Electrical Swing Adsorption for CO$_2$ Capture

Alan Chaffee* and Paul Webley+

*School of Chemistry, Monash University
+Dept Chemical & Biomolecular Engineering, Uni of Melbourne
Electrical Swing Adsorption for CO$_2$ Capture

Advanced Materials and Electric Swing Adsorption Process for CO$_2$ Capture

EU-Australian Cooperation, 7th Framework Project, ENERGY
The consortium is formