Digital Twin for improved management of wind farms

Professor Trond Kvamsdal Coordinator NTNU Team Wind

Web-page: https://www.ntnu.edu/energy/wind-power

NTNU

What is a Digital Twin?

A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, monitoring, control and optimization of the asset for improved decision making throughout the life cycle of the asset and beyond.

A. Rasheed, O. San, and T. Kvamsdal. Digital twin: Values, Challenges and Enablers From a Modelling Perspective. *IEEE Access*, 8: 21980-22012, 2020.

Digital Twin (Oracle)

- Virtual Twin: Creation of a virtual representation of a physical asset or a device.
- **Predictive Twin:** Physics based, data driven or hybrid models operating on the virtual twin to predict the behavior of the physical asset.
- *Twin Projection:* Integration of insights generated by the predictive twin into operations and processes.

How DT makes a difference

Information transfer during *design* Decision support and operation control throughout operation phase. Faster and better simulation models enabling *Predicitive Twins*

 $\mathbf{u}_t(\boldsymbol{\mu},\boldsymbol{\kappa}) = \mathbf{F}(\mathbf{u};\boldsymbol{\mu}) + \mathbf{\Pi}(\mathbf{u};\boldsymbol{\mu},\boldsymbol{\kappa})$

Digital Twin: An enabler for holistic approach

Examples of Applications

- Wind farm and environment
- Advanced wake models and farm control
- Short term asset management
- Leading blade edge erosion
- Degradation of bearings and gears
- Fatigue monitoring
- Cable health monitoring
- Blade damage monitoring
- Power electronics health monitoring

Wind farm and environment

Fluid-Structure Interaction Simulation

Surrounding terrain or ocean

Micro wind model

Shortwave

Longwave radiation

Advanced wake models and farm control

- Wake effects important for fatigue damage
 - Should be included in design analysis
- Accurate engineering models accounting for these effects needed
 - Enable local load mitigation and park control/power optimization
 - · Should be verified with CFD and full-scale measurement
- · Shortcomings existing wake models
 - Yaw misalignment, wind shear profiles, account for 6DOF of floating wind turbine, atmospheric turbulence, wind-wave interaction.

NTNU

Short-term asset management

Ahead of / during severe weather events:

- Varying production and demand
- Possibly large downtimes:
- Knowledge gap:

- Limited accessibility

Degradation of bearings and gears

Monitor

- Acoustic emission
- Environment
- Detoriation of lubricant

Model

- Contact loads
- Environmental stress crack growth
- Corrosion
- Electrochemical migration

SINTEF NTNU

Fatigue monitoring

- Collect sensor information at few locations
- Use machine learning / statistics to extrapolate fatigue loads at other locations of interest

Cable health monitoring

Monitor

- Mechanical loads
- Corrosion
- Environment

Model

- Stress and environmental driven crack growth
- Residual capacity

SINTEF ONTNU

 \bigcirc

Power electronics health monitoring

- Reduced downtime by condition-based maintenance
 - Serves as decision support to riskbased maintenance for optimal cost/risk ratio.
- Digital twin for estimating state-of-health
 - Real-time measurements
 - Digital model translates usage into deteriorating stresses
 - · Lifetime model keeps count on stresses
- Demonstrated real-time system in laboratory

SINTEF

ONTNU

Concluding remarks

- A catalysator for collaboration
- The foundations behind a digital transformation

Digital Twin: A catalysator for collaboration

Digital Twin Digital Thread

https://www.challenge.org/insights/digital-twinand-digital-thread/ Digital twins and digital threads are the foundations behind a digital transformation

They **both** enable new ways to assess practices, processes, and product concepts in a virtual environment.

Simply stated the *digital twin* is the current representation of a product or system, mimicking a company's machines, controls, workflows, and systems.

The *digital thread* meanwhile is a record of a product or systems lifetime, from its creation to its removal.

Both can potentially have huge benefits for operating models, revenue stream and relationships in the future.