

1 ALANA

MONOPILE IN FINITE WATER DEPTH: WAVELOADS AND RESPONSES BASED ON EXPERIMENTS

1

Maxime Thys

Industry Meets Science 15/06/2017

Layout

- Main Objectives
- Protoype BFWT
- Model
- Instrumentation
- Test Program
- Ringing and slamming example
- Plan for 2018

Main Objectives

Based on model tests in the Ocean Basin with a monopile (Ø7m) study physics and obtain validation fata for numerical codes:

- Second order model
- CFD calculations
- Short crested waves
- Slamming loads
- Ringing response

Main Objectives

Wish-list for validation data

- Wave profile and kinematics (with and without model)
- Distributed forces acting on pile
- Deflection of pile
- Global response (base shear and OTM)

Prototype

- Designed for the experiments
- Based on NREL 5MW reference wind turbine and OC3 monopile design
- 7m Ø from embedded to base of tower
- 30m waterdepth
- Site 15 (L. Li *et al.,* 2013)
- Soil interaction
 - modelled with different soil springs
 - Simplified to single rotational spring for model tests

77.6m

10m

30m

46m

Prototype

20

X (m)

20

X (m)

30

77.6m

Model

- Scale: 40
- Simplifications
 - No wind and no rotor. Only mass of RNA.
 - Increase of structural damping by use of drag disc
 - Single rotational spring at seabed

Model

Model properties documented by pullout and decay tests

Instrumentation

- Moment and shear force measurements
- Acceleration at different sections
- High speed video

Instrumentation

- Longitudinal harp for long crested waves
- Circular harp for short crested waves

Test Program

- Dry and wet documentation tests
 - Pullout: Document structural stiffness
 - Decay tests: Natural period, mode shape and damping
- Regular wave tests (force distribution and global response)
 - Steepness 1/30: T=6, 7, 8, ..., 14
 - Steepness 1/40: T=6, 7, 8, ..., 15
- White noise => RAO
 - 2 different to study possible non-linearity

Test Program

• Irregular wave tests

- 3h realizations
- Spectrum: TMA (JONSWAP* $\emptyset(\omega)$)
- One fatigue, two 25yr, 1 intermediate and five 50yr conditions.
- Long and short crested $\cos^{N}(\theta)$, with N=8
- Ewans spreading for one condition
- 9 repetitions of long and short condition for uncertainty analysis

Ringing and slamming example

E. E. Bachynski et al., 2017 in Applied Ocean Research

Teknologi for et bedre samfunn