Monday 18:00-19:30

Poster session 1	J 13.30	No.
	Laura Abadía Albás	
Performance of alkaline water electrolysers	Aragon Hydrogen	
following dynamic operation patterns:	Foundation	101
validation of grid services testing protocols	Spain	
	Michael Alkämper	
Operating results of PEMEL, AEL and SOEC	The hydrogen and fuel	
systems	cell center ZBT GmbH	102
Systems	_	
	Germany Asselah Amel	
Anti- Corrosion Ability For Carbone Steel By	Université de M'Hamed	
Sodium Methyl Ester Sulfonate Surfactants In		103
Petroleum Industry	Bougara	
	Algeria	
The effect of the chicagontica continu	Ernesto Amores	
The effect of the ship motion on the	Centro Nacional del	104
performance of alkaline water electrolysis	Hidrógeno	
	Spain	
	Simone Anelli	
Improved mesoporous oxygen electrode for	Catalonia Institute for	105
Solid Oxide Electrolyser Cells application	Energy Research	
	Spain	
Operation of electrolyzer with electricity from	Frano Barbir	
renewable energy sources	University of Split	106
renewable energy sources	Croatia	
HieffPEM – a game changing High efficiency	Alejandro Barnett	
PEM electrolyser for hydrogen production	SINTEF	107
F Livi electrolyser for flydrogen production	Norway	
	Scott A Barnett	
Degradation Phenomena in Solid Oxide	Northwestern	108
Electrolysis Cell Oxygen Electrodes	University	108
	USA	
	Boris Bensmann	
In Search of the best Catalyst Layer – the	Leibniz Universität	400
Necessity of Application based Designs	Hannover	109
	Germany	
	Dmitri Bessarabov	
Community of and	National Research	
Comparative study of anion exchange	Center "Kurchatov	110
membranes for low cost water electrolysis	Institute"	
	Russia	
	Dmitri Bessarabov	
Magneli phase Ti4O7 supported Ir-based	National Research	
catalysts for polymer electrolyte membrane	Center "Kurchatov	111
electrolysis	Institute"	
	Russia	
	Markus Bierling	
Tomographic Study of Electrodes of PEM Water Electrolysers - Gaining Information	Helmholtz-Institute	
	Erlangen-Nürnberg for	112
about Performance, Degradation and Process	Renewable Energy	114
Control	Germany	
	Elena Borgardt	
Creep and stress relaxation in PEM	Forschungszentrum	
·	Jülich GmbH	113
electrolysis cells		
	Germany	

High Temperature Electro-oxidation of Glycerol and Product Characterization	Tory Borsboom University of Victoria Canada	114
High Temperature Co-electrolysis Systems for Power-to-Gas Applications	Robert Braun Colorado School of Mines USA	115
Reduction of H2 concentration in the anode stream of a pressurised water electrolyser based on a thin polymer electrolyte membrane	Nicola Briguglio CNR-ITAE Institute of Advanced Energy Technologies Italy	116
Solid Oxide Cell Performance Improvement Using Auxiliary Non-Thermal Plasma and Fluidic Oscillation	Ann Call The University of Sheffield United kingdom	117
Carbon Based Cathode Materials for Li-S Batteries	Dominika Capkova Pavol Jozef Šafárik University in Košice Slovak Republic	118
Development of metallic interconnects manufactured by powder metallurgy for solid oxide electrolyser systems	Mari Carmen Monterde AMES PM Tech Center Spain	119
Advancing alkaline electrolysis cell performance by electrode microstructural optimization and high temperature operation	Christodoulos Chatzichristodoulou Technical University of Denmark Denmark	120
Defining Nafion ionomer roles in alkaline oxygen evolution reaction (OER)	Po-Ya Abel Chuang University of California USA	121
Hierarchical nanostructures of NiWO4 on Ni foam for high-performance urea electro- oxidation and urea assisted low energy electrolytic hydrogen production	Po-Ya Abel Chuang University of California USA	122
Ni-based Anodes for Improved Alkaline Membrane Water Electrolysis	Emily Cossar University of California Merced USA	123
Scale-up of a DEFTTM alkaline electrolyser through intensive flow reduction	Jason Cuomo Demcotech Engineering South Africa	124
Composite Graphene Modified Anion- Exchange Membrane for Alkaline Electrolysis	Daniela Ion-Ebrașu National Center for Hydrogen & Fuel Cells Romania	125
Development and Understanding of Oxygen Evolution Reaction Catalysts and Catalyst Layers for Proton Exchange Membrane Water Electrolyzers	Nemanja Danilovic Lawrence Berkeley National Laboratory USA	126
Advanced PBI based membranes for the SO2 depolarized electrolysis at high temperature	Sergio Diaz University of Castilla-La Mancha Spain	127

Analysis of a direct alkaline seawater electrolyzer - material science, catalysis and efficiency	Sören Dresp Technische Universität Berlin Germany	128
On activity and stability of NiSn, LaSrCrMnO3 and GdCeO towards rWGSR and carburization for H2O/CO2 co-electrolysis to syngas	Jean-Francois Drillet DECHEMA Forschungsinstitut Germany	129
The structure-activity relationships in OER catalysis	Jakub Drnec European Synchrotron Radiation Facility France	130
TiO2-MoOx supported Iridium catalyst for the Oxygen Evolution Reaction in acidic electrolyte	EunAe Cho Korea Advanced Institute of Science and Technology (KAIST) South Korea	131
Copper Phosphide/N-Doped Carbon based Alkaline Water Electrolysis Catalyst for Hydrogen Evolution Reaction	EunAe Cho Korea Advanced Institute of Science and Technology (KAIST) South Korea	132
A template-free porous Ni-P for oxygen and hydrogen evolution reaction in an alkaline electrolysis	EunAe Cho Korea Advanced Institute of Science and Technology (KAIST) South Korea	133
Optimized NiCu Catalyst for Enhanced Hydrogen Evolution Activity in Anion Exchange Membrane Water Electrolysis	Alaa Faid Norwegian University of Science and Technology Norway	134
Electrochemical hydrogen compression for decentralized district applications	Arne Fallisch Fraunhofer Institute for Solar Energy Systems Germany	135
SOC technology development at ECN part of TNO	Claire Ferchaud ECN part of TNO The Netherlands	136
Co-Electrolysis in Power-to-X scenarios for renewable Industrial Chemistry	Severin Foit Forschungszentrum Jülich GmbH Germany	137
Tubular proton ceramic electrolysers for pressurized hydrogen production	Marie-Laure Fontaine SINTEF Norway	138
Development and implementation of innovative Electrolysis-PEM components in the frame of METHYCENTRE project	Bruno Fournel CEA France	139
Pt-doped thin membranes for hydrogen crossover suppression in Proton electrolyte water electrolysis	Steffen Garbe Paul Scherrer Institut Switzerland	140
Activity and stability of high performance electrocatalysts for hydrogen and oxygen evolution in Alkaline Water Electrolysis	Florian Gellrich Technical University of Denmark Denmark	141

Progressive scale-up of a DEFTTM membraneless alkaline electrolyser	Malcolm Gillespie North-West University South Africa	142
High dynamic testing of large active area PEMWE stacks and comparison with a simulation including automated parameter calibration and degradation analysis	Andreas Gusak The hydrogen and fuel cell center ZBT GmbH Germany	143
An Investigation of the Sputtered Nickel Electrodes for Alkaline Water Electrolysis	Won-Bi Han Korea Institute of Energy Research South Korea	144
Synchrotron studies of Pt oxidation and restructuring	David Harrington University of Victoria Canada	145
Ion Exchange Membrane Based On Poly(norbornene)s Derivatives for Fuel Cell	Chao Wang North University of China China	146
Reinforced hydrocarbon membrane for proton exchange membrane water electrolysis	Young Taik Hong Korea Research Institute of Chemical Technology (KRICT) South Korea	147
ALCOMSAT-1 Battery in orbit performance	Bentoutou Houari CDS- Satellites Development Centre Algeria	148
Powder metallurgy: an efficient and scalable production process of electrodes for the GW-industry	Christian Immanuel Bernäcker Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Germany	149
Physical Modeling of Co-Electrolysis in Solid Oxide Electrolysis Cells	Thomas Jahnke German Aerospace Center (DLR) Germany	150
Lessons learned when benchmarking classic alkaline electrolysis single cells	Cinar Karacan Forschungszentrum Jülich GmbH Germany	151
Scalable Production of Low Carbon Fuels from Atmospheric Carbon Dioxide	Kyle Kemp Carbon Engineering Ltd. Canada	152
Electrochemical performance and durability of Ir-Ni nanostructures in PEM water electrolysers	Thulile Khoza SINTEF Norway	153
Synthesis and Modification of Non-precious Multi Component Bi-functional Electro- catalyst for the Oxygen Electrodes in Unitized Regenerative Fuel Cells	Malte Klingenhof Technische Universität Berlin (TU Berlin) Germany	154
Solid oxide electrolysers for sustainable fuels production	Aniruddha Kulkarni Commonwealth Scientific and Industrial	155

	Research Organisation (CSIRO) Australia	
Semi-empirical steady-state model for a PEM electrolyser at varying operating conditions	Oliver LeFranc Institut National Polytechnique de Toulouse France	156

