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DIGITAL SOLUTIONS

Where Industry meets Data Science
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Using data for specific purposes within the Offshore wind industry
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22GW
We manage over 22GW of real-time 
operational data from solar PV, wind 
and storage assets

>12500
Our analysts review over 12,500 
wind, solar and grid sensors each 
week

>99%
DNV GL’s Smart Cable Guard detects 
the location of electrical cable 
network failures with an accuracy of 
greater than 99% and can prevent 
65% of such failures

>7.9TWh
Our data-driven energy efficiency
implementation services have saved
over 7.9TWh over the last 3 years
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1GW
We are technical advisor to the 
lenders on Fosen, the world’s largest 
onshore wind farm at 1GW

2400+
We conduct over 2,400 wind 
inspections each year

No. 1
Our BLADED tool is the world’s best-
selling design tool for wind turbines

1st

We conducted the world’s first 
hardware-in-the-loop testing for an 
entire wind farm

65GW
We have analysed over 65GW of 
operational wind projects

90%
90% of certified offshore wind farm 
projects utilized our project 
certification

*Our testing, certification and advisory services are independent from each other
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Wind operations today

 Goals: 

– Increase turbine performance

– Reduce downtime

– Decrease maintenance costs

– Extend the life of assets beyond their original design

 Challenges: 

– Constant pressure to reduce costs and increase revenue

– Strong focus on ROI means that it is difficult to dedicate resources to research and analysis 

 Opportunities: 

– Increasing know-how as the industry matures

– Proliferation of data that could be used to optimise operations

4
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Data is becoming the new raw material of business
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To drive down cost and keep the safety/security and quality at an acceptable level, the use of data is a key enabler
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Why data management is needed

The primary driver for Data Management is to enable 
organizations to get value from their data assets, just 
as effective management of financial and physical 
assets enables organizations to get value from those 
assets. 

– (Ref DAMA DMBOK 2.0)

6
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Getting value out of data - Conceptual Model

Data Insight Value

Collect Process ServiceAnalyse
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Creating value from data

Data/Info Management

D
ata ingestion, stream

ing or 
batches

D
ata quality assessm

ent

O
ther D

ata Preparation

D
ata cleansing

D
ata harm

onization

Security and access control

Condition based 
maintenance

Business Use Cases

Analytics

Safety and Barrier 
Mgmt.

Operational Efficiency
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Business use cases in the Offshore wind industry…
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Predictions

(Machine Learning)

Finding Patterns

(Data mining)

Statistics

(Inference)

Predictive 
maintenance

Performance 
benchmarking

Lifetime extension

Fault prediction

Data visualisation

Field development
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The value chain of data
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Data SourcesAssets Data types Transfer methods Data Integration, storage 
& processing

• Batch transfers

• Streaming

HSEQ systems

Maintenance 
systems

Historians

Control systems

Monitoring 
systems

External 
sources

Etc.

Internal sources;

• Operational data

• Maintenance data

• HSEQ data

• Event data

• Sensor data

• Etc.

External sources;

• Weather data

• Grid data

• Satellite sensor data

• Etc.Deployment of 
models to ‘edge’

Data Storage – e.g. DNV GL 
Veracity
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The process of dealing with data – skills needed

Business 
Idea

Data 
Collection

Explorator
y Data 

Analysis 
(EDA)

Data Quality 
Assessment

Modelling

Result 
preparation

Business 
Deployment
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Business 
Strategy

Data 
Engineering

Front-End 
Development

Data

Science

Required skills

Considerations
• Do you have the relevant data?

• Are they available/accessible?

• Are they within acceptable 
ranges? Right quality?

• Can you build a model?

• Are you able to validate the 
model?

• Can the model be scaled, if 
applicable?

• Is the cost of storage and 
computation within target 
budget?
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Barriers in process of dealing with data
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Data made 
available

Data made 
usable

Data used 
for 

predictions
placeholder

Predictions 
used for 

operational 
decisions

Platforms, 
integrations,
sharing ++

Contextualize, 
data quality, 

twins ++
AI / ML

The “digital 
promise”: 
efficiency, 

autonomous 
operations, 

automation ++

From 
corporate 

entertainment 
to actual 
business 
impact

governance 

sharing

data management

data quality
trust in ML
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Trust in Data Quality

13
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Data Quality
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SYNTACTIC QUALITY
The degree to which data conform with the 
specified syntax; i.e., the requirements 
stated by the metadata. 

Metadata can be legal
values, data types and referential
integrity, such as links between
data parts, business vocabulary,
and any defined business rules.

SEMANTIC  QUALITY
The degree to which data correspond 
to what they represent.

For example, when a sensor
measures 72 °C, the actual 
temperature
should also be 72 °C
at the point of measurement;
if this is not the case, there is
some amount of semantic error.

PRAGMATIC  QUALITY
The degree to which data are suitable and 
useful for a particular purpose. 

For example, if sensor measurements are 
needed every second, but they are received 
on average once per minute, then
the requirement is not met and the data are 
considered to be of low pragmatic quality.
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Importance of data to use case
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0 = Data quality level low, 9 = Data quality level high

CM 
Measure 

tech 
A

CM 
Measure 

tech
B

Failure 
modeling 

tech 
C

Failure 
modeling 

tech 
D

Failure 
modeling 

tech 
E

Condition 
test 

F

Condition 
test 

G

Parameter 1 1 1 1 1 7 9 0

Parameter 2 9 1 1 1 7 9 9

Parameter 3 9 5 5 7 7 1 1

Parameter 4 5 1 1 1 1 1 9

Parameter 5 0 1 9 1 1 1 0

Parameter 6 0 8 1 9 1 1 0

Parameter 7 8 0 9 0 0 0 5
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Known good
Known insufficient
Known unavailable

Unidentified potential

Data we have versus data we need to execute a task
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Data relevant for the task

Importance of 
contribution

Y(t) = at+bt+ct+ dt+et+ft+ gt+ht+ it+ jt+kt+ lt+ mt+nt+ot+pt+qt+ rt+st+ut+vt+wt+ xt+yt +zt
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Recommended practice RP-0497

17



DNV GL © 13 June 2019

Maintenance example
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Ensuring data are fit for use
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Record and 
store data

(Data Asset)
Data Quality Data fit for 

use
Model /

Algorithm

Result /

Prediction
Make 

decision

IoT

Sensor

Health data

Finance data

Trust
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What is trust?

to believe that someone is good and honest and 
will not harm you, or that something 
is safe and reliable

21
source: Cambridge Dictionary

https://dictionary.cambridge.org/dictionary/english/believe
https://dictionary.cambridge.org/dictionary/english/honest
https://dictionary.cambridge.org/dictionary/english/harm
https://dictionary.cambridge.org/dictionary/english/safe
https://dictionary.cambridge.org/dictionary/english/reliable
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Who needs trust in Machine Learning
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the authorities

the users

“you can trust us!”

“can we allow this 

product?”

Quick’N’Dirty Machine Learning Co

HONEST PREDICTORS AS 

the company

doing the ML

“you can trust us!”
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Two ways of providing trust in plumbing

23
This Photo by Unknown Author is licensed under CC BY-SA

1 What did the plumber do? 2 Inspect the pipes

http://diy.stackexchange.com/questions/89140/2-sinks-on-one-drain-line
https://creativecommons.org/licenses/by-sa/3.0/
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Trust in Machine Learning

25

1 What did the modeller do? 2 Inspect the model

Trust in the modelTrust in the process
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Pitfalls in Data Science and Machine Learning

 Data used to train the model is also used as test data

 Too few data

 Spurious or lack of relationship in data

 Simple is beautiful

 Correlation as a measure of relationship between data sets

 Overconfidence

 Time Series

 Violation of normality assumption

 Result interpretation 

26



DNV GL © 13 June 2019

Example of DNV GL offerings to the Wind industry

27
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Industrial platform players are emerging as a response 
- value propositions that mirror historical business models

28

Consultancies
OEMs/

Hardware 
manufactures

Software technology 
companies

Data analytics 
companies 

Asset owners and 
operators

Data and assurance 
providers
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Veracity - a trusted, value-unlocking ecosystem
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Asset owners

Manufacturers

PROVIDERS

Data fabric (private preview)

My data

Marketplace

My services

Developer’s 
toolbox

MULTI-SIDED INDUSTRY DATA PLATFORM

Assurance providers

Other data providers

Asset owners

Manufacturers

CONSUMERS

Regulators

Insurance

Other stakeholders

DEVELOPERS, ANALYTICS AND SOFTWARE PROVIDERS
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Conclusions

30
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What is WindGEMINI?
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Universal data interface

• Uses standard turbine data

• No need for additional sensors

• OEM agnostic

• “Near” real time

Plug in algorithms

• DNV GL knowledge and experience

• Predict failures

• Analyse performance

• Indicate asset condition and value

Web-based interface

• Accessible 24/7

• Automated alerts

• “Analyst”/“asset manager” views

• Better, faster decision-making

 A digital twin to deliver engineering knowledge to our customers in an efficient and accessible way 
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Case study – Generator drive end bearing

32

July 2014

Start of generator drive end 
bearing model deviation

April 2015
Bearing failure and full 
generator replacement 
was required: total of 15 
days downtime

 Planned bearing replacement estimated at only 2 days downtime
 Estimated preventable revenue loss of £15k. Estimated generator cost £80k.

 Traditionally managed wind farm: ‘Run to failure’ maintenance strategy

 SCM applied but without intervention November 2014

Medium confidence alert raised, but no 
action was taken
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Drivetrain Integrity Monitor in WindGEMINI

33
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Structural Integrity Monitor
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 Nominal stiffness
40% stiffness reduction
60% stiffness reduction
80% stiffness reduction

1st tower 
frequency reduction

Frequency analysis of 1-s 
data

Identification of tower 
frequency

Filtering

Nacelle accelerometer signal Generator speed signal

 Analysis of 1s SCADA allows tracking of tower & rotor frequency

 A convolution filter identifies frequency and energy levels of the main peaks

 Frequency analysis can identify a number of issues:

– Shifts in foundation stiffness (degradation)

– Rotor imbalance

– Pitch misalignment



DNV GL © 13 June 2019

Case study – identification of rotor imbalance

35

 2015 study on soft-tower turbines

 T1 autospectra shows more energy than T2 (and other turbines) at the rotor frequency

 Speed / side-side acceleration points to aerodynamic (pitch) imbalance

 Autospectra were matched by modelling a 2˚pitch misalignment

 Inspections confirmed a 1.8˚ pitch misalignment, later corrected
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Structural Integrity Monitor in WindGEMINI

36
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SAFER, SMARTER, GREENER

www.dnvgl.com

The trademarks DNV GL®, DNV®, the Horizon Graphic and Det Norske Veritas®

are the properties of companies in the Det Norske Veritas group. All rights reserved.
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