Economies of hydrogen production by electrolysis from wind and grid power

Espen Flo Bødal PhD Candidate NTNU

ONTNU **(5)** SINTEF

Agenda

- Cost drivers of hydrogen production from electrolysis
- Evolution of renewable energy technologies
- Future cost of electrolytic hydrogen production
- Case study of hydrogen production in Texas in 2050

Reductions for investment cost of electrolysis

- Current investment cost of large-scale electrolysis:
 - Alkaline (AEL): about 500 €/kW
 - Proton exchange membrane (PEM): about 8-900 €/kW
- Expected to be reduced in the future
 - PEM closing the gap on AEL
 - Costs approaching 400 €/kW in 2030?

DNTNU

() SINTEF

Fig. 2 | Cost of electrolyser technologies for PtG application. Cost data are from multiple sources for alkaline electrolysis (AEL) and PEM electrolysis (see Methods for details).

Breakdown of hydrogen from electrolysis (PEM) - Increased share of cost from electricity

900 \$/kW

400 \$/kW Real Levelized Values – from 2040 Revenues \$ 4,48 \$ 4,48 \$/kg H2 Expenses \$3,97 \$4,48 \$/kg H2 \$1.00 \$2.00 \$3.00 \$4.00 \$5.00 Cost of Hydrogen **Yearly Replacement Costs Cash for Working Capital Reserve** Salvage Value

Feedstock Cost Fixed Operating Cost Initial Equity Depreciable Capital Debt Interest

Yearly Replacement Costs Cash for Working Capital Reserve Taxes Other Variable Operating Costs Principal Payment Decommissioning Costs Other Non-Depreciable Capital Costs Other Raw Material Cost

- Feedstock cost is dominating the cost of hydrogen production from electrolysis
 - The cost of electricity consumption
 - Going to be even more dominating in the future due to reduced investment cost
- Key to reducing hydrogen production costs is to reduce the electricity price

NTNU SINTEF

- Onshore wind power **Current (2017) Future Projections** \mathbf{V} \$70 ------ TRG 1 - Low – TRG 1 - Mid \$60 ------ TRG 5 - Low Land-based Wind Levelized Cost of Energy (\$/MWh) - TRG 5 - Mid \$50 ------ TRG 8 - Low - TRG 8 - Mid \$40 \$30 \$20 \$10 \$0 2015 2020 2025 2030 2035 2045 2050 2040 Fig: LCOE from wind power for wind resources by quality, high to low (1-10)

Reducing cost of renewable energy technologies

- Levelized cost of energy (LCOE) for onshore wind by 2050
 - Mid scenario: reduction of 35-45 %
 - Low scenario: reduction of 65-70 %

ONTNU **(5)** SINTEF

Reducing cost of renewable energy technologies

- Utillity-scale solar power

- Levelized cost of energy for utility-scale solar by 2050
 - Mid scenario: reduction of 50 %
 - Low scenario: reduction of 70-75 %

NTNU SINTEF

Storage is needed to balance renewable variability

- Electricity is traditionally produced and consumed at the same time
- Electricity production from renewables cannot be controlled efficiently – thus we need storage!
- Different options for energy storage:
 - Hydro power storing energy in water reservoirs
 - Batteries goes well with solar
 - Flexible hydrogen production storage on the demand side

Fig: Electricity production by source, excess electricity is stored (dark blue) in batteries during peak hour and discharged (dark green) when needed to meet the electric demand (red line).

🖸 NTNU

() SINTEF

Energy storage can be provided by flexible hydrogen production

- Price fluctuations need to be large for hydrogen to be profitable as electricity storage, high prices must be 2X low price due to losses
- Hydrogen operate as a flexible demand by over sizing the electrolysis and adding hydrogen storage tanks
 - Hydrogen can be used to electrify and reduce emissions in sectors that is hard to electrify directly – such as several industrial processes, ships and trucks
 - Cheaper than batteries for large amounts of energy
 - Suitable to compliment wind power as there can be longer periods without significant electricity production

- Using LCOE in analysis does not take into account when electricity is used or produced
- Major cost reductions are gained from using electricity from the grid at the right time
 - Mismatch between production and consumption is a central issue when power systems have high shares of renewables and lead to periods with low prices
 - Transmission constraints also contribute to price fluctuations
 - Hydrogen storage can help to mitigate these issues and have to be included in the calculations

Fig. 3 | Prospects for renewable hydrogen production. a,**b**, The break-even price of renewable hydrogen for Germany (**a**) and Texas (**b**) relative to the benchmark prices for fossil hydrogen supply.

SINTEF

- Study of hydrogen production from wind power shows that hydrogen production from renewables can be on the level of fossil sources for large scale applications within the next decade
- Wind is used to supply electricity demand or produce hydrogen
- Can be even lower if hydrogen storage or producing hydrogen from grid energy is included

[1] G. Glenk and S. Reichelstein, "Economics of converting renewable power to hydrogen," Nat. Energy, vol. 4, no. 3, pp. 216–222, Mar. 2019.

National Expansion

Figure 13. Number of stations and average capacity for select urban areas in 2050

Source: NREL

- Scenario for hydrogen demand in 2050 [2]
- Based on adoption of fuel-cell vehicles
- Texas is the most promising state in US for hydrogen production from renewable energy sources

DNTNU

() SINTEF

[2] J. Z. and S. E. Melaina, M., B. Bush, M. Muratori, "National Hydrogen Scenarios: How Many Stations, Where, and When?," no. October, p. 36, 2017.
[3] J. I. Levene, M. K. Mann, R. M. Margolis, and A. Milbrandt, "An analysis of hydrogen production from renewable electricity sources," Sol. Energy, vol. 81, no. 6, pp. 773–780, Jun. 2007.