Tuesday 18:00-19:30

Tuesday 18:00-19:30			
Poster session 2		No.	
Large Scale PEM Electrolysis for Industrial Applications	Philipp Lettenmeier Siemens AG – Hydrogen Solutions Germany	157	
he influence of ferric ion impurities on a proton exchange membrane electrolyzer operated at varying temperature and current density conditions	Na Li Aalborg University Denmark	158	
Detection of Electrooxidation Products in Microfluidic Devices Using Raman Spectroscopy	Tianyu Li University of Victoria Canada	159	
Proton Exchange Membranes of Low Hydrogen and Methanol Permeability Proton Exchange Membranes of Low Hydrogen and Methanol Permeability	Qingfeng Li Technical University of Denmark Denmark	160	
Design and operation of a hydrogen refilling station with on-site alkaline electrolysis	Yorick Ligen Ecole Polytechnique Federale de Lausanne (EPFL) Switzerland	161	
Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers	Chang Liu Forschungszentrum Jülich GmbH Germany	162	
Reversible Hydrogen-Chlorine PEM fuel cell development	Justo Lobato Bajo University of Castilla-La Mancha Spain	163	
Novel catalyst supports based on the mixture of SiCTiC-C for the SO2 electrolysis	Justo Lobato Bajo University of Castilla-La Mancha Spain	164	
Production Techniques of Making a Truly Intimate Alloy of Iridium Ruthenium Oxide and Important Considerations as an End- Product in PEM Electrolysers.	John Lowe Ames Goldsmith (Ceimig) Ltd. United Kingdom	165	
1 kW solid oxide prototype system coupled to a water treatment plant for synthetic gas production	Bernadet Lucile Catalonia Institute for Energy Research Spain	166	
Investigation of feed water impurities on life- time of PEMWE	Anders Lundblad RISE Research Institutes of Sweden Sweden	167	
Bipolar Plates for PEM electrolyzers	Sigrid Lædre SINTEF Norway	168	
Critical Raw Materials Free Low Temperature Electrochemical Reduction of CO2 to Methanol (LOTER.CO2M)	Ellen Marie Jensen Hedegaard IRD fuel cells A/S Denmark	169	
Best Practices Benchmarking Framework Development for Low and High Temperature Electrolysis	Olga A. Marina Nel Hydrogen USA	170	
Optimal sizing of H2-based hybrid EES in remote areas: the case study of Ginostra, Italy	Paolo Marocco DENERG Italy	171	
Direct Membrane Deposition in Anion Exchange Membrane Water Electrolysis	Britta Mayerhöfer Forschungszentrum Jülich GmbH Germany	172	
A new generation of bipolar plates for PEM fuel cells	Katie McCay	173	
	I .	l .	

	Norwegian University of Science and Technology Norway	
Nickel-iron Hexacyanoferrate as a Novel Oxygen Evolution Catalyst for Alkaline Electrolysers	Rachel Mckerracher University of Southampton United Kingdom	174
Progress in the development of Pt-free cathodes for PEM water electrolysis	Pierre Millet Paris-Sud University France	175
Coupling a renewable energy source to a PEM electrolyser using a resonant converter	Carel Minnaar North-West University South Africa	176
Electrochemical Behaviour of the IrOx Electrode at High Overvoltage in PEMEC	Mogens Mogensen Technical University of Denmark Denmark	177
Homogeneous electron mediator and packed-bed scrubber assisted electrolytic reduction of CO2	Il Shik Moon Sunchon National University South Korea	178
Highly proton conducting hydrocarbon membranes for PEM Electrolysis	Klaus-Dieter Kreuer Max Planck Institute for Solid State Research Germany	179
A 3D-printed Parallel Plate Membrane-less Electrolyser Cell for H2 Production	Vijay Narasaiah Shell Technology Centre India	180
Systematic Study on Electrodeposition of NiMo alloys as Electrocatalysts for Hydrogen Evolution Reaction (HER) in Alkaline Medium	Abu Bakr Nassr Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) Germany	181
Making fuel on Mars: Methane synthesis from Martian-derived CO2 and H2O using a Sabatier Electrolyzer based on proton- conducting ceramics	Duc Nguyen Colorado Fuel Cell Center USA	182
Study of design parameters in MEA for AEM electrolysis	Masato Ohashi National Institute of Advanced Industrial Science and Technology Japan	183
Stable Reference Electrode in Polymer Electrolyte Membrane Water Electrolyzer for Three-electrode Measurements	Sorsa Olli Aalto University School of Chemical Engineering Finland	184

