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Overview of the presentation

• A look at the present and beyond-present state-
of-the-art for LH2 generation.

• Dissecting the loss of efficiency – where does it 
come from?

• How do we realize the potential of LH2
generation? – the next steps
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Efficiency of hydrogen liquefier

Power requirement vs exergy efficiency of liquefier

State of the art (5–10 t/d blocks)

Long-term identified potential

In perspective:
Full-scale LNG plants:  10 000–20 000 tLNG/d
Rational (exergy) efficiency: Up to 48 %



Minimum liquefaction work

• Main influence:
• Feed pressure

• Key influences:
• Final liquid storage pressure

• 1.3 bar (blue dotted)
• 1.5 bar (black)
• 1.7 bar (red dashed)

• Target para-hydrogen 
concentration

• Ambient temperature



Conversion of ortho to para-hydrogen

para-hydrogen               ortho-hydrogen



Process overview
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• Assumed capacity: 125 t/d
• Additionally 7.1 t/d BOG from storage

• Mixed-refrigerant "PRICO" precooling of 
feed hydrogen to 114 K

• Hydrogen Claude cooling to 30 K
• Continuous ortho-para conversion in heat 

exchangers between 114 K and 30 K 
• Expansion and BOG recompression to 

1.85 bar with ejector
• Condensing and subcooling before 

transfer to final LH2 storage
• Storage pressure: 1.50 bar



Overall liquefier efficiency

• Two independent ways to calculate the overall 
efficiency (and to verify the calculations):

• Overall, top-down. Based on exergy flows in and out 
of the system boundaries

• Detailed, bottom-up. Calculating the exergy 
destruction in each single process component

• The former method is sufficient for calculating the 
overall efficiency of the plant

• The latter method gives a full breakdown of all losses 
and gives directions as to where the improvement 
potentials lie
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Overall, top-down approach
• Only considers exergy streams crossing 

the system boundaries
• Hydrogen feed flow exergy
• BOG flow exergy
• LH2 product flow exergy
• Compression power
• (Turbine power, assumed dissipated)
• (Intercooler heat, assumed dissipated)

• Exergy efficiency:
= (ELH2 prod – (EH2 feed + EBOG)) / Wcompr

= (14 361 kW / 36 729 kW)
= 39.1 %
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Pre-cooling cycle to 114 K
• Single, 5-component refrigerant mixture
• Estimated stand-alone exergy efficiency for pre-

cooling to 114 K: 50.75 %
• Further efficiency improvements can be made:

• Replacing throttling valve with a liquid expander, 
or expander in series with throttling valve

• Reduces entropy in expansion process and leads 
to savings other places in the process

• Dual-mixed refrigerant cycle:
• Tailored refrigerant mixtures for two temperature 

ranges instead of a single one
• Allows even deeper precooling, possibly down to 80 K
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Useful exergy output
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Detailed, bottom-up approach Calculating the irreversibility 
rate (exergy destruction rate) 
in each component (40+)
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Verification of top-down and bottom-up approaches
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Improved efficiency from recovering turbine power 
• Efficiency of the liquefaction process without power recovery:

• Exergy efficiency: 39.1 %
• 7.05 kWh/kg scaled with hydrogen feed rate (125 ton per day)
• 6.67 kWh/kg scaled with hydrogen feed rate + boiloff gas reliquefaction rate

• For these numbers, 2769 kW of hydrogen turbine shaft power is assumed to be dissipated
• If, e.g. 80 % of this power is recovered with electric generators the improved efficiency 

figures will be:
• Exergy efficiency: 41.6 %
• 6.62 kWh/kg scaled with hydrogen feed rate (125 ton per day)
• 6.27 kWh/kg scaled with hydrogen feed rate + boiloff gas reliquefaction rate
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Further improvements
• High capacity shifts the cost weighting more towards OPEX, hereunder energy cost, 

while the impact of CAPEX decreases. This motivates for, and necessitates, more 
advanced and integrated process designs 

• Precooling: Dual mixed refrigerant to also extend the range from 114 down towards 
80 K. Will shift power consumption over from hydrogen to MR compression

• Feed expansion from 30 K: Possibility for a liquid expander upstream of the ejector
• Subcooling process: Can be two-stage instead of single-stage to improve efficiency
• H2 feed pressure: Autothermal reforming as well as some electrolysers can supply 

hydrogen at e.g. 30–40 bar. There are several means for taking advantage of this for 
improving the efficiency

• Turbocompressors and novel cryogenic refrigerant: More easily scalable, boiling at low 
temperatures.

For more: See D. Berstad, Ø. Wilhelmsen, K. Banasiak. Hydrogen liquefaction. Influence of ejector and expander configuration. Hyper 
Technical Seminar. Trondheim, 15 May 2019
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