IEA Wind Task 26: "Cost of Wind Energy" og IEA Wind Task 33: "Reliability Data". Hva kan dette gi for industrien?

Thomas Welte, Iver Bakken Sperstad SINTEF Energy Research

Industry Meets Science 2015-06-04, Trondheim

1

Outline

- Overview: IEA Wind and IEA Wind Research Tasks
- ► IEA Wind Task 33: "Reliability Data"
- IEA Wind Task 26: "Cost of Wind Energy"
- Hva kan dette gi for industrien?

2

IEA Wind & IEA Wind Research Tasks

Complete and updated presentation "<u>Benefits of the IEA Wind Co-Operation</u>" can be found at www.ieawind.org

IEA Wind organisational details

- IEA Wind is one of the more than 40 Implementing Agreements under International Energy Agency (IEA) Organization for Economic Co-operation and Development (OECD). It is attached to the Renewable Energy Working Party (REWP).
- The full, legal name of the activity is the IEA Implementing Agreement for Cooperation in the Research, Development, and Deployment of Wind Energy Systems.
- Benefits include:
 - Guide national governmental programmes and policies through information exchange
 - Develop skills, knowledge and improve wind R&D cost effectiveness and minimise environmental effects
 - Provide information and technology to reduce costs and increase the value of wind energy
 - Identify and publicise societal, economical and governmental benefits

Mission of IEA Wind

"...to stimulate co-operation on wind energy research and development and to provide high quality information and analysis to member governments and commercial sector leaders by addressing technology development and deployment and its benefits, markets, and **policy instruments.**" – IEA Wind Strategic Plan

IEA Wind operational details (1)

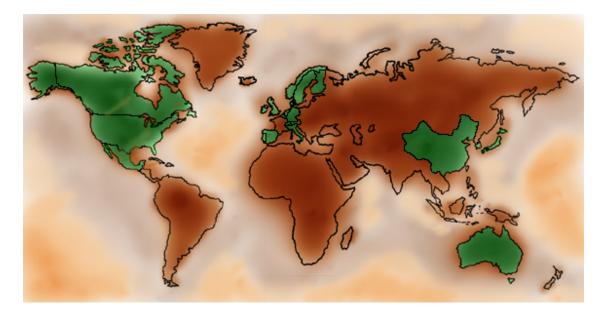
- The IEA Wind Executive Committee (ExCo) organises the overall information exchange and the R,D&D tasks
- The ExCo consists of a Member and an Alternate Member from each contracting party in the Implementing Agreement
- Most countries are represented by one contracting party such as a government department or agency
- The ExCo meets twice a year to discuss the R&D programs of the member countries, to report work progress on the various Tasks, and to plan future activities

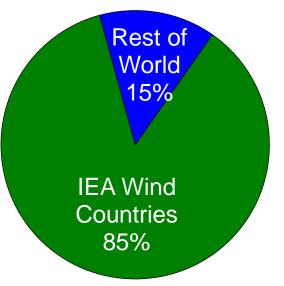
IEA Wind operational details (1)

- The IEA Wind Executive Committee (ExCo) organises the overall information exchange and R, D&D tasks
- The ExCo consists of a Member and an Alter Member from each contracting party in the **Implementing Agreement**
- Most countries

Norges Forskningsråd (Harald Rikheim, 48 22 86 36, hri@forskningsradet.no) NVE (David Edward Weir, 22 95 93 52, dwe@nve.no) progress on the various Tasks, and to plan future activities

IEA Wind operational details (2)


- Most decisions are reached by majority vote with one vote per member country. Change to members rights and contractual obligations require unanimity
- Members share the cost of administration for the ExCo through annual contributions (based on the size of the nation's economy) to a Common Fund
- Each research task has its own budget and fees based on the work and number of participants
- Each member country must participate in at least one research task



85% of the world wind capacity is in IEA Wind member countries

IEA Wind Countries

World Wind Capacity

*** -- + * * +- = *= *= * • * • -- +- * * *

IEA Wind has broad membership

OECD Participating Countries:

Europe:

Austria, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, the European Commission

North America:

Canada, Mexico, and the United States

Asia and Pacific:

Japan and South Korea

International Organizations:

Chinese Wind Energy Association (CWEA) and the European Wind Energy Association (EWEA)