Boosting the green transition through electrolysis – The Hydrogen Valley perspective	Søren Bjerregaard Pedersen Hydrogen Valley Denmark Denmark	185
Functional ceramic 3D printing of enhanced energy devices: High surface Solid Oxide Cells working as electrolysers	Arianna Pesce IREC Spain	186
Nanostructured Iron Nickel as an Efficient Electrocatalyst for the Oxygen Evolution Reaction	Fatemeh Poureshghi Norwegian University of Science and Technology Norway	187
A Passive Film in Motion	Sebastian Proch Sandvik Materials Technology Sweden	188
Utilizing low grade waste heat to produce hydrogen by reverse electrodialysis of ammonium bicarbonate	Yash Raka Norwegian University of Science and Technology Norway	189
Highly Efficient SOE System Design with Internal Steam Generation	David Reichholf AVL List GmbH Austria	190
Electrode improvements for zero gap alkaline polymer electrolyte membrane electrolysis cells.	Alexander Kappel Reumert Technical University of Denmark Denmark	191
Stainless steel as OER electrode in alkaline water electrolysis	Hamid Reza Zamanizadeh Norwegian University of Science and Norway	192
Evaluating CRM-free anode and cathode catalysts for a 2 kW electrochemical methanol synthesis demonstrator plant	Katie Rigg Johnson Matthey United Kingdom	193
Electrochemical performance of a novel LSFCO perovskite as electro-catalyst for gas diffusion electrodes in alkaline electrolysers	Horacio Rodriguez University of Southampton United Kingdom	194
Neocarbon Food pilot: Microbial protein from renewable electricity and ambient CO2	Vesa Ruuskanen LUT University Finland	195
High temperature testing facilities at the Norwegian Fuel Cell and Hydrogen Centre	Per Martin Rørvik SINTEF Norway	196
High temperature steam electrolysis at DLR – from stack to system level	Christian Schnegelberger German Aerospace Center (DLR) Germany	197
Optimization and upscaling of porous ceramic separators and full cells for high temperature alkaline electrolysis	Nedjeljko Seselj Technical University of Denmark Denmark	198
The Demo4Grid project: Demonstration of 4MW Pressurized Alkaline Electrolyser for Grid Balancing Services	Emmanuel Stamatakis Diadikasia Business Consulting Greece	199
Key challenges in fabrication of metal- supported thin film proton conducting electrolyser cells	Marit Stange SINTEF Norway	200
Titanium Porous Paper as PTL for PEM Water Electrolysis	Sebastian Stypka The hydrogen and fuel cell center ZBT GmbH Germany	201

Degradation of PEM water electrolysis cells: Looking beyond the cell voltage increase	Michel Suermann Leibniz Universität Hannover Germany	202
Performance degradation in proton- conducting ceramic fuel cells and electrolyzers	Neal Sullivan Colorado Fuel Cell Center USA	203
A 100 W seawater electrolyzer design with an inbuilt in-situ free chlorine and product gas analysis	Trung Ngo Thanh Technische Universität Berlin Germany	204
Iridium deposition by galvanic displacement of Cu in a one-pot configuration	Kristian Fredrik Klepp Thorbjørnsen Norwegian University of Science and Technology Norway	205
Crossover in AEL and PEMEL: a direct Comparison of Mechanisms and Mitigation Strategies	Patrick Trinke Leibniz Universität Hannover Germany	206
How Catalyst Layer Design affects Crossover and Cell Performance in PEM Water Electrolysis – by the Example of Ionomer Variation	Patrick Trinke Leibniz Universität Hannover Germany	207
High Differential Pressure PEM WE System Laboratory	Øystein Ulleberg Institute for Energy Technology Norway	208
PEM-based electrolyser developments at ECN part of TNO	Frans van Berkel ECN part of TNO The Netherlands	209
Heat to H2	Kjersti Wergeland Krakhella Norwegian University of Science and Technology Norway	210
Improved Electrocatalytic Water Splitting Reaction on CeO2(111) by Strain Engineering: A DFT+U Study	Tiantian Wu Technical University of Denmark Denmark	211
Research on degradation mechanism of solid polymer electrolyte water electrolysis	Li Weiwei Tsinghua University China	212
Study on Ti based alloy coating corrosion mechanism by Cl and N Non-metallic Elements existence	Shi Kun Tsinghua University China	213
Energy storage, ammonia synthesis and electric-power generation with reversible proton-conducting ceramic cells	Liangzhu Zhu Colorado School of Mines USA	214
A Proven, Low Cost Coating Technology to Protect PEM Electrolyzer Separators	Ton Hurkmans Ionbond Netherlands BV The Netherlands	215