— 32
fwelght fvolume * Pethanol + (1 - fvolume)pwater ( )
we find that
0.20 - 789k 3
Fueight = 9/m = 0.1648

0.20 - 789kg/m3 + (1 — 0.20)1000kg/m?
(33)



Thus, using a weight fraction of 18.7 % at about 10 °C
in table 4.4.4 ( the graphs were hard to read off) gives

°p= 974.1%.

e Specific heat ¢, = 4361169%

e Thermal conductivity = 0.464 %

e Dynamic Viscosity = p = 3.09mPa - s = 3.09mN -
s/m2.

e Hence, Kinematic viscosity = v = £ = 3.17um?/s.

Finally, a choice had to be made for L, and L,. In
this simulation they were 1.55 meters, which might seem
small. These are chosen by considering how much the
Tnodes adjacent to the borehole respond. There should
be a temperature response several Tnodes away from the
boreHole. Otherwise, this means that the Tnodes right
next to the borehole are too big and absorb all the heat.
On the other hand, the Tnodes most far away from the
borehole at the edges should not respond much, to avoid
edge effects. It turns out that quite small Tnodes are
necessary to achieve this for simulation times of a few
days, and hence L, and L, are quite low. On the other
hand, the elements most far away have only a small tem-
perature increase, as can be seen in figure 18, so edge
effects are small and this choice should be fine. However,
if the simulation time is turned up or the heat input is
turned up, it might be necessary to increase L, and L.
Then it might also be necessary to increase nxz and ny to
keep the Tnodes small, which may increase computation
time.

FIG. 18: Response of the Tnodes to the heat injection. Note
that the ones most far away show little response. However,
there is a smooth decrease, which means that the Tnodes are
not too massive either.

In figures 19 and 20, the average temperature of the
water in all the pipes in all the boreHoleSegements is
plotted versus time. As can be seen the figures have the
same shape and agree well. Plots of the average temper-
ature of the two pipe segments pipe0 and pipel for each
boreholeSegment from Dymola and [7] are compared in
the Appendix. They agree well.

In figures 21 based on BHE4 in [6] and 22 from Dymola,
the average temperatures of the pipe segements pipe0 and
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Figure 19: Computed and measured

of the fluid after optimization of 2,,. and Ry in Section 6.

FIG. 19: Average temperature of all pipe segments as a func-
tion of simulation time in [7].

acl

FIG. 20: Average temperature of all pipe segments as a func-
tion of simulation time in Dymola.

pipel for all the boreHoleSegments are compared in one
plot. They agree well.
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FIG. 21: From [6].
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FIG. 22: From Dymola model.

Self-consistency checking

Finally, a self-consistency check of the model was per-
formed. To do this, fluid with a constant temperature of
3 9C was injected into the ground at 0.52 1/s. The ground
had the temperature profile of figure 16. Then, the out-
let temperature was plotted versus time. In the first test,
the size of each Tnode was kept constant, while the ex-
tent of the ground (the number of Tnodes) was increased.
The eight resulting graphs are compared in figure 23. As

FIG. 23: Comparison of Toyt for L, = L, = 0.845454 meters
and ny; = ny = 6, L, = Ly = 0.986363 meters and n, =
ny =7, Ly = Ly, = 1.268181 meters and n, =ny =9, L, =
L, = 1.55 meters and n, = ny = 11, Ly = L, = 2.113636
meters and n; = ny = 15, L, = L, = 2.536363 meters and
ng = ny = 18, Ly = L, = 3.10 meters and n, = n, = 22 and
L, = L, = 3.804545 meters and n, = n, = 27.

can be seen, the four graphs corresponding to the finest
resolutions are very close together. The end temperature
increases with L, and L, because the Tnodes are warmer

than the circulating water, and if there are more of them
they warm the water more effecitvely. The 22x22 and the
27x27 graphs are almost overlapping.

Then, a check was done where the resolution for n,
and n, was increased through 6x6, 11x11, 15x15, 18x18,
22x22 and 27x27, while L, = L, = 3.81 meters for all
resolutions. The result can be seen in figure 24. Again,
the graphs are quite close togehter apart from the graph
from the 6x6 resolution (black). As the resolution is in-
creased the difference becomes very small. The end tem-
perature increased with the resolution, which indicates
better transfer from the surrounding ground to the cir-
culating water for high resolutions. The spread at the
end is about 0.2 © C.

FIG. 24: Comparison of T4y for L, = Ly = 3.81 meters and
ng =ny = 6, 11, 15, 18, 22 and 27.

In figure 25, a check was done where L, = L, = 2.1136
meters, and ng, ny =5, 7,9, 11, 13 and 15. In this case,
only odd numbers were chosen because this ensures that
the boreHole is in the middle of the Tnode array at all
times. As before, the end temperature increases with n,
and n,.

f

FIG. 25: Comparison of Ty for L, = L, = 2.1136 meters
and n, =ny =5,7,9, 11, 13 and 15.

A check where the size of the ground was increased
while keeping n, = n, = 11 was also done, and the result
can be seen in figure 26. The outlet temperature at the
end of the simulation seems to slowly converge towards 3



FIG. 26: Comparison of Toyu for ny = ny = 11 and L, =
L, =1.55 meters, 3.10 meters, 6.20 meters, ...etc.

°C as we increase L, and L,. This might be because very
large Tnodes might not respond in time and thus the out-
let temperature quickly drops as the inlet water reaches
the outlet. When the Tnodes are smaller, they respond
quicker and warm up the circulating water, causing the
curves to not drop off as rapidly in the beginning.

SIMPLIFIED MODEL FOR COMPUTING
Tout (TiTu Tground(z)a ’l’h, t)

The next step was to make a simplified model to repre-
sent the boreHole. The model used can be seen in figure
27.

AN outlet
= com ouls

r €

FIG. 27: Simplified model for

Tout (T'Ln, Tground(z)y m, t)

finding

Here, the pipe element represents pipe0 and pipel in
the complex model, while the waterNode represents Cbl
and Cb2. The different C_ground elements represents
cylindrical shells of soil surrounding the boreHole. The
position of each mass node is in the middle of the cylin-
drical shells. The diameter of the circle intersecting the
7th mass node is chosen to be

Dy; = Dyoretiole + dF acli] - dist Available (34)

where dFac[i] is a normalized percentage of the dis-
tance between the penetration radius rgrounq and the
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boreHole radius. It thus represents the thickness of a
given shell divided by the total thickness of all the shells.
dist Available is the distance between the boreHole ra-
dius and 7ground-

These diameters are then used in equation (30) to
compute Ryg1, Rpg2 etc. However, note that dz needs
to be changed in several of the formulas because we
now only have one pipe, so dz now represents the en-
tire height of the boreHole times two (because there is
two pipes per segment in the complex model). Thus,
dz — 2boreHolepeignt for Ryg1, Ryg2 etc as well as for Ry,
and R,. However, for Ry, and Ry, dz — boreHolepeighi
because there is only one of these per segment. The heat
capacitance of each such cylindrical shell ¢ is given by

C =p- ¢, - totVolume - dVol Fracli], (35)

where

totVolume = - hboreHole . (Tground —0.25- DboreHole)
(36)
VolFrac is the volume fraction of a given shell to the
total volume of all the shells. A total of 6 groundNodes
were chosen, because in the complex model 5 Tnodes
were surronding the boreHole in all 4 directions. This
means that we can think of 6 cylindrical shells in the
simple model (including the Tnode in which the boreHole
is embedded) to represent the complex model.
In the tests that follow, the following is meant by "heat
pulse injection’:

e The ground is initialized at 10 °C.

e 0.51/s at 15 °C into the ground for 8 hours.

e Stop injection for four hours.

e Inject 0.5 1/s at 5 ° C into the ground for 8 hours.
e Stop injection for 21.67 hours.

e Inject 0.5 1/s at 5 C for 18.33 hours.

Comparison of complex and simple model - heat
pulse injetion

The models agree somewhat, but not perfectly. In this
simulation, the penetration radius was set to 1.05 me-
ters in the simple model, while L, = L, = 2.10m in the
complex model. However, by adjusting the thickness and
position of the different cylindrical shells, the result can
be made to approach the complex model. The difference
between the two models may be due to several reasons.
First, the complex model has two pipe-elements instead
of one, and two water nodes instead of one. All of these
interact with each other. Second, the complex model
consists of several boreHole segments, while the simple
only has one, even though this is somewhat compensated



FIG. 28: Tout(Tin, Tyrouna(z),m,t). The blue graph is from
the complex model, while the green graph is from the simple
model. The lower graph is the volume flow.

for by increasing the thermal masses, reducing the resis-
tances and using LMTD in the simple model. Third, the
simple model uses cylindrical shells, which means that
any given amount of mass will be closer to the boreHole
in the simple model than in the complex model. That
is, cylindrical shells is a denser form of packing mass
around the boreHole. Thus, in order to make the two
models agree, the outermost shell in the simple model
needs to be further away than the outermost Tnodes in
the complex model. Note that on this third point, the
simple model may actually be more correct. It is more
natural for heat to move radially as opposed to through
a rectangular grid.

Note that during the periods when the fluid pump is
switched off there is also a large difference between the
two graphs. This is probably due to an LMTD issue
in Modelica’s pipe element: a linear approximation is
used even when the temperature profile inside the pipes is
nonlinear, which is the case when the massflow is low. In
the simplified model LMTD is used, while in the complex
model, Modelica’s linear approach is used. By also using
a linear approach in the simplified model, the result was
as in figure 29.

FIG. 29: Tout(Tin, Tyrouna(z),m,t). The blue graph is from
the complex model, while the red graph is from the simple
model. The lower graph is the volume flow.

As can be seen, the error is even larger here. This
means that using LMTD in the simplified model some-
what compensates for the error, but it cannot completely
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Therefore, the LMTD model is used from

remove it.
this point.

Since this error is largest when the massflow is low,
and since Q = m - ¢, - AT, this means that the error
in Q is small since 7i is small when the error is large.
Therefore, Q was also compared for the two simulations.
In all models,

AT = Tout - Tzn (37)

FIG. 30: Q(Tground(z),m,t). The red graph is from the com-
plex model, while the blue graph is from the simple model.
The lower graph is the volume flow.

FIG. 31: Qsimple Tground(2),mM,t)

Qeomplex (Tground(2),m,t)

Figure 30 shows that the two models give quite similar
results. Hence, it might be concluded that the error seen
in figures 28 and 29 are due to errors in reading off the
temperature. In figure 31 it can be seen that the error is
within - 20 % as long as the massflow is turned on. When
the massflow is turned off, the models do not agree very
well. This too is probably caused by some issues with
LMTD. It was decided to also use Q(Tgrouna(z),m,t) to
compare the models from now on.

Sine heat pulse injection

A sine with a period of 24 hours, offset at 10 © C and
amplitude of 5 © C was injected into a ground which had
a temperature of 10 © C. The massflow was constant and



equal to 0.5 1/s at all times. The result can be seen in
figures 32 and 33.

FIG. 32: Tout(Tin, Tyround(z),m,t). The blue graph is from
the complex model, while the red graph is from the simple
model. The lower graph is T;,.

FIG. 33: Q(Tin, Tground(z),m,t). The blue graph is from the
complex model, while the red graph is from the simple model.
Qsimple(Tground(2),m,t)

Qeomplex (Tground(z),m,t) "

The lower graph is

BoreHole B2G model with cylindrical shells

A model, boreHole_withCapacitances_OnlyOne, was
made for only one boreHole where the groundSegment
model is dropped as it is only necessary for modelling
several boreHoles. This model had the boreHole heat-
Port array connected in series to several arrays of cylin-
drical concentric disks surronding the boreHole. The po-
sition of the soil nodes, the extent of the cylindrical shells,
their capacitance and geometry etc. is calculated in the
same way as for the simplified model. The purpose of
the model is to investigate how much difference between
a rectangular grid and cylinder shells matters. That is,
when we compare the complex model to the simple, the
complex model has the boreHole embedded in a rectan-
gular grid, while the simple model has concentric mass
rings around the boreHole. This means that there is a
difference in the way the heat flux moves in the two mod-
els. In order to see how large this effect is, a model where
the same boreHole model is used, but with concentric
shells instead was constructed. The outlet temperature
was then compared to the outlet temperature from the
complex model. A comparison was also done for Q. See
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next section.
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FIG. 34: Overview of the boreHole B2G model with cylindri-
cal shells for one hole, based on the boreHoleSegment model.

heatPort

Comparison of the complex model and B2G model
with cylindrical shells - heat pulse injection

A comparison was done between the complex model
with L, = L, = 2.1m and the B2G model with cylindri-
cal shells and 7g,oung = 1.05.

The result can be seen in figures 35 and 36. As can
be seen in the upper plot, the models agree fairly well.
Also note that the error between the two models in
T(Tin, Tyrounda(z), m, t) is small even when the mass flow
is off. This means that some internal difference in the
model creates the large error in T(Tipn, Tground(2), M, t)
between the simple model and the complex model when
the volume flow is off. Otherwise, the two models com-
pared here, which are equal internally, would have had
an equally large error when the volumeflow is off. As can
be seen, the ratio never exceeds 1.30 in figure 36.

FIG. 35: Comparison of Tout(Tin, Tground(z),m,t) from the
boreHole B2G with cylindrical shells model (red graph) and
from the complex model (blue graph). The lower graph is the
volume flow.



FIG. 36: Comparison of Q(Tin, Tground(2),m,t) from the
boreHole B2G with cylindrical shells model (red graph) and
from the complex model (blue graph). The lower graph is
Qeytinder—shell(Tground(2),m,t)

Qcomplez (Tground(2),m,t)

Comparison of the complex model with one
boreHole versus the simplified model and the B2G
model with cylindrical shells - heat pulse injection

In figure 37, the result for Tout(Tin, Tground(2), ;1)
from the simplified model was added to figure 35.

FIG. 37: Comparison of T(Tin, Tyround(2),m,t) from the
boreHole B2G with cylindrical shells model and from the sim-
plified model as well as from the complex model. The blue
graph is the simplified model, the red is the B2G with cylinder
shells and the green is the complex model. The lower graph
is the volume flow.

As can be seen in figure 37, the simplified model, which
uses LMTD internally, has a different response when the
water is turned off. Therefore, this graph is not very
useful due to problems with reading off the temperature.
However, this problem is avoided by adding the result
for Q(Tin, Tyrounda(z), ™, t) from the simplified model to
figure 36 instead, as can be seen in figure 38.

From figure figure 38, it seems like the B2G with cylin-
drical shells model is slightly more similar to the complex
model than the simplified model is. The exact reason for
this is unknown, but it is probably because the two for-
mer models share the same internal configuration: the
boreHoleSegments.
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FIG. 38: Comparison of Q(Tin, Tground(2),m,t) from the
boreHole B2G with cylindrical shells model and from the sim-
plified model as well as from the complex model. The blue
graph is the simplified model, the red is the B2G with cylinder
shells and the green is the complex model.

Comparison of a complex boreHole with only onde
node in the z-direction, versus the same model with
nz =6 and nzWell =5 - heat pulse injection

This test was done to see whether the resolution in the
z-direction is of any importance. The simplified model
consists of only one very long pipe element, and this
might give rise to some errors. Hence, this graph will
tell us how much of the error is due to a lack of reso-
lution in the z-direction. If this is indeed the case, one
might consider connecting the simple model in series to
increase the z-resolution.

FIG. 39: Comparison of the complex boreHole model outlet
temperature Tout(Tin, Tground(2),m,t) for nz = nzWell = 1
(blue graph) and for nzWell = 5, nz = 6 (red graph). Note
that in both cases, the actual depth of the boreHole is 260
meters.

The result can be seen in figures 39 and 40, and it
is seen that the resolution in the z-direction is of little
importance.

Comparison of arrays of boreHoles and a single
boreHole - heat pulse injection

First, a test was done with a 2x3 array of boreHoles
with a groundSegment of 2.25 m times 2.75 meters. A
small groundSegment was first chosen to clearly see the
interaction between the boreHoles. One would expect
that the boreHoles should split into two categories: cor-
ners (4 of them) and sides (two of them). This is indeed



FIG. 40: Comparison of the complex boreHole model effect
Q(Tin, Tground(2),m,t) for nz = nzWell = 1 (blue graph)
and for nzWell = 5, nz = 6 (red graph). Note that in both
cases, the actual depth of the boreHole is 260 meters.

the case, as can be seen in figure 41.

FIG. 41: Comparison of all the boreHole outlets
Tout(Tin, Tyrouna(z),m,t) in a 2x3 array. As can be seen,
the six boreHoles split into two groups: corners and sides.

Then, a series of test with the following parameters
was done:

e Single boreHole: n, =n, =7, Ly, = L, = 17.5m.

e 2x3 boreHole: n, =9,n, =11, L, = 22.5m, L, =
27.5m, nxGap = nyGap = 1.

e 3x4 boreHole: n, = 11,n,y = 13, L, = 27.5m, L, =
32.5m, nxGap = nyGap = 1.

e 4x5 boreHole: n, = 13,ny =15, L, = 32.5m, L, =
37.5m, nxGap = nyGap = 1.

These parameters were chosen carefully to keep the same
distance from the boreHoles to the edges (8.75 meters)
and the same distance between the boreHoles (5 meters)
in all directions.

Figure 42 demonstrates that the interaction between
the boreHoles in the arrays matters because the graph
of the single boreHole deviates from the other graphs.
However, this deviation is only present when the volume
flow is turned off.

In figure 43 the effect per borehole is plotted for a
single borehole and also for the average in a 2x3 array,
a 3x4 array as well as a 4x5 array. As can be seen from
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FIG. 42: Comparison of Tout(Tin, Tground(2), m,t) for one sin-
gle boreHole versus 2x3, 3x4 and 4x5 arrays of boreHoles. The
single boreHole is represendted by the blue graph, and devi-
ates slightly from the rest. The rest of the arrays seem to
have fairly similar responses. The lower graph is the volume
flow.

FIG. 43: Comparison of Q per boreHole in a single boreHole
versus in an 2x3 array, a 3x4 array and a 4x5 array of bore-
Holes. At all times, the distance between the boreHoles is 5
meters.

figure 43, the response is fairly similar for the different
configurations if the separation is at least 5 meters. The
error seen in figure 42 is negligeble because it was mostly
present when 1 was small.

Simplified model approximating array of boreHoles

The next step would be to implement a simplified
model approximating the complex array model. This
could be done by making a separate simulation for each
boreHole in the ground. That is, given e.g. a 2x3 array
of boreHoles, form factors could be used to compute the
sum of the heat fluxes from the other boreHoles. Then
we add Q0ther-boreHoles (@) to the simplified model. This
must be done for the corner group and the side group
in the above example. Hence, two models are needed in
that case. For more complex groupings, several simplified
models are needed as there are more groups. However,
this would be a steady-state model, and might not be a
good solution for dynamic short-term simulations. An-
other option is to keep the current simplified model as a
sufficient approximation. It could be improved by cus-
tomizing it to give similar results as a given configuration
of boreHoles, e. g. a 2x3 rectangle. If the configuration is



changed, the parameters in the simple model would have
to be adjusted. This might be the most simple solution
to implement.

Conclusion

The model developed here gives a good approximation
for the response of a BHE to a distributed thermal re-
sponse test (DTRT). The model can be used to set up
any rectangular grid of boreHoles and simulate their be-
haviour and interaction with eachohter. The simplified
model made to approximate this model seems to give
fairly similar responses to the complex model, but it is
not good when the volume flow is low. Furthermore, it
seems like the average effect of a boreHole in an array is
quite similar to that of a single boreHole based on fig-
ure 43. Hence, the simplified model could work as an
approximation to a boreHole in an array of boreHoles
during a DTRT, if the boreHoles keep at least 5 meters
distance. In each case, a custom adjustment of the pa-
rameters in the simple model should be done. This last
point is especially important for long-term simulations
where the interactions between the boreHoles likely are
more important.
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Figure 28: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 1.

