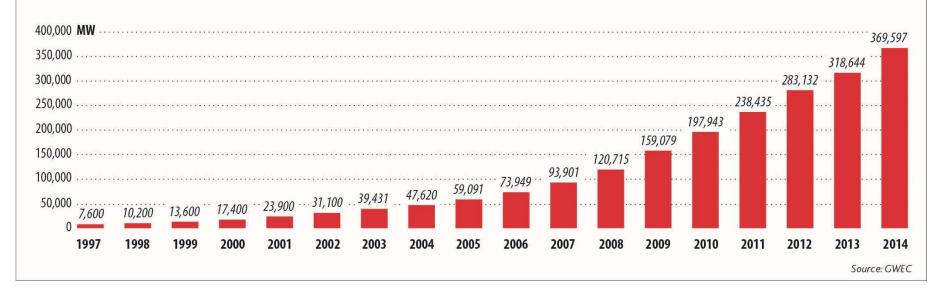
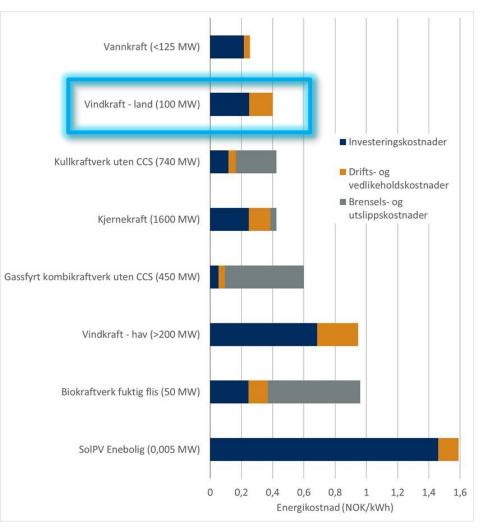
Nye forskningsaktiviteter og muligheter i Europa og Norge innen offshore vindkraft

FME, TPwind, EERA JP wind


Juni 2015

John Olav Giæver Tande Director NOWITECH Senior Scientist / Research Manager SINTEF Energy Research John.tande@sintef.no

Wind energy in strong development

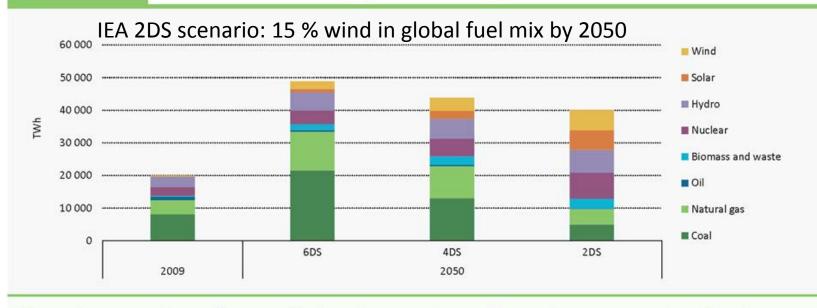

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1997-2014

✓ Land based: 8 GW in 1997; 361 GW in 2014
 ✓ Offshore: 8 GW in 2014; 361 GW in 2031 ??

Wind energy on land is cost competitive

NVE: Kostnader i energisektoren (2015)

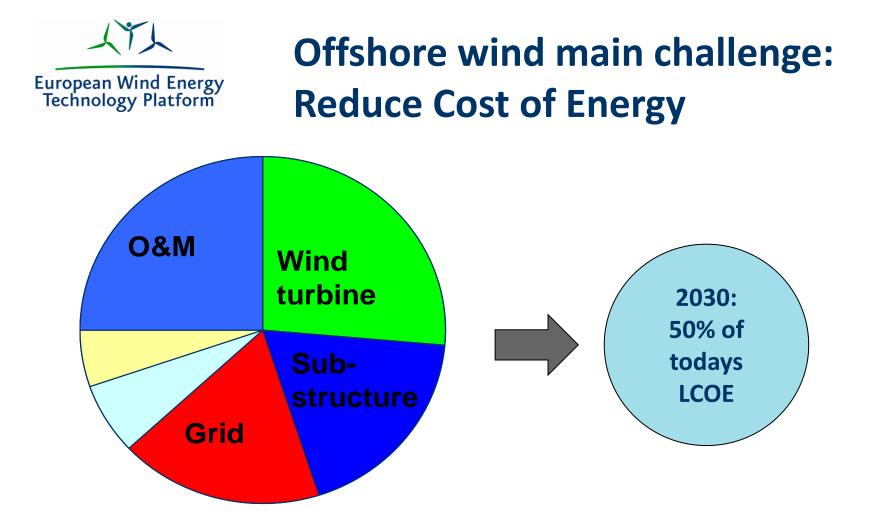
A huge long-term market for green technologies


- Battle climate change
- Security of supply
- Industry value creation

Stern Review (2006):

..strong, early action on climate change far outweigh the costs of not acting.