Hydrogen production in Texas - 2050

- We model the power system in Texas using 13 buses [3]
- Currently the system is largely based on natural gas (> 50 % of installed capacity)
- Recent years there has been a massive development of wind power
- Massive potential for further development of wind and solar in the north-west
- Load and population mainly in east
 - Estimated electric load for 2050 of 492 TWh/yr
 - Assumption: 1 % annual load growth from 2016
- Hydrogen load scenario of about 23.5 TWh/yr
 - 5% of electric load

Fig: Aggregated representation of the electricity system in Texas using 13 buses (nodes). Transmission lines are colored by capacity in MW. [3]

DNTNU

() SINTEF

Sources of electricity production

- In 2050, electricity production in Texas is largely renewable based
- The renewable share grows with increasing CO₂-prices
- All coal will be faced out if a CO₂-price of 30 \$/ton is implemented
- 150 \$/ton CO₂ is needed to get electricity from natural gas with CCS

Fig: Electric energy from different sources as CO₂ prices increase

Hydrogen source by CO₂ price for H₂ demand cases

Fig: The source of hydrogen in the system, for increasing CO₂-prices and different hydrogen loads

DNTNU

() SINTEF

- We run the model for the base case, but also when the hydrogen demand is scaled by 10 and 100 times
- At a CO₂-price of 60 \$/ton hydrogen from natural gas includes CCS
- Hydrogen from electrolysis includes significant amounts of storage
 - The amount of storage increase with the CO₂-price and the integration of renewables

Relative CO2 emissions by CO2 price

- Total and by source

Fig: Total, natural gas and electricity related CO₂-emissions from hydrogen production

- We run the model without any hydrogen production and use those emissions as a baseline
- The total emissions related to hydrogen production are negative for the base case
- Emissions drop a lot for a CO₂-price of 60 \$/ton as natural gas based hydrogen include CCS
- The emissions from the power system is negative for all cases as flexible hydrogen production replaces the flexibility otherwise provided from natural gas

DNTNU

SINTEF

Cost of hydrogen production

- The hydrogen production cost is in the lower range of current large scale costs
- With increasing CO₂-prices the hydrogen production cost increase until CCS is used for hydrogen from natural gas
- For CO₂-prices above 60\$/ton, only the highest demand case shows a increasing price
 - A larger share of the hydrogen is from natural gas with CCS and has some emissions
- The hydrogen cost in the base case decrease for CO₂-prices above 60\$/ton
 - The hydrogen is largely renewable based
 - Flexible hydrogen production helps mitigate electricity from natural gas with growing shares of renewables

Fig: Weighted average marginal cost of hydrogen production in the system different CO_2 -prices

ONTNU **()** SINTEF

Conclusions

- Reducing the electricity price is key for making electrolytic hydrogen competitive with natural gas
- Dropping costs of renewable energy technologies and the need for storage/flexibility reduced the electricity related costs significantly towards 2050
- The case study of Texas shows that:
 - Equal amounts of hydrogen is produced from natural gas and electricity in the base case with no CO₂-price
 - The share of hydrogen from electricity increase with increasing CO_2 -prices
 - The share of hydrogen from natural gas increase with the quantity of hydrogen produced
 - Hydrogen storage replace the flexibility provided by natural gas based electricity and helps reduce emissions in the electricity sector
 - Hydrogen production from natural gas include CCS from a CO₂-price of 60 \$/ton
 - Hydrogen cost increase with CO₂-price until 60 \$/ton, for higher CO₂-prices the cost is dependent on the load case

Selected references

- G. Glenk and S. Reichelstein, "Economics of converting renewable power to hydrogen," *Nat. Energy*, vol. 4, no. 3, pp. 216–222, Mar. 2019.
- 2. J. Z. and S. E. Melaina, M., B. Bush, M. Muratori, "National Hydrogen Scenarios: How Many Stations, Where, and When?," no. October, p. 36, 2017.
- 3. J. I. Levene, M. K. Mann, R. M. Margolis, and A. Milbrandt, "An analysis of hydrogen production from renewable electricity sources," *Sol. Energy*, vol. 81, no. 6, pp. 773–780, Jun. 2007.
- M. Majidi-Qadikolai and R. Baldick, "Stochastic Transmission Capacity Expansion Planning with Special Scenario Selection for Integrating n-1 Contingency Analysis," *IEEE Trans. Power Syst.*, vol. 31, no. 6, pp. 4901–4912, 2016.

Thanks for the attention! E-mail: espen.bodal@ntnu.no

Model characteristics and assumptions

- Capacity expansion model investment in new capacity and operations
 - Includes investment, fixed, variable and fuel costs
 - CO2 price included and used for marginal analysis
- Modelled as one big LP for a year with annualized investment costs
- Power balances for both electricity and hydrogen
- Linearized power flow representation of the transmission system (DC power flow)
- Hydrogen is produced locally by electricity or imported from centrally located natural gas reformation plants
- Modelled in python/PYOMO and solved using Gurobi Optimization solver

 $h^{dircet} + h^{h2 \ disch} + h^{NG} + h^{NG \ CCS} = H_{ti}$

- Two energy balances: Electricity and hydrogen
- Investment in generation units, transmission, electrolysis and storage
- Storage in forms of hydrogen gas or battery
- Battery is divided into power and energy investment decisions
 - Similar for hydrogen with storage tanks and electrolyzer

ONTNU **(5)** SINTEF