FIG. 44: Average temperature of the two pipe segments in
segment 1 as a function of simulation time in [7].
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FIG. 45: Average temperature of the two pipe segments in
segment 1 as a function of simulation time in Dymola.
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Figure 29: Measured and computed temperatures of the circulating fluid after optimization of

FIG. 46: Average temperature of the two pipe segments in
segment 2 as a function of simulation time in [7].

—— TpipsAvgl2]
175

2.2 x10°

Rb for Section 2.

17.04

18.5+

18.0

1554

15.0+

1454

14.04

13.54

13.0

[deaC]

1254

12.04

11.54

11.04

10.54

10.0

854

804

T T T T T T T T T T T T T
70 80 50 100 1o 120 130 140 150
Time [h]

FIG. 47: Average temperature of the two pipe segments in
segment 2 as a function of simulation time in Dymola.
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Figure 30: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 3.

FIG. 48: Average temperature of the two pipe segments in
segment 3 as a function of simulation time in [7].
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FIG. 49: Average temperature of the two pipe segments in
segment 3 as a function of simulation time in Dymola.
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Figure 31: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 4.

FIG. 50: Average temperature of the two pipe segments in
segment 4 as a function of simulation time in [7].
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FIG. 51: Average temperature of the two pipe segments in
segment 4 as a function of simulation time in Dymola.
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Figure 32: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 5.

FIG. 52: Average temperature of the two pipe segments in
segment 5 as a function of simulation time in [7].

——— Toipehvgls]
175
17.0
16.5
16.0
15.5
15.0
145
140
135
=}
2 13.04
3
12.5
12.0
115
11.04
105
10.0
9.5
3 D—Jr
85 . : . ; . T . T . ; T T T T T T T T
70 20 ) 100 110 120 130 140 150 180

Time [h]

FIG. 53: Average temperature of the two pipe segments in
segment 5 as a function of simulation time in Dymola.
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Figure 33: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 6.

FIG. 54: Average temperature of the two pipe segments in

segment 6 as a function of simulation time in [7].
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FIG. 55: Average temperature of the two pipe segments in

segment 6 as a function of simulation time in Dymola.

21



e g

Temperature (°C)
o
¥
w

115

105

10|

9.5

—¥— Tf_computed
3 Tf measured

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Figure 34: Measured and computed temperatures of the circulating fluid after optimization of

FIG. 56: Average temperature of the two pipe segments in
segment 7 as a function of simulation time in [7].

—— TpipeAvg[T]
178

2.2 x10°

Rb for Section 7.

17.0

18.5

16.04

15.54

15.04

14.54

14.0

13.54

13.04

[dagC]

12.54
12.0
1.5+
1.0+
10.5+
10.04

85+

85 T T T T T T T T T T
70 80 80 100 1o 120 130
Time [h]

T T
140 150

FIG. 57: Average temperature of the two pipe segments in
segment 7 as a function of simulation time in Dymola.
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Figure 35: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 8.

FIG. 58: Average temperature of the two pipe segments in
segment 8 as a function of simulation time in [7].
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FIG. 59: Average temperature of the two pipe segments in
segment 8 as a function of simulation time in Dymola.
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Figure 36: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 9.

FIG. 60: Average temperature of the two pipe segments in
segment 9 as a function of simulation time in [7].
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FIG. 61: Average temperature of the two pipe segments in
segment 9 as a function of simulation time in Dymola.
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Figure 37: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 10.

FIG. 62: Average temperature of the two pipe segments in
segment 10 as a function of simulation time in [7].
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FIG. 63: Average temperature of the two pipe segments in
segment 10 as a function of simulation time in Dymola.
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Figure 38: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 11.

FIG. 64: Average temperature of the two pipe segments in
segment 11 as a function of simulation time in [7].
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FIG. 65: Average temperature of the two pipe segments in
segment 11 as a function of simulation time in Dymola.
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Figure 39: Measured and computed temperatures of the circulating fluid after optimization of Rb for Section 12.

FIG. 66: Average temperature of the two pipe segments in
segment 12 as a function of simulation time in [7].
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FIG. 67: Average temperature of the two pipe segments in
segment 12 as a function of simulation time in Dymola.
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