Figure 1.10 Fuel mix in electricity generation, by scenario


Key pointDiversification of fuels and increased use of low-carbon sources in the 2DS achieves a
high degree of decarbonisation in electricity generation by 2050.2013 installed wind:

Copy from IEA Energy Technology Perspectives 2012

2013 installed wind: Total 318 GW incl 7 GW offshore 2050 2DS wind: 6000 TWh/3000 h = 2000 GW Required annual installations to reach 2DS goal for wind: 2000 GW / 40 y = 50 GW/y + end of lifetime replacements

Technology fo

EU TP wind KPI in new SRA:

Reduce LCOE by 50% from present levels for similar sites by 2030

Norwegian competence is attractive

- ► Aibel (HVDC platform, 23000 tons, 900 MW)
- ► Aker Solutions (Alpha Ventus, ++)
- DNV GL
- Fedem
- Fred Olsen
- Fugro Oceanor
- Kongsberg Maritime
- Nexans Norway
- Norsk Automatisering
- Reinertsen
- SINTEF/MARINTEK/NTNU
- Statkraft & Statoil (Sheringham Shoal, Dudgeon, Doggerbank)
- Olav Olsen
- Owec Tower (Beatrice)
- ++ INTPOW: 150 Norwegian companies

HyWind – Statoil taking the next step

(13) C

Office de la Propriété Intelectuele du Canada Office Un organisme d'Industrie Canada Industry Canada CA 2627148 C 2012/08/07 (11)(21) 2 627 148 (12) BREVET CANADIEN CANADIAN PATENT

OND Tate de dépôt PCT/PCT Filing Date: 2008/10/90
 Ond publication PCT/PCT Fukication Date: 2007/05/10
 Ond de dédbarde PCT/PCT Publication Date: 2007/05/10
 Ond Date de débarde Date: 2008/07
 Ond Date de débarde Date: 2008/07
 Ond Date Date: 2008/07
 Ond Date Date: 2008/07
 Ond Date Date: 2008/07
 Ond Date: 2008/07
 O

(#) CLInLint.CL F03D 7304 (2006.01), F03D 11x00 (2006.01) NELSEN FNN GUNNAR, NO; NELSEN FNN GUNNAR, NO; TANDE, JOHN GUNNAR, NO; TANDE, JOHN GUNNAR, NO; NORHEIM, UN, NO; UHLEN, KJETL, NO (7) Propriédrace/Somer: STATOLHYDRO ASA, NO (7) Agent FETHERSTONHAUGH & CO.

(54) Titre : PROCEDE D'AMORTISSEMENT DES VIBRATIONS DE LA TOUR DANS UNE INSTALLATION D'EOLIENNE (54) Title: A METHOD FOR DAMPING TOWER VIBRATIONS IN A WIND TURBINE INSTALLATION

Norway 2.3 MW turbine 2009 Scotland 5x6 MW wind farm 2017

Norsk engasjement i landbasert vindkraft

- Utbygging stimulert av grønne sertifikat i Norge
- Utbygd: 0,9 GW
- Konsesjon gitt: 7,3 GW
- Potensial for økt verdiskapning gjennom
 forskning og utvikling
 - ✓ støtte til teknologiutvikling
 - premiering av utbyggere som benytter ny (norsk) teknologi

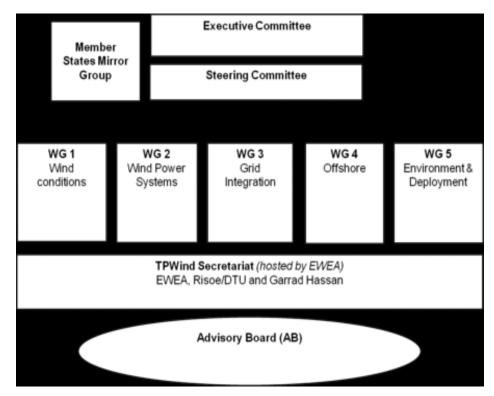
Norsk engasjement i offshore vindkraft

- Utbygging av offshore vindkraft utenfor Norge
- Leveranse av teknologi og tjenester til det globale markedet
- Potensial for økt verdiskapning gjennom:
 - forskning og utvikling
 - støtte til teknologiutvikling
 - utbygging i Norge for utvikling og kvalifikasjon av leverandørindustri

