COST REDUCTION IN OFFSHORE WIND

What are the potential and why must R&D focus on it?

By Jørgen R. Krokstad

Industry meets Science – 20 September 2012

Content

- Definition of LCOE and status within the industry
- The potential of cost reduction
- OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

Content

- Definition of LCOE and status within the industry
- ▶ The potential of cost reduction
- ► OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

Good news in the wind business!

Core Analysis: The Levelized Cost of Wind Energy Is Currently At An All-Time Low

Assumes availability and use of PTC and MACRS in all cases; same is true for all results that follow

- LCOE is now between\$33 and \$65 per MWh
- Clearly beats fossil fuels
- Main reason:

Bigger wind turbines that have a higher capacity factor

Definition of LCOE – Levelised Cost of Energy

- ▶ The sum of discounted lifetime generated cost (£)- divided by the sum of discounted lifetime electricity output (MWh)
- Generation cost: Capital (CAPEX), operating (OPEX) and decommissioning costs including transmission costs (OFTO) over the lifetime of the project
- ▶ An expression of cost rather than revenue
- ▶ The discount rate is the Weighted Average Cost of Capital over the lifetime

CoE split (typical UK R2 project)

CAPEX ~ 2/3

Transport & logistic Project completion Insurance Electrical offshore Turbine Installation Foundation

OPEX ~ 1/3

Costs must come down

Otherwise projects will not get built

Cost per MW installed (€m/MW)

Content

- ▶ Definition of LCOE and status within the industry
- The potential of cost reduction
- ► OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

Innovation as input to Cost Reduction

Offshore Wind Cost Reduction. Pathway Study: Crown Estate 2012

Potential LCOE cost reduction

TCE study 2012: FID 2011 to 2020

Technology Innovation Needs Assessment Offshore Wind 2011

Content

- ▶ Definition of LCOE and status within the industry
- ▶ The potential of cost reduction
- ► OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

Offshore Wind Accelerator (OWA)

Projects are becoming more technically challenging

Larger, further from shore, in deeper water, with bigger turbines

Source: UK Ports for the Offshore Wind Industry: Time to Act, DBCC / BVG Associates, 5 February 2009, p. 17: Financial 7
Times, January 2010; Carbon Trust analysis

Choose sites carefully

Focus on reducing sensitivity of cost to distance and depth

Source: Carbon Trust "Big Challenge, Big Opportunity" 2008

Significant opportunity for innovation to drive down costs

Development	Electrical	Foundations	Installation	Turbine	0&M		
New layouts	AC vs HVDC links Monopiles		Jack-up barges + shuttles	Larger turbines	s Port-based vs mother-ship		
	Higher voltage	Gravity bases		Blades			
	arrays		Floating		New vessels,		
		Jackets	installation	Drivetrain	transfer systems		
	Radial vs loops		vessels				
		Buckets			Condition		
			Float-out and sink		monitoring		

Four designs prioritised for Round 3 from 104 entries

Objective: Reduce foundation costs by up to 30% in 30-60m

Concept development of 13 access systems is underway

Vessels

Concept development of 13 access systems is

underway

Transfer systems, launch & recovery systems

Content

- ▶ Definition of LCOE and status within the industry
- ▶ The potential of cost reduction
- ► OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

R&D general selection criteria in Statkraft

- Effect evaluation
 - reduced risk
 - increased long-term value
 - increased margin
 - increased volume
- ▶ Expected added value a multiple of R&D cost

Objectives for the Demonstration Programme of DONG Energy – More objectives than to reduce LCOE

Reduce risks Improve Increase power supplier production competition able Improve Reduce internal Reduced lifecycle costs competences Cost of Energy

Example of classification of R&D importance

Concepts Phase I Monopiles – Bucket (UF) Numerical qualification with R&D input

0.231 Hz 0.265 Hz 0.267 Hz 0.271 Hz 0.244 Hz 5.8 m Platform, z = 20 m 6 m 15 m 6 m 15 m 6 m \$ 5 m 6 m 15 m ID grout: ID grout: ID grout: 6.7 m 6.7 m 5.84 m LAT, z = 0 m R 25 m 0 R 35 m 0 8 m 15 m 45 m 8 m 5 m 8 m 5 m 37 m

WMS SYSTEM (Wind Management System) Economical goals in Statkraft

1% increased production

1% reduction of O&M-costs

5% reduction of balancing costs

Assessment of Standards

Potential for Saving	gs via Code Review	. Revision					
			Phases				
				CAPEX		OPEX	
Syst	em/components		Design	Manufacturing	Transport and installation	Operation and maintenance	Decommissioning
Support structure							
	Foundation		2	2	0	0	1
	Substructure		2	2	0	0	1
	Tower		1	1	0	0	0-1
Rotor nacelle assembly							
	Structure				<u> </u>		
	Drive train						
		Gear box					
		Bearings			<u> </u>		
	-	Generator Shaft					
		Couplings					
	Blades	Couplings	0-1	0-1	0-1	0	0-1
Control and protection	blades		0-1	0-1	0-1	0	0-1
Electrical systems							
Electrical systems	Turbine electrical	+					
	Cables	 					
		Internal			1		
		Array	0-1	0-1	0-1	0	0-1
		Export	0-1	0-1	0-1	0	0-1
	Converters						
Substation							
	Structure		2	2	2	0	1
	HVDC converter						
	AC transformer station						
HSE			0	1	1	1	1

Content

- ▶ Definition of LCOE and status within the industry
- ▶ The potential of cost reduction
- ► OWA a R&D mean to accelerate technology development against cost reduction
- ▶ Examples of Statkraft use of LCOE for research project initiation
- Some questions for the audience

Some questions for the audience

- Do you think LCOE or RISK REDUCTION is most important for offshore wind R&D?
- ▶ Can pre-competitive research contribute to LCOE?

www.statkraft.com

LCOE – break down

Offshore Wind Cost Reduction. Pathway Study: Crown Estate 2012

Cost targets from Denmark – motivates R&D focus areas

Capital and operational expenditures in relation to CoE (own adaptation)

WTGs

Foundations

Electrical infrastructure

Assembly, installation and project development

Operational expenditure

-2020 target - CoE reduced by 50 %

-25 % increase in annual production

-40 % reduction of Capex (WTG, Foundation,

Installation)

-50 % reduction of Opex (O&M)

OWA and Universal Foundations

UF is the most promising OWA foundation design

Average of lowest 2 Baseline fabrication and Benchmark installation costs, 25-55m, 150km

- Large cost reductions
- No piling noise
- Simple installation process
- Easier to fabricate
- Transitions piece is not required
- Reversible decommissioning possible

