

Membrane Based Technologies

WP3

Marc Pfister & May-Britt Hägg

PhD-student CNRS

Professsor NTNU

Partners:

- NTNU Norway (WP-Leader)
 - Sintef M&C Norway
 - TNO. The Netherlands
 - TIPS, Russia
 - CNRS, France
 - EDF, France1
 - CSIRO, Australia

Membrane based technologies HiPer

Task 3.1 Hybrid membrane development (NTNU, SINTEF, TNO) - OBJECTIVES

- Develop high flux mixed matrix membrane based on incorporation of nanoparticles in polymer.
 - > Target: CO_2 permeance of 2.5 m³(STP)/ m² h bar, selectivity CO_2/N_2 above 100.
 - Membrane fabrication and study on transport phenomena.

Task 3.2 Supported ionic liquid membranes (SILM) (NTNU, TIPS) - OBJECTIVES

- Develop contained supported ionic liquid ceramic membranes (CILM)
 - > Target: CO_2 permeance above 4 m³(STP)/ m² h bar, selectivity CO_2/N_2 above 100
- Develop nanoporous polymer/ILs membranes
 - > Target: CO_2 permeance 12-15 m³(STP)/ m² h bar, selectivity CO_2 / N₂ = 20-30
- Temperature stability >100°C.

Task 3.3 Process modelling and simulation (CNRS, EDF, NTNU) - OBJECTIVES

- Develop membrane module simulation model for nanocomposite and SILM membranes.
 - Evaluate the energy requirement & membrane area for different set of operating conditions
- Develop concepts for utilizing the membranes in a post-combustion process.

Task 3.1: Hybrid Membrane Development

Objectives

- Develop a high flux mixed matrix membrane based on incorporation of functionalized SiO-particles and nano TiO2-particles in a polymer.
 - > Target: CO_2 permeance of 2.5 m³(STP)/ m² h bar

selectivity CO_2/N_2 above 100.

Membrane fabrication and study on transport phenomena.

Research Activities

- Study of the transport mechanism and role of the nano-sized particles.
- Tailoring nanoparticles to tune the desired membrane properties such as selectivity and flux.
 - Nanosized particles prepared and characterized (SINTEF & TNO)
 - Hybrid membranes prepared and performance tested at NTNU
- Optimization in different iteration steps for the hybrid membrane.

Expected outcome

- Hybrid membranes with targeted performance
- Dedicated permeability model based on experimental flux data over a wide range of operating conditions

SEM: 2%PVA on PSF Membrane support

4

Task 3.1 Hybrid membrane development Status on Work

- 1. Study of the transport mechanism and role of the nano-sized particles: (report delivered)
- 2. The mechanism of gas transport in Facilitated Transport Membranes (FTM) most complicated The total transport flux is the sum of both the Fickian diffusion and the carrier mediated diffusion.
- Hence: The gas stream has to be humid for the facilitated transport to take place
- → CO₂ reacts and forms bicarbonate (fast reaction) and is released again as CO₂ on permeate side
- → The functionalized SiO-particles (HAPS) must not be protonised in order to promote facilitated transport (hence pH must be high)

3. Two types of hybrid membranes will be tested:

HAPS embedded in PVA (facilitated transport)TiO2 nanoparticles in PVA (Maxwell adapted transport)(PVA is hydrophilic by nature and has good film forming properties)

 $J_{A} = -D_{A} \frac{dC_{A}}{dx} = \frac{D_{A}}{dx} (C_{A,f} - C_{A,p}) + \frac{D_{AC}}{dx} (C_{AC,f} - C_{AC,p})$

HAPS Nanoparticles

$$CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow H^+ + HCO_3^- \Leftrightarrow 2H^+ + CO_3^{2-}$$

$$H_2CO_3^- + NH_2 - R + H_2O \Leftrightarrow R - NH_3^+ HCO_3 + OH^-$$

 $\mathbf{R} - \mathbf{NH}_3^+ \mathbf{HCO}_3 \rightarrow \mathbf{R} - \mathbf{NH}_2 + \mathbf{H}_2\mathbf{O}$

Task 3.1 Hybrid Membrane Development Status on Work

At NTNU-Sintef: Facilitated transport : Initial focus is on reproducing good results obtained

- New PVA-HAPS-1 membrane samples are manufactured
 - PPO-supported PVA/HAPS asymmetric membrane
 - PSf-supported PVA/HAPS asymmetric membrane
 (PPO = Hollow fibers; PSf = flat sheets)

Results to date

 First permeance measurements using PPO HF support, indicated CO₂ no success in facilitated transport

Conclusion

- The various parameters and variables which may influence the preparation of these membranes containing the functionalized nanoparticles are currently being systematically investigated
- Aim is to establish a reproducible manufacturing, and prepare a somewhat larger module for flux evaluation providing task 3.3 and WP4 with the required input

NTNU

Performance of PVA-HAPS on PPO

Performance of 2% PVA Membrane on PSf

Task 3.1: Hybrid Membrane Development Status on Work

Ongoing Research Activities at TNO

Synthesis of Nano-TiO2 particles seams successful (first indication

d < 20 nm)

- Well soluble/dispersible in water
- Study on interaction between PVA and nano-TiO2 to indicates physical network is formed (see figure). More solid-like behaviour at low deformation and more liquid-like behaviour at high deformation.
- Factors affecting interaction under study.

Further:

- Nanoparticles will be sent to NTNU to be prepared as hybrid membranes; embedded in PVA on PSf flat sheet support
- Performance will be measured with and without humid gas

Task 3.2 Ionic Liquid Membranes

Objectives

- Develop contained supported ionic liquid membranes (CILM)
 - > Target: CO_2 permeance above 4 m³(STP)/ m² h bar, selectivity CO_2/N_2 above 100
- Develop nanoporous polymer/ILs membranes
 - > Target: CO_2 permeance 12-15 m³(STP)/ m² h bar, selectivity CO_2 / N₂ = 20-30
- Temperature stability >100°C.

Research activities

- Selection, synthesis & evaluation of ILs for CO₂ facilitated transport membranes (NTNU).
- Selection and synthesis of high free volume polymers and advanced porous ceramic membranes (TIPS, NTNU).
- SILMs preparation, with focus on polymeric thin film composite support (TIPS).
- SILMs preparation, with focus on ceramic supports (NTNU).
- Separation performance testing (NTNU).

Type of SLM membranes

Task3.2 Ionic Liquid Membranes Status on Work at NTNU – screening; OK 🙂

 T_d

°C

622.15

647.15

243

283

281

252

319

ILs

 $[bmim][PF_6]$

 $[C_8 mim][PF_6]$

[bmim][NO₃]

 $[bmim][Tf_2N]$

 $[aP_{4443}][Ala]-SiO_2$

 $[Li(DOBA)][Tf_2N]$

[aP₄₄₄₃][Gly]-

 $[P_{66614}][Im]$

SiO₂

[TETA]L

Types of

absoption

physisorption

physisorption

physisorption

physisorption

chemisorption

chemisorption

chemisorption

chemisorption

chemisorption

1	0 176	/110	
T	0.170	/110	C(CN) ₃
	0.126	/25	
	0.132	/25	SQ ₂ CF ₂
	0.0799	/23	
	0.072	/100	

NTNU

Task3.2 Ionic Liquid Membranes Status on Work at NTNU – synthesis and charact.; OK [©]

NTNU

Task3.2 Ionic Liquid Membranes

٠

Status on Work at NTNU – evaluation of synthesized IL; OK 🙂

Ref: Ren, S., Y. Hou, et al. (2012). <u>Rsc Advances</u> 2(6): 2504-2507

Thermal stability

Objectives

- Develop nanoporous polymer/ILs membranes
 - > Target: CO_2 permeance 12-15 m³(STP)/ m² h bar, selectivity CO_2 / N₂ = 20-30
- Temperature stability >100°C.

Research activities at TIPS

- The two samples of high free volume glassy polymer
 poly[1-trimethylsilyl-1-propyne] (PTMSP) were synthesized.
- Two ionic liquids (ILs) based on imidazolium cation with high solubility selectivity for gas pair CO₂/N₂ were selected.
- Three methods of incorporation of selected ILs into the PTMSP dense membranes were developed: modification by swelling in IL/EtOH mixture, bulky hydrophilization by X-linked PEI and IL incorporation, surface hydrophilization by chemical etching and IL incorporation.

Task3.2 Supported Ionic Liquid Membranes Status on Work at TIPS – the Concept

Research activities at TIPS

- The two samples of high free volume glassy polymer poly[1-trimethylsilyl-1-propyne] (PTMSP) were synthesized.
- ✓ Two ionic liquids (ILs) based on imidazolium cation with high solubility selectivity (50 80) for gas pair CO_2/N_2 were selected.
- Three methods of incorporation of selected ILs into the PTMSP dense membranes were developed: modification by swelling in IL/EtOH mixture, bulky hydrophilization and IL incorporation, surface hydrophilization and IL incorporation

Gas permeation results

Membrane	CO ₂ permeance, I(STP)/m ² h bar	N ₂ permeance, I(STP)/m ² h bar	CO ₂ /N ₂ selectivity	Membrane thickness, μm	Gas pressure, bar
PTMSP unmodified	2700	670	4	20	1
	2900	770	3.8	50	5
PTMSP / IL	6.8	0.43	16	42	1
	20.7	0.42	47		5
Bulky modified PTMSP + IL	110	8	14	25	1
	120	8	15	25	5
Surface modified PTMSP + IL	240	20	12	45	1
	240	18	13	45	5

PTMSP modified by swelling in alcohol/IL

Membrane	Sorption, vol.%	CO ₂ permeance, I(STP)/m ² h bar	N ₂ permeance, I(STP)/m ² h bar	CO ₂ /N ₂ selectivity
PTMSP unmodified	-	2900	770	3.8
PTMSP + (1% EmimDCA in EtOH)	0.2	2930	660	4.4
PTMSP + (5% EmimDCA in EtOH)	3.1	1060	230	4.6

Relatively low CO₂ permeance loss and gradual increase during incorporation of IL in PTMSP

> Optimization of swelling method is in progress

Task 3.3 Process modelling and simulations

Task 3.3 Process modelling and simulation (NTNU, CNRS, EDF)

Objectives

- Develop membrane module simulation model for nanocomposite and SILM membranes.
 - Evaluate the energy requirement & membrane area for different set of operating conditions
- Develop concepts for utilizing the membranes in a post-combustion process.

Research Activities

- Development of permeability models based on the experimental results obtained in tasks 3.1 and 3.2 :
 - Analysis of the mass transfer characteristics (constant or variable permeability, coupling phenomena, role of temperature)
 - Modelling of the mass transfer performances for the different compounds through a general permeability relationship.
- Parametric simulation study of the performances for the two types of membranes
 - Review of the different modelling approaches
 - Influence of feed mixture composition (i.e. CO2 content)
 - Parametric study for a target CO2 purity and capture ratio
 - > Analysis of the energy (pressure ratio) / membrane area trade-off
- Modelling framework in a process simulation environment with energy integration aspects

Task 3.3 Process Modelling and simulations Status on Work at CNRS

Objectives

- Develop membrane module simulation model for hybrid membranes.
 - Model mass transfer with a reaction diffusion mechanism
 - Enquire about possible disturbances of process modelling (temperature, water impact, competing reaction...)
 - Evaluate the impact of inlet conditions variations

 Develop concepts for utilizing the membranes in a post-combustion process (Aspen Plus software)

HiPe

Task 3.3 Process Modelling and simulations Status on Work at CNRS

- Two transport mechanisms:
 - Sorption diffusion for N2 compound
 - Reaction diffusion for CO2 compound
- Main reversible chemical reaction:

 $CO_2 + H_2O \stackrel{+NH_2}{\longleftrightarrow} HCO_3^- + H^+$

- Water in the feed flow is a requirement
- Competing reactions between amine fixed sites and CO2 occur

HiPer

CENTRE NATIONAL DE LA RECHERCHE

Task 3.3 Process Modelling and simulations

• Two Transport mechanisms but only one equation:

$$J_{A} = -D_{A} \frac{dC_{A}}{dx} = \frac{D_{A}}{dx} (C_{A,f} - C_{A,p}) + \frac{D_{AC}}{dx} (C_{AC,f} - C_{AC,p})$$

Sorption diffusion mechanism Reaction diffusion mechanism

$$C_{AC,f} = \frac{KC_{A,f}C_T}{1 + KC_{Af}}$$
$$C_{AC,p} = \frac{KC_{A,p}C_T}{1 + KC_{A,p}}$$

- Important parameters :
 - K (equilibrium constant of the reaction) depends on temperature
 - C_T (Total carrier concentration) depends on nanoparticles volume fraction (5, 10, 25 wt%)
 - Carrier diffusion coefficient is considered as constant

HiPer Task 3.3 Process Modelling and simulations Status on Work at CNRS

- Membranes in a post-combustion process:
 - Aspen Plus software

CENTRE NATIONAL DE LA RECHERCHE

HiPer Task 3.3 Process Modelling and simulations Status on Work at CNRS

- Variation of the Input conditions:
 - Temperature \geq
 - Pressure in the upside part
- of the membrane
- Pressure in the downside part of the membrane
 - CO2 volume fraction in the feed flow
- Membrane area estimation
- Energy requirement evaluation (compressor, expender, vacuum pumping)
- Technical economical estimation (in collaboration with EDF)

ENTRE NATIONAL

Task 3.3 Process Modeling and simulations Status on Work at NTNU

NTNU will contribute with:

- Details on the facilitated transport model for the functionalized nanocomposite hybrid membranes.
- Providing experimental data to check the model at given conditions
- Compare the simulation results with their own in-house model, and discuss the impact of inlet conditions variations
- Contribute in discussions with respect to utilizing the hybrid

membranes in a post-combustion process.

HiPer

ENTRE NATIONAL E LA RECHERCHE