An attractive partner on the international scene

- Active in EERA, TPwind, EAWE, IEA, IEC
- Heading offshore works within EERA JPwind and TPwind
- Partner in EU projects, e.g.: Twenties (2009-), DeepWind (2010-), HiPRWind (2010-), EERA-DTOC (2012-), InnWind (2012-), WindScanner (2012-), LeanWind (2014-), EERA IRP wind (2014-), BestPaths (2014-), Lifes50+ (2015-)

TPwind - www.windplatform.eu


"A dedicated voice for Technology and Policy R&D, speaking for the wind energy sector and its stakeholders"

established in 2005/2006

人了人

European Wind Energy Technology Platform

a permanent forum composed of more than 180 wind energy experts representing the EU wind power sector (industry and R&D community).

LineStrong impact on EU wind R&DEuropean Wind Energy
Technology Platformagenda:

- The "Strategic Research Agenda / Market Deployment Strategy" (SRA/MDS), published by TPWind in 2008, which outlines the R&D challenges faced by the European wind energy sector. This publication quickly became a reference text in the sector
- The "European Wind Initiative" (EWI), published by the European Commission in 2009 in its Communication on "Investing in the Development of Low-Carbon Technologies" (COM(2009) 519) suggesting total public and private R&D investment of €6 bn for 2010-2020.

2011:

- Develop the EWI 2013 2015 Implementation Plan
- ► Prepare EWI 2012 Work Programme
- Renewal of the Steering Committee 2012:
- Update the SRA to be published spring 2014
- Prepare EWI 2013 Work Programme
 2013
- Update the SRA to be published spring 2014
- Develop the EWI 2016 2018 Implementation Plan
- Prepare EWI 2014 Work Programme

2014

- Publish renewed <u>Strategic Research Agenda</u> (SRA)
- Renewal of the Steering Committee and WG members
- Minimum activity until new EU funding for secretariat is granted

Strategic Research Agenda / Market Deployment Strategy (SRA/MDS)

March 2014

- The European Energy Research Alliance (EERA) was established in 2008 to support the EU <u>Strategic Energy Technology Plan</u> (SET-Plan)
- Mission: to accelerate the development and deployment of cost-effective low carbon technologies
- ✓ Bringing together 250 research organisations
- ✓ Working together in 15 Joint Programmes
- ✓ Collaborating with European Industry
- ✓ With global outreach
- ✓ And aligning national research

What is EERA JP Wind?

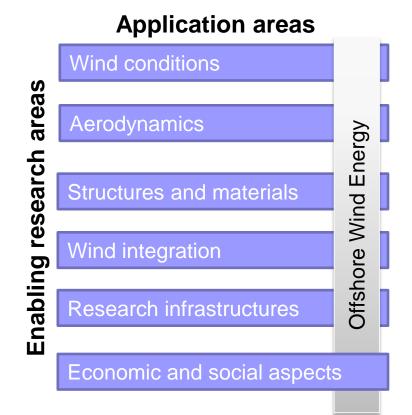
The EERA Joint Programme on Wind Energy (EERA JP Wind) started in 2010 on a voluntary basis.

The mission for EERA JP Wind is to provide strategic leadership for the medium to long-term research and to support the European Industrial Initiative and the Technology Roadmap activities on wind energy.

EERA JP Wind gives added value:

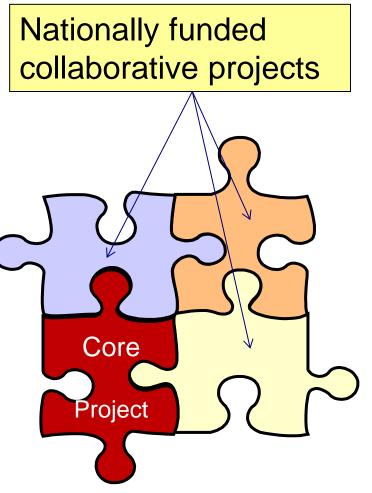
- ✓ Strategic leadership of the underpinning research
- ✓ Joint prioritisation of research tasks and infrastructure
- ✓ Alignment of European and national research efforts
- Execution of coordinated and structured research in <u>medium to</u> <u>long-term programmes</u>
- ✓ Coordination with industry
- $\checkmark\,$ Sharing of knowledge and research infrastructure

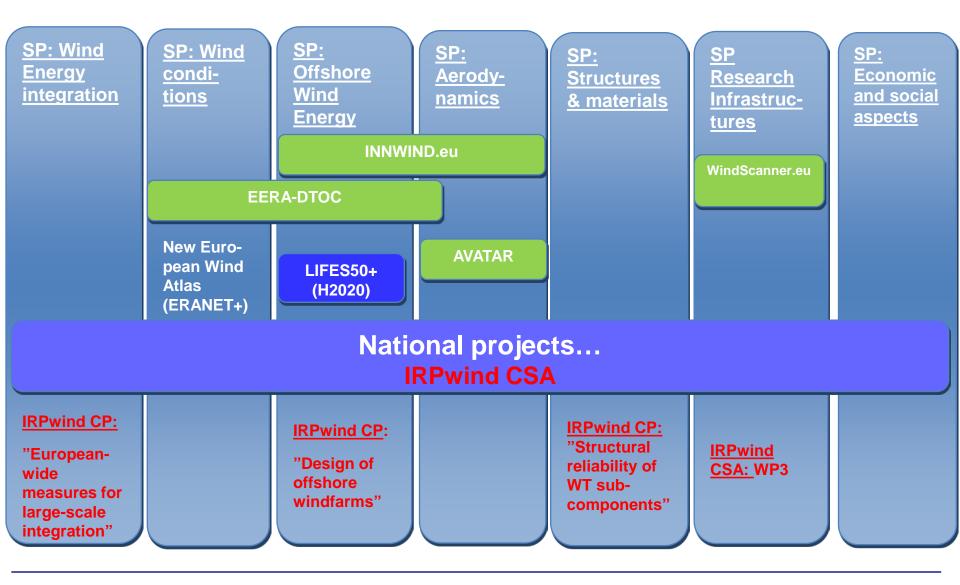
EERA JP Wind members


Full participants		Associated Participants	
DTU Wind Energy	DK	DHI, University of Aalborg, Dublin (IR)	DK
ECN	NL	TU Delft, WMC	NL
SINTEF Energi AS	NO	NTNU, IFE, UoB, CMR, MARINTEK, Sintef Stiftelsen	NO
CRES	GR	NKUA	GR
CENER	ES	CIEMAT, IREC, CTC, CIRCE, Tecnalia,	ES
		IK4 Alliance	
Fraunhofer IWES	GER	IEN (PO), DLR	GER
Forwind/University of	GER	Forwind/University of Hannover,	GER
Oldenburg		University of Stuttgart, Uni. of Aachen,	
C C		TU München	
LNEG	POR	University of Porto	POR
VTT	FI	-	
TUBITAK	ΤU	METUWIND	
University of Strathclyde	UK	CATAPULT	UK
CNR	IT	Politecnico di Milano	IT
Belgian Energy Research Alliance	BE		

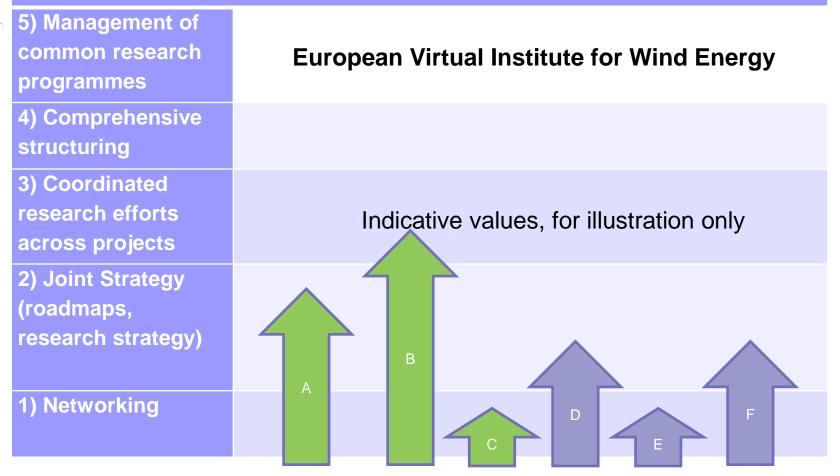
13 full participants & 28 associated participants from 14 countries.

EERA JP Wind structure


- Wind Conditions.
 Coordinated by DTU, Denmark.
- Aerodynamics.
 Coordinated by ECN, Netherlands.
- Offshore Wind Energy.
 Coordinated by SINTEF, Norway.
- Wind Energy Integration.
 Coordinated by Fraunhofer IWES, Germany.
- Research Infrastructures.
 Coordinated by CENER, Spain.
- Structures and Materials.
 Coordinated by CRES, Greece
- Economic and social aspects.
 Coordinated by DTU, Denmark


EERA JP wind + IRPWIND = true

- ✓ IRPWIND is a 4 year Integrated Research Programme for Wind Energy started in March 2014 with a 9.8 MEUR EU FP7 grant
- ✓ IRPWIND and EERA JP wind are closely interlinked with IRPWIND providing funding for selected coordination and research activities:
 - Coordination and Support Actions: Mobility, Dissemination, RI
 - Core Projects: Offshore, Structural reliability, Integration
- ✓ IRPWIND gives support to EERA JP wind in developing from a voluntary network towards a "virtual research centre".



The EERA JP Wind project portfolio

EERA JP wind levels of integration

- A: Exchange of knowledge
- C: RIs and open access
- E: International collaboration

- B: Exchange of researchers
- D: Coordination of national projects
- F: Collaboration with industry

SP Offshore Wind Energy

Overall objective

Pre-competitive research

laying a scientific foundation for the industrial development of more cost effective offshore wind farms and enabling large scale deployment at any seas

SP Offshore Wind Energy

Research objectives (and project examples)

- ✓ Design optimization through validation studies offshore (IRPwind WP6)
- ✓ Characterization and interaction of wind, wave and current (NEWA, …)
- Innovative wind farm electric grid connection for offshore applications (BestPaths, ...)
- Control, operation and maintenance of offshore wind farms (new H2020 project?, ...)
- ✓ Development of novel concepts for deep sea, including multi-use of wind farm areas giving step-changes in technology for reducing cost of energy from offshore wind farms (new H2020 project?, ...)

SP Offshore Wind Energy

Key results

- ✓ Sharing knowledge for joint benefits and efficient use of resources
- ✓ Expert workshops
 - Integrated design tools (2010)
 - Offshore grid development (2010)
 - Predictive tools for O&M (2011)
 - Offshore wind farm grids (2012)
 - Offshore learnings / O&M (2013)
 - Innovative wind turbines (2013)
- ✓ Annual Deep Sea Offshore Wind R&D Conference: EERA DeepWind
- Peer-reviewed papers are published online in <u>Energy Procedia</u>

- Preparation of strategy aligning with national and EU priorities
- ✓ Joint national projects
 - ABYSS (DK-NO), kick-off 2014
 - NSON (NO-UK-DE), kick-off 2014;
 DK/DTU and NL/ECN to join
 - Application on new FME (NO) on offshore wind energy in preparation
- ✓ New EU projects
 - EERA DTOC, kick-off 2012
 - EERA InnWind, kick-off 2013
 - EERA IRPWind, kick-off 2014
 - EERA Lifes50+, kick-off 2015

NOWITECH in brief

- A joint pre-competitive research effort
- Focus on deep offshore wind technology (+30 m)
- Budget (2009-2017)
 EUR 40 millions
- Co-financed by the Research Council of Norway, industry and research partners
- 25 PhD/post doc grants
- Key target: innovations reducing cost of energy from offshore wind
- Vision:
 - large scale deployment
 - internationally leading

Research partners:

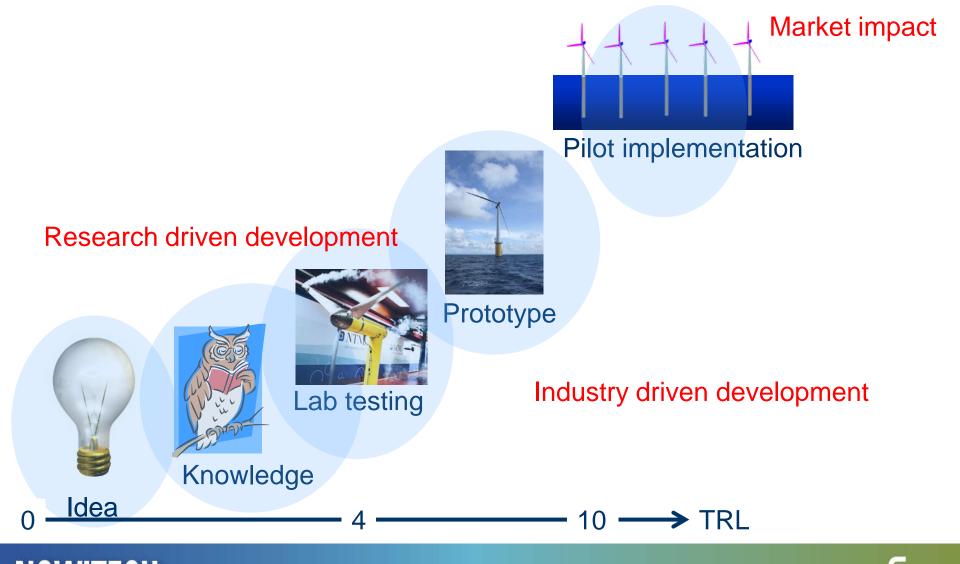
- SINTEF ER (host)
- ► IFE
- NTNU
- MARINTEK
- SINTEFICT
- SINTEF MC

Industry partners:

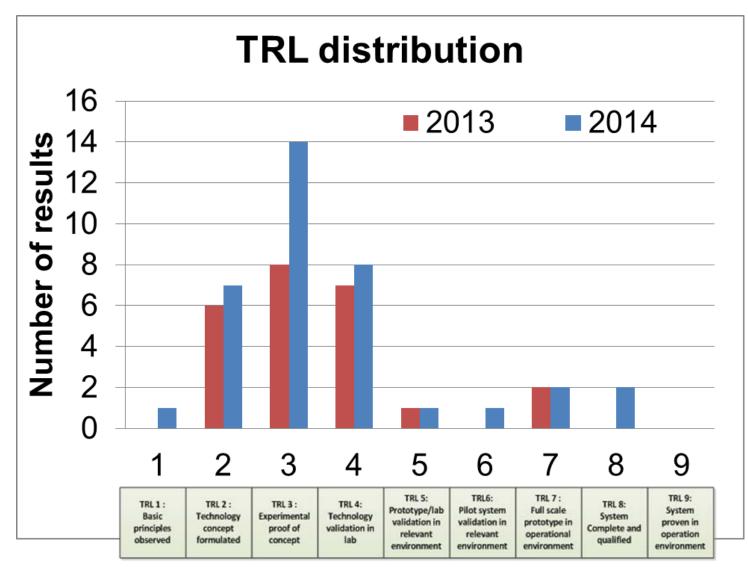
- CD-adapco
- DNV GL
- DONG Energy
- **EDF**
- Fedem Technology
- Fugro OCEANOR
- Kongsberg Maritime
- Norsk Automatisering
- Rolls Royce SmartMotor
- ► Statkraft
- Statnett
- Statoil

Associated research partners:

- ► DTU Wind Energy
- Michigan Tech Uni.
- ► МІТ 🗸 🗸
- ► NREL
 - Fraunhofer IWES
- Uni. Strathclyde
- ► TU Delft
- Nanyang TU


Associated industry partners:

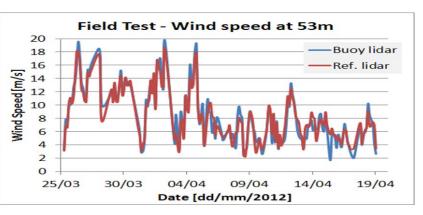
- Devold AMT AS
- Energy Norway
- Enova
- Innovation Norway
- ► NCEI
- NORWEA
- ► NVE
- Wind Cluster Norway

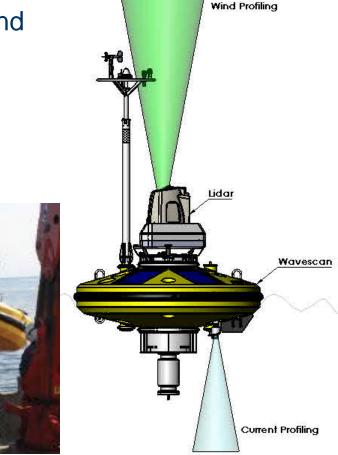

Norwegian Research Centre for Offshore Wind Technology

From R&D to innovations to cost reductions

Successful innovations are achieved

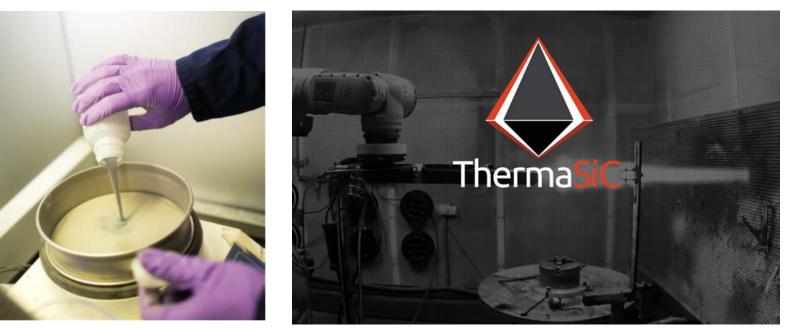
Norwegian Research Centre for Offshore Wind Technology


NOWITECH


26

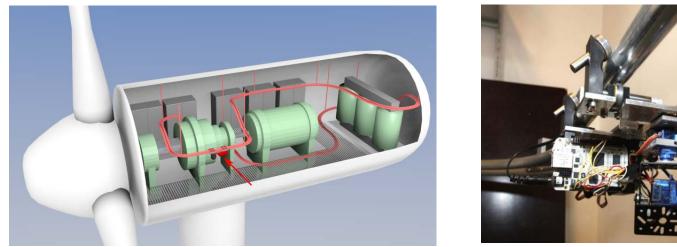
SEAWATCH Wind Lidar Buoy

- Cost efficient and flexible compared to offshore met mast
- Measure wind profiles (300 m), wave height and direction, ocean current profiles, met-ocean parameters
- Result of NOWITECH "spin-off" joint industry project by Fugro OCEANOR with Norwegian universities, research institutes and Statoil.



Norwegian Research Centre for Offshore Wind Technology

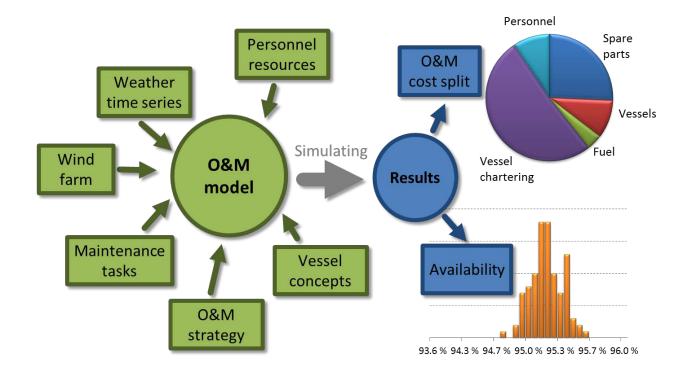
Thermally sprayed silicon carbide coating


- ✓ Patented process result of NOWITECH PhD work.
- Being developed as a commercial product through the new spinout company Seram Coatings AS.
- The process provides for an extremely hard, wear-resistant, low friction ceramic coating that can be applied to rotating machinery like main bearings in large direct drive wind turbines; ultimately increasing lifetime and reducing cost for maintenance.

28

Norwegian Research Centre for Offshore Wind Technology

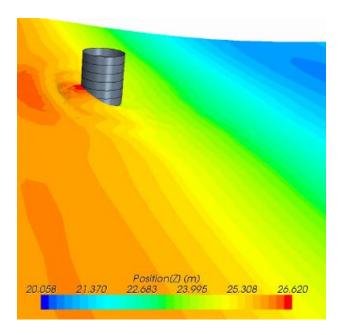
Remote presence



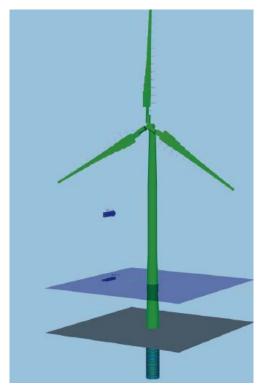
- Technology developed in part through NOWITECH PhD work
- Remote presence through a small robot on a track in the nacelle equipped with camera / heat sensitive, various probes, microphone etc. reducing offshore work by service personnel, downtime and costs
- ✓ Technology is commercialized by Norsk Automatisering AS

29

NOWIcob – A operation and maintenance analysis tool for offshore wind farms

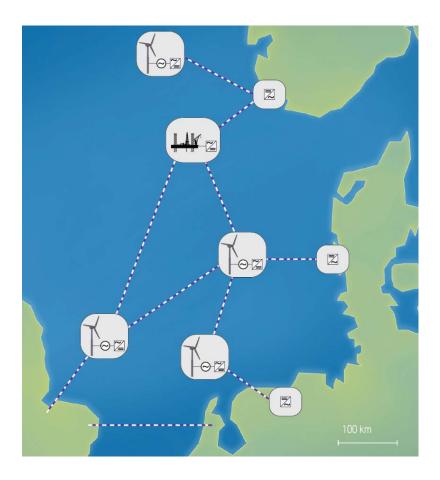

 Strategic discrete-event simulation tool for analysis of different offshore wind farm maintenance and logistics strategies





30

Savings costs with knowledge, models and labs

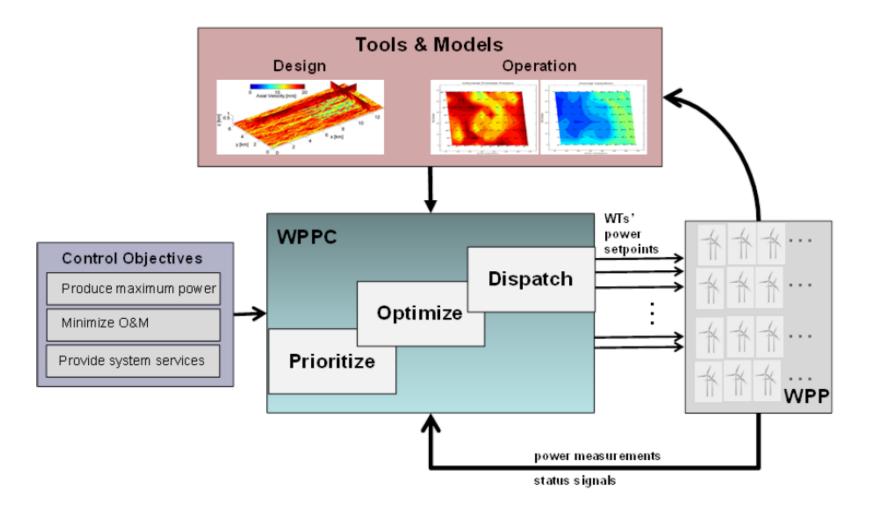

De-risking monopole for Dudgeon 402 MW Offshore Wind Farm

31

NOWITECH Norwegian Research Centre for Offshore Wind Technology

Developing solutions for the future offshore grid

- Operation and control
- Converter interoperability
- System stability
- Fault handling
- System services
- Security of supply
- New market solutions


Enabling far offshore wind farms with HVDC and VSM technology Validating new HVDC technology in BestPaths (EU FP7)

32

New wind farm control concepts in development

SmartWind (EU H2020 application)

33

NOWITECH achievements

Successful innovations

Excellence in research

Strong educational program

A new FME on offshore wind is in preparation

FME title	Centre for Offshore Wind Energy Research (COWIND)
Host institute	SINTEF Energi AS
Contact person	John Olav Tande, +47 9136 8188, john.tande@sintef.no
Partners	Research: CMR, MARINTEK, met.no, NTNU, SINTEF, UiA, UiB
	Industry / user partners (TBC): Statoil, Statkraft, Kongsberg, DNV GL, Dong,
	Fedem, Acona, Vestas, Gamesa, Vattenfall, StormGeo

- Annual budget: 60 MNOK with 50 % from RCN, 25 % from user partners and 25 % from research partners
- Application deadline 25 November 2015.
- Start-up in 2016/2017, pending on funding. Duration 8 years.
- Industry parties are invited to join a Industry Reference Group for the further dialogue on the development of the new FME.

Make sure to be there! EERA DeepWind'2016 13th Deep Sea Offshore Wind R&D Conference Trondheim 20-22 January, Norway NOWITECH is a joint 40M€ research effort on offshore wind technology:

- Numerical tools and sub-structures
- O&M and materials
- Grid and wind farms

www.NOWITECH.no

