

HiPerCap Project: Assessment of CO2 Capture Technologies

Melbourne Workshop

Jock Brown 26.03.2015

Global reach – local competence

150	400	100	16,000
years	offices	countries	employees

DNV GL Oil and Gas

- 5,500 exceptional people who care about making the industry safer, smarter and greener
- Combining industry and domain knowledge with project and operational expertise
- A global network of experts, working together to solve local customer challenges.

HiPerCap Objectives

- 1. To develop high-potential novel and environmentally benign technologies and processes for post-combustion CO_2 capture leading to real breakthroughs.
- 2. To achieve 25% reduction in efficiency penalty compared to a demonstrated state-of-the-art capture process
- 3. Deliver proof of concept for technologies
- 4. Develop a fair methodology for comparing capture technologies
- 5. Develop technology roadmaps for the two most promising technologies

HiPerCap Project

- Activities:
 - Task 4.1 Establishment of Methodology (DNV GL, SINTEF, EDF, EON, AEE, GNF)
 - Task 4.2 Data collection of capture technologies studied in WP1-3 (SINTEF, DNV GL, EON)
 - Task 4.3 Assessment of capture technologies studied in WP1-3 (DNV GL, SINTEF, EDF, EON, AEE, GNF) – Not started
 - Task 4.4 Guidelines for selection and benchmarking of two breakthrough technologies to be studied in WP5 (EDF, DNV, SINTEF, TNO, EON, AEE, GNF) – Not started

Assessment Methodology

The Final Assessment

 Ultimately the impact of CCS on the COST of the product produced will be how future CCS investment decisions are made

Scope of the assessment

Overall comparison

On level of key indicators the following performance can be determined:

Indicator Energy

Indicator Environmental

Indicator Cost

WP4 Approach and Workflow

WP4 Approach and Workflow

WP4 Approach and Workflow

Reference Coal Fired Power Plant and State of the Art Capture

Reference Coal fired Power Plant

- Updated EBTF Case
- 820MW Advanced supercritical (ASC) pulverised coal (approx. 600 °C/280 bar)

State of the Art Capture Technology

- Criteria
 - Technology needs to be installed on coal power plant
 - Full set of data and details need to be publicly available
 - The largest available reference should be used
 - CESAR 1 case

Environmental

19 DNV GL © 2014 26.03.2015

Approach

- Objective: To show that given the best available information, the capture technology is environmentally benign.
- Pass or Fail assessment
- Traffic Light Assessment for each polluting component:

Categories

- Air Pollution and Other Emissions
 - Eg. SOx, NOx, PM, metals, acid and organic chemicals
- Water
 - Eg. Water consumed and produced, nutrients and organic pollutants in water
- Materials of construction and consumed by process
 - Eg. Metals for construction, sorbent materials, minerals, membranes, solvents
- Wastes
 - Eg. Soild and liquid waste such as reclaimer waste

Energy KPI

22 DNV GL © 2014 26.03.2015

Background

- Objective:
 - Show that capture processes have reached goal of a reduction in energy penalty by 25% compared to current state of the art technology.
- Boundary conditions
 - Minimal capture rate 85%
- What to benchmark
 - Impact of capture processes on the reference power plant output

Preferred energy KPI

Specific energy penalty of avoided CO_2 (SEPAC) [MJ_e/kg CO_2]

• SEPAC = $\frac{P_{ref}-P}{\phi_{co_2,ref}-\phi_{co_2}}$

- P = net electric output of the power plant in $MW_{\rm e}$
- φ_{CO2} = the emitted flow of CO₂ in kg_{CO_2}/s

Cost

Approach

- Objective: To show new technology is cost competitive with existing technologies and costs have not been sacrificed in pursuit of a reduction in energy consumption.
- Pass or Fail assessment
- Estimate CAPEX and OPEX (excluding Energy)

Uncertainty and Data Quality

Uncertainty

- Two types of uncertainty:
- Parameter Uncertainty
 - Uncertainty in experimental measurements made
- Model Uncertainty
 - Uncertainty related to assumptions in model and physics behind the models
 - Want to understand which assumptions the model is most sensitive to
 - Aim to reduce the influence of assumptions made

Summary of Uncertainty Drivers

HiPer ap

c. 1803

Seeing the Potential of Novel Technologies

Thanks very much

Jock Brown jock.brown@dnvgl.com +47 907 35453

www.dnvgl.com/ccus

SAFER, SMARTER, GREENER