Wind contributes to national electrical demand

IEA Wind Country	National electricity demand (TWh/yr)	National electricity demand from wind* (%)
Denmark	34.9	29.9%
Portugal	49.1	20.0%
Spain	255.2	16.3%
Ireland	27.8	14.5%
Germany	594.5	7.7%
United Kingdom	365.3	6.0%
Greece	57.0	5.8%
Sweden	142.0	5.0%
Austria	60.5	5.0%
Netherlands	120.3	4.1%
Italy	325.3	4.0%
United States	4054.5	3.5%
Australia	226.0	3.4%
Canada	590.0	2.8%
China	4,940.0	2.0%
Mexico	272.0	1.2%
Norway	130.0	1.1%

* % of national electricity demand from wind = (wind generated electricity/ national electricity demand) Source: IEA Wind 2012 Annual Report

Wind contributes to national electrical demand

IEA Wind Member Country	National electricity demand	National electricity demand from wind
	TWh∕yr	%
Denmark	34	32.7%
Spain	261	26.9%
Portugal	51	23.5%
Ireland	28	16.3%
Germ any	600	8.9%
Sweden	139	7.0%
UK	376	6.0%
Austria	62	5.8%
Greece	57	5.8%
Italy	317	4.7%
Netherlands	120	4.7%
Australia	226	4.1%
United States	4,058	4.1%
Canada	560	3.1%
China	5,245	2.6%
México	249	1.5%
Norway	129	1.5%
Finland	84	0.9%
Japan	846	0.5%
Korea	532	0.2%
Switzerland	64	0.2%

* % of national electricity demand from wind = (wind generated electricity/ national electricity demand) Source: IEA Wind 2013 Annual Report

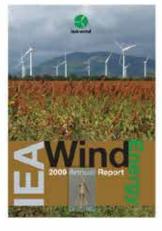
IEA Wind supports national efforts with information exchange and joint R&D

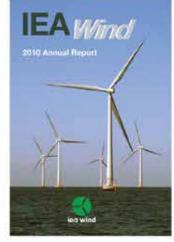
• Sharing information on:

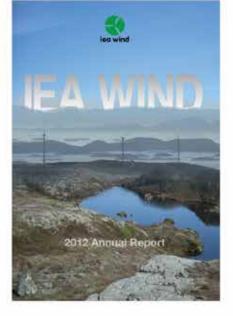
- Planning and execution of large-scale wind energy deployment
- Experiences with tariffs, credits, certificates and other incentive and regulatory environments
- Integration with electrical grids
- Results of national technology research projects
- Cooperative research tasks performed with research and in some countries industry experts.

** -----**

IEA Wind Strategic Direction 2014-2019


- Reduce the cost of wind energy use, for both land-based and offshore wind
- Increase the flexibility of transmission and power systems
- Increase social acceptance and environmental compatibility of wind energy
- Increase the exchange of best practices



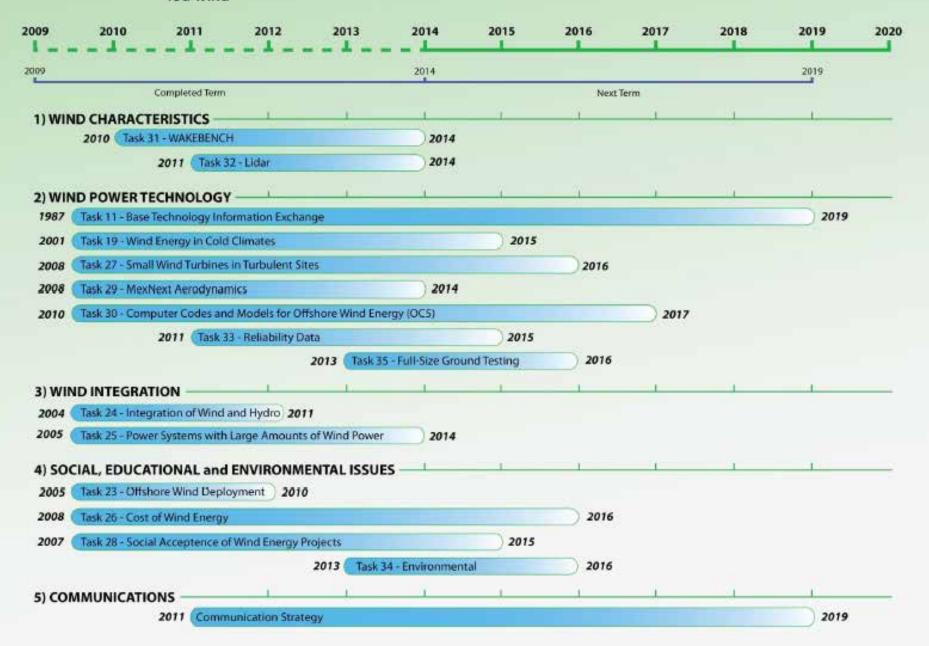

Information Dissemination

- Annual Reports (2,300 copies/yr)
- Website (<u>www.ieawind.org</u>)
- Technical reports, journal articles, conference presentations
- Outreach to new members
- Industry Encounters
- Recommended Practices
- E-newsletter

▓▓▖▃▖▎▖▏▓▋▕▙▕▓▌▝▇▖▎▃▖▀▆▝▆▋▕▋▕▌▌▌▌▌▌▌▓▖▌▃▖▕▙▌▓▖▋

IEA Wind R&D continues to reduce costs

- Grid integration tools
- Designs to increase performance/value
 - Forecasting
 - Aerodynamics
 - Structural dynamics
 - Electrical systems


- Designs for specific locations
 - Cold climate
 - Offshore
 - High wind/turbulence
- Impact assessment
 - Cost assessment tools
 - Social impacts
 - Environmental impacts

IEA Wind Task and Priority Areas (2009-2019)

** **---**+ **--**+ *= **-**+ *= **

Active Research Tasks of IEA Wind

Full-Size Ground Testing of Wind Turbines and Components (Task 35) Environmental Assessment and Monitoring for Wind Energy Systems (Task 34) Reliability Data: Standardizing Data Collection for Wind Turbine Reliability, Operation and Maintenance Analyses (Task 33) Lidar: Wind lidar systems for wind energy deployment (Task 32) WAKEBENCH: Benchmarking wind farm flow models (Task 31) Dynamic Codes and Models for Offshore Wind Energy (Task 30) Aerodynamic Data Analysis of the EU MEXICO Project (Task 29) Social Acceptance of Wind Energy Projects (Task 28) Consumer Labeling of Small Wind Turbines (Task 27) Cost of Wind Energy (Task 26) Power Systems with Large Amounts of Wind Power (Task 25) Wind Energy in Cold Climates (Task 19) Base Technology Information Exchange (Task 11)

Active Research Tasks of IEA Wind

- Each task is managed by an Operating Agent (OA) organization with a designated expert managing the work.
- Participants develop a work plan and agree to contribute to the work plan.
- Participants agree to pay the budgeted fees for the Operating Agent (if applicable).
- For detailed information about each task, including contact information and the work plan, visit <u>www.ieawind.org</u> and click on the Task website link at the left of the home page.

re•**li**´•**a**•**bil**´•**i**•**ty** (ri, $l\bar{l}$ ə 'bilətē) n.

a person or thing with trustworthy qualities.

Task 33 · Reliability Data

Cost of Wind Energy Stork Wexs Areas 26 Cost of Wind Energy Stork Wexs Areas Areas

For more information, visit www.ieawind.org or email the Secretary ieawind@comcast.net.

a person or thing with trustworthy qualities.

Task 33 · Reliability Data

IEA Wind Task 33: Reliability Data Standardizing data collection for wind turbine reliability and O&M analyses

Thomas Welte SINTEF Energy Research

Industry Meets Science 2015-06-04, Trondheim

1

Overall aims

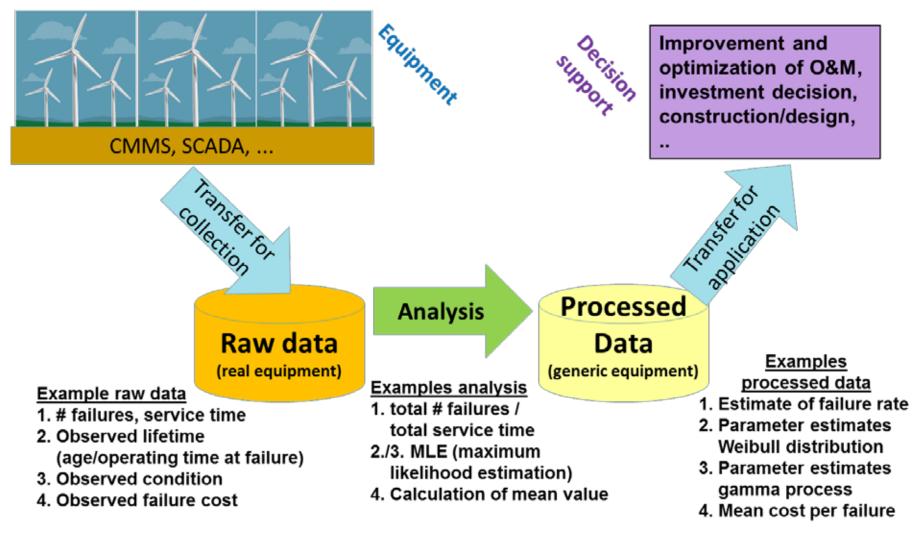
- Addressing different developments of data collection and failure statistic to agree on standards and overall structures.
- Improving reliability and optimizing O&M of wind turbines (through the use of reliability data).

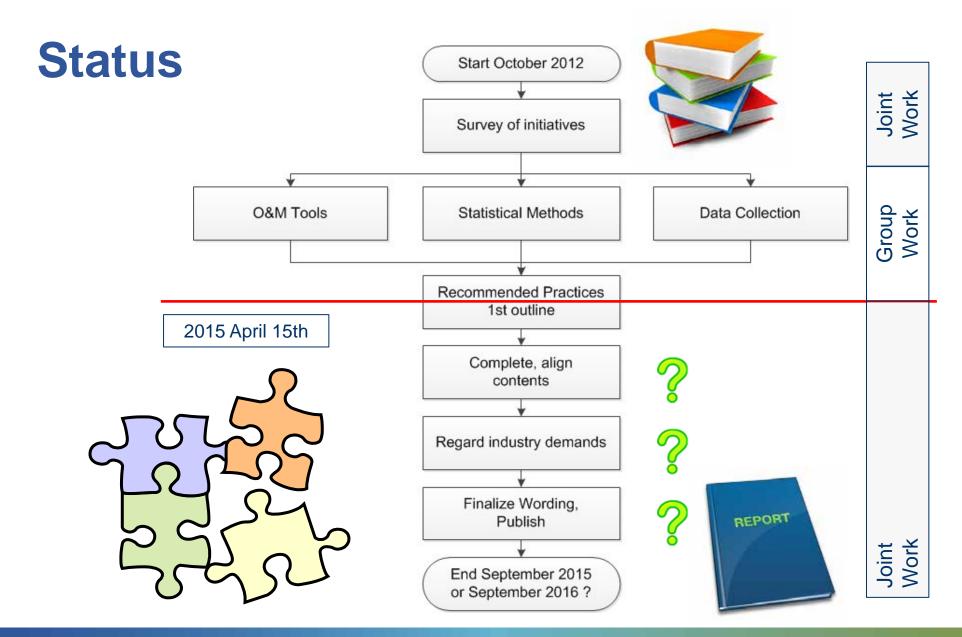
re•li´•a•bil´•i•ty (ri, līə 'bilətē) n.

a person or thing with trustworthy qualities.

Task 33 · Reliability Data

Objectives Task 33


- Provide an international open forum for regular and continuous exchange of experience and progress from individual research activities and existing projects on failure statistics on wind turbines.
- 2. Development of "Recommended Practices for Reliability Data" during the course of the Task.
- 3. Identify areas for further research and development as well as standardization needs.


Participants

Nr	Country	Nr	Institution	Nr	First name	Familiy name
		1	CWEA Chinese wind energy association	1	Wang	Siyong
		2	China General Certification Center(CGC)	2	Chen	Leijie
		2		3	Du	Guangping
		3	Goldwind	4	Yin	Lei
		3	Goldwilla	5	Wang	Zhen
1	China	4	China General Nuclear Power Group (CGN)	6	Сао	Jianlin
	China	5	Dongfang Turbine Co., Ltd. (DTC)	7	Wei	Guangyao
		5	bongrang furbine co., Etc. (DTC)	8	Wei	Wanming
		6	Zhejiang Windey	9	Luo	Yongshui
		0		10	Chen	Qi
		7	China Classification Society	11	Jiang	Feng
		/	clinia classification society	12	Zhang	Yanhong
2	Denmark	8	Uni Aalborg	13	John Dalsgaard	Sorensen
Z	Deninark	9	DTU University Denmark	14	Peggy	Friis
				15	Ville	Turkia
		10	VTT Technical Research Centre of Finland	16	Simo	Rissanen
3	Finland			17	Hannele	Holttinen
		11	ABB	18	Raimo	Sakki
		11	ADD	19	Teijo	Karna
					Stefan	Faulstich
4	Germany	12	Fraunhofer IWES	21	Berthold	Hahn
				22	Paul	Kühn
5	Ireland	13	ServusNet	23	Frank	O'Connor
5	Ireland	15	Servusiver	24	Des	Farren
6	Netherlands	14	University Delft	25	Gerard	van Bussel
7	Norway	15	Sintef Foundation for Scientific and Industrial Research		Thomas	Welte
		16	NTNU University Trondheim	27	Jørn	Vatn
		17	Vattenfall	28	Lasse	Pettersson
8	Sweden	18	Chalmers University Gothenburg	29	Pramod	Bangalore
ð	Sweden	19	KTH University Stockholm	30	Lina Bertling	Tjernberg
		20	Systecon	31	Fredrik	Bjarnegard
				32	Keith	Harrisson
9	UK	21	ORE Catapult	33	Conaill	Soraghan
				34	Jonathan	Hughes
10	USA	22	Sandia National Labo	35	Roger	HIII
10	USA	22	Sandia National Labs	36	Benjamin	Karlson

NOWITECH Norwegian Research Centre for Offshore Wind Technology

Schedule current phase

month	1 '	2 3	4	56	7	8 0	0 10	11 1	2 13	14 15	16	17 19	g 10	20 3	01 22	23 <i>'</i>	2/ 2	5 26 '	27 2	8 20	30 31	32	22 2/	1 25	36 3	1 28	30 /	0 41	12	13	11 15	16	17 18	/10	50 51
indu		2 5	4.	5 0			2013		2 13	14 13	, 10	17 10	0 17		2014	23 4	24 Z	5 20 2	21 2	0 27	30 31	JZ	2015		30 31	30	37 4	5 41	42	43 -		016	17 40	47	30 31
			1	23	4			8 9	9 10	11 12	2 1	2 3	3 4			8	9 1	0 11 .	12 1	12	3 4	5			9 10) 11	12 [·]	12	3	4	5 6	7	89	10	11 12
Meeting 1: Kick-off Workshop																																			
M-1: Confirmation of Participants																																			
M-2: Agreement on the work plan			1																																
Subtask I: Experience																																			
M-3: State of the art report: Initiatives to collect WT failure information																																			
Meeting 2: Progress meeting																																			
M-4: Progress report 1																																			
Subtask II: Data Collection																																			
M-5: State of the art report: Flow of maintenance information													-				_																		
Meeting 3: Progress meeting										-/																									
Subtask III: Data Analyses																																			
M-6: Status report 1																																			
M-7: Group report: Tools for O&M-planning and overview about data needs															-		-																		
M-8: IEA Recommended practices for Reliability Data, 1st draft																	-																		
M-9: Progress report 2																																			
Meeting 4: Progress meeting															Î																				
M-10: Status report 2																			٢																
Meeting 5: Progress meeting																				1 1	\Rightarrow														
M-11: Progress report 3																																			
M-12: IEA Recommended practices for Reliability Data, 2nd draft																			4	1 1			⇒ 🛛												
Meeting 6: Progress meeting / Industry feedback																																			
M-13: Status report 3																																			
Extension phase																																			
WP 1: Recommendations for data sets, taxonomy, failure description																																			
M-14: Short report about final decision on concrete recommendations																																			
WP 2: Drafting recommended practices																																			
M-15: IEA Wind Recommended practices for Reliability Data, final draft																																			
WP 3: Integrating of industry comments and dissemination																																			
Meeting 7 and Industry workshop																																			
WP 4: Co-ordination and dissemination																																			
M-16: Progress report 4																																			
M-17: IEA Recommended practices for Reliability Data, 1. release																																			
Meeting 8: Final work shop presenting final release of recommended pratices																																			
M-18: Final report																											4	È,	÷			F	a		
Milestones																																			
Work Progress																																			
Meetings																																			
Reports																																			

Outline Recommended Practices

General / intro

§ Target Audience, Scope, Purpose, Terms & definitions, Standards,...

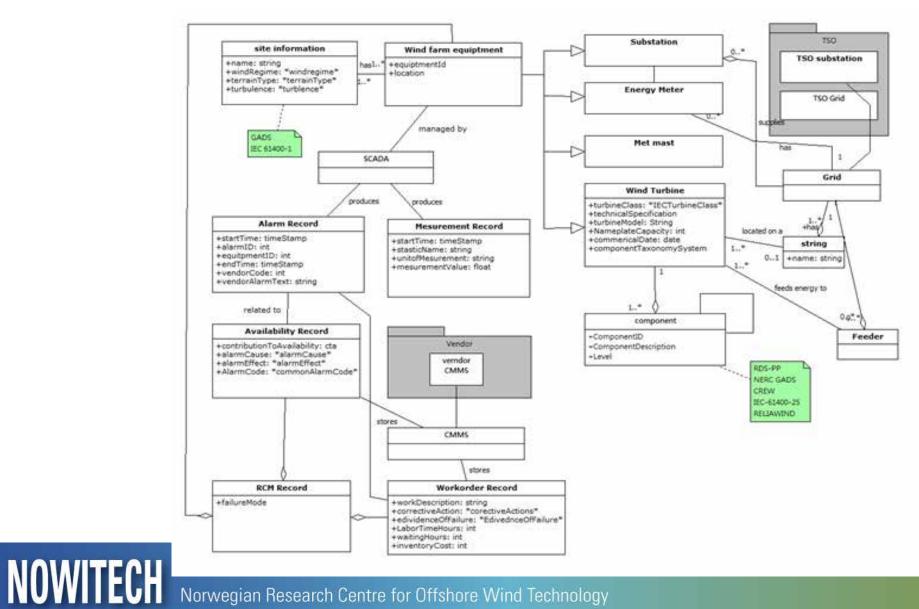
Existing data collection initiatives

- **§** WMEP, Crew, Sparta, OREDA, ServusNet,
- Maintenance tasks and strategies
 - Stakeholders, Maintenance optimization, Maintenance models, RCM, ...
- O&M methods and tools
 - § LCC, Interval optimization, Maintenance grouping, Spare parts optimization, …
- (Statistical) Data analysis
 - Seasic principles, Different types of models, Typical applications, ...

Data collection

§ Types of data, Data flow, Taxonomy, ...

Example: Existing data collection initiatives


Countries		1	Gerr	many	V.	Cł	nina	IRL	F	S		U9	5A	
Dat abase s		WMEP	LW K	Windstats (Ger.)	WInD-Pool	60-d atabase	E	ServusNet	ЧΠ	RCM	BRC	CREW	GRC	NERC GADS
Initiatives		12	13	14	10 11	7	8	17	9	21	24	25	26	27
Information concerning	Scada / Operating Data													
	Current values	о	-	-	x	D	х	x	-	х	-	x	-	-
	Operating hours	x	х	х	x	х	х	х	х	х	-	x	ο	х
	Operating state	-	-	-	х	D	o	х	-	х	-	х	-	ο
	Functional state	-	-	-	x	-	o	o	-	-	-	х	-	ο
	Event = Change of state	х	х	х	х	D	х	o	-	х	-	х	-	-
	CMS Data													
		-	-	-	-					-	-	-	0	0
	Event / Field Service Report													
	Start of event	х	-	-	х	х	х	х	O	х	O	-	O	-
	End of measure	х	-	-	х	х	x	х	0	х	O	-	O	-
	Parts affected	х	х	х	х	x	x	D	х	х	D	-	D	-
	Person in charge	-	-	-	0	O	х	-	-	х	0	-	0	-
In the second	Event / Field Service Report													
Information concerning		x	-	-	x	D	x	D	D	D	O	-	O	-
the affected	Failure mechanism	O	-	-	х	D	х	D	0	-	D	-	O	-
element/component/s	Failure mode	-	-	-	х	D	x	x	D	D	D	-	O	-
ubassembly of the	Need for measures	-	-	-	х	-	0	-	-	-	-	-	-	-
wind turbine	Typ of measure	ο	-	-	х	D	х	x	-	х	D	-	D	-
	Action taken	O	-	-	х	-	-	-	х	-	D	-	D	-

Norwegian Research Centre for Offshore Wind Technology

NOWITECH

Example: Wind farm information model

Example: Wind turbine taxonomies qualities

	Comprehensive	Industry	Easy to	Wind Turbine	Publicly
	Hierarchy	Standard	use	Specific	available
Reliawind	yes	no	yes	yes	yes
NERC-GADS	yes	no	yes	yes	yes
RDS-PP	yes	yes	no	no	no

IEA Wind Task 26: Cost of Wind Energy

Iver Bakken Sperstad SINTEF Energy Research

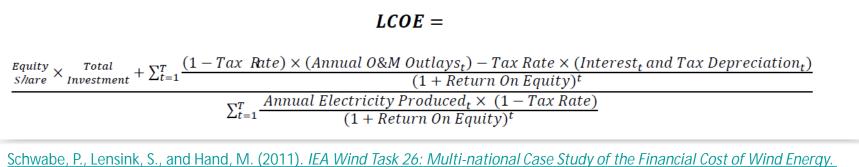
Industry Meets Science 2015-06-04, Trondheim

Focus on cost of energy and cost reduction

- Horizon 2020 Call for competitive low-carbon energy: "For 2015, the following technology-specific challenges have to be addressed: [...] Substantially reduce the <u>costs of wind</u> <u>energy</u>"
- European Strategic Energy Technology Plan: "To meet the [EU 20-20-20] targets, we need to lower the <u>cost</u> <u>of clean energy</u> ..."
- Energi21 strategy report: "Ambisjoner innen offshore vindkraft: [...]
 - **§** økt <u>energiproduksjon</u> fra vindkraftanleggene.
 - **§** reduksjon av kostnader langs hele verdikjeden [...]"

2

Estimates of the cost of wind energy


- ▶ NVE (2015). Kostnadar i energisektoren.
- Bloomberg New Energy Finance (2013): World Energy Perspective – Cost of Energy Technologies.
- Fichtner-prognos (2013). Cost Reduction Potentials of Offshore Wind Power in Germany.
- BVG associates (2012). Offshore wind cost reduction pathways. Technology work stream.

Levelised Cost of Energy (LCOE)

- Widely recognised metric for understanding how technology, capital investment, operations, and financing impact the lifecycle cost of building and operating a wind farm.
- Calculated from the perspective of a financial investor.
- Does not include subsidies or reflect revenue or policy incentives.

NREL/TP-6A2-48155. Golden, CO: National Renewable Energy Laboratory.

Levelised Cost of Energy (LCOE)

Not one standardised LCOE formula; estimates will depend on

- financing structure (debt/equity),
- **§** return rates,
- **§** project life time,
- § project construction time,
- **§** tax and tax depreciation,
- **§** decommissioning costs,
- **§** transmission costs
- **§** capacity factor,
- **§** inflation,
- **§** currency,

IEA Wind Task 26: Cost of Wind Energy

IEA Wind Task 26 is an international collaboration dedicated to exploring past, present and future cost of wind energy.

Objective: Provide information on cost of wind energy in order to understand past, present, and anticipate future trends using <u>consistent transparent methodologies</u> as well as understand how wind technology compares to other generation options within the broader electric sector.

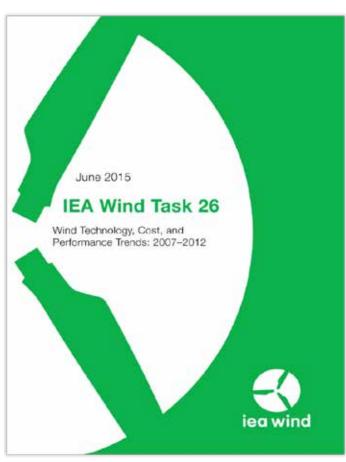
DWITECH Norwegian Research Centre for Offshore Wind Technology

IEA Wind Task 26 activities

- Common, transparent, traceable methodology for calculating and comparing LCOE values (incl. cash flow models).
- Updated data, analysis and understanding of land-based wind energy cost trends and comparison among countries.
- Identification of the primary offshore wind energy cost drivers and the variation of these costs among participating countries.
- Experts meeting on methods to value wind energy and methods to evaluate historical and future technology cost trends.
- Expert survey on future costs of wind energy.

Task participants

Country	Organisation
USA	National Renewable Energy Laboratory (NREL; OA) Lawrence Berkeley National Laboratory (LBNL)
Denmark	Ea Energy Analyses DTU
Germany	Deutsche WindGuard GmbH Fraunhofer IWES
Norway	Norwegian Water Resources and Energy Directorate (NVE) SINTEF Energy Research
Ireland	Dublin Institute of Technology
Netherlands	TKI Wind-op-zee EcoFys
European Commission	Joint Research Centre (JRC)
UK	Offshore Renewable Energy Catapult



Plans for next phase of Task 26

- Phase 2 has been running from October 2012 and is ending September 2015
- ► Plans for proposed Task extension (3 years):
 - S Continue updating land-based wind energy cost trends (annualy)
 - S Continue identifying major cost drivers for offshore wind in different countries
 - **§** Understanding trends through expert elicitation
 - **§** Learning curves
 - § Repowering
 - § Market design

Updated report on cost of land-based wind energy

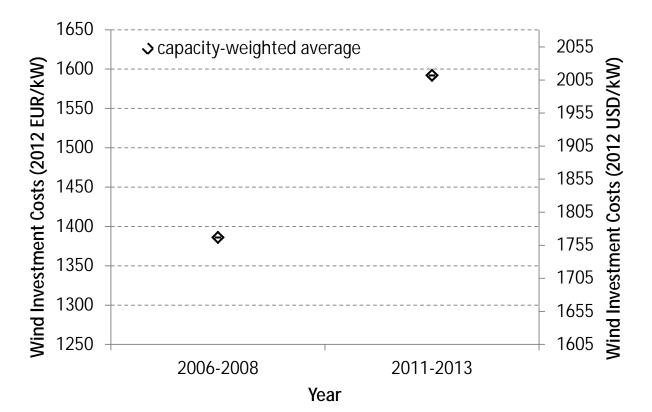
NB: Not yet published Launch date: June 15 2015 Will be made available at http://www.ieawind.org/task_26.html

Hand, M.M., ed. (2015). *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory.

Updated report on cost of land-based wind energy

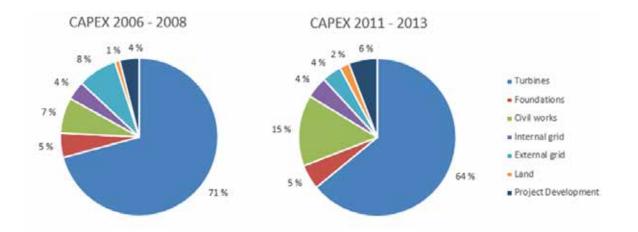
General trends over the period from 2008 to 2012:

- Initial indications since 2012 suggest a trend toward lower cost of energy through 2014.
- S Capital investment costs reached a peak and have declined in most countries despite the increased wind turbine size.
- Solution of a wind plant are not well understood, and project cost data are lacking.
- Credits for Norway chapter on land-based wind energy:
 - S Leif I. Husabø and David E. Weir, Norwegian Water Resources and Energy Directorate (NVE)



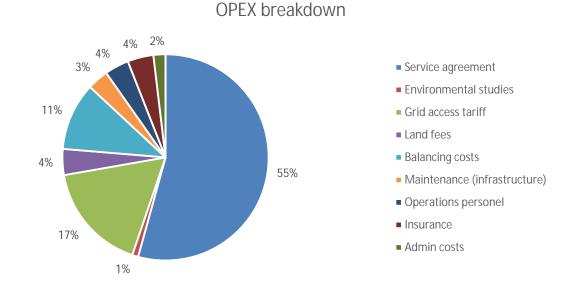
Cumulative and annual wind installations in Norway

(Husabø, L. and Weir, D. (2015). "Wind Energy Development in Norway," Chapter 4. Hand, M. M., ed., *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory)



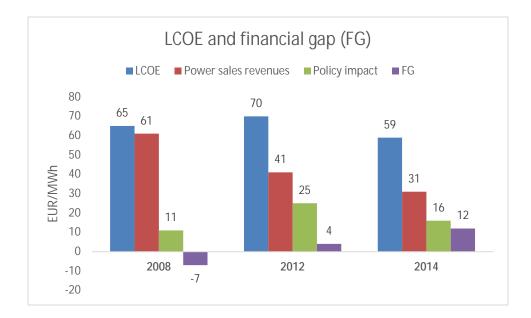
Investment costs for projects installed from 2007 – 2012

(Husabø, L. and Weir, D. (2015). "Wind Energy Development in Norway," Chapter 4. Hand, M. M., ed., *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory)



CAPEX breakdown 2007 – 2012

(Husabø, L. and Weir, D. (2015). "Wind Energy Development in Norway," Chapter 4. Hand, M. M., ed., *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory)



Estimated average breakdown of operations and maintenance costs for projects installed from 2007 – 2012

(Husabø, L. and Weir, D. (2015). "Wind Energy Development in Norway," Chapter 4. Hand, M. M., ed., *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory)

Wind energy revenue and policy incentives in Norway in 2008, 2012 and 2014

(Husabø, L. and Weir, D. (2015). "Wind Energy Development in Norway," Chapter 4. Hand, M. M., ed., *IEA Wind Task 26 - Wind Technology, Cost, and Performance Trends: 2007–2012.* NREL/TP-6A20-64332. Golden, CO: National Renewable Energy Laboratory)

Hva kan dette gi for industrien?

Deltakelse i taskene gir:

- S Ny kunnskap på temaområdene som tasken(e) jobber med.
- Innsikt i status og praksiser (state-of-the-art) hos ulike aktører i de forskjellige IEA Wind medlemslandene.
- Større nettverk og internasjonale kontakter.
- § Innflytelse og påvirkning av viktige internasjonale utviklings- og standardiseringsprosesser, samt politiske prosesser.

Veien videre for Task 26 og Task 33

- Deltakende Task-partnere må dekke selv kostnadene for direkteutgifter (Operating Agent, reiser, ...) og timer (taskarbeid, deltakelse i møter, ...).
- Finansiering for videre deltakelse av Norge i Task 26 og Task 33 ikke avklart ennå.

WITECH Norwegian Research Centre for Offshore Wind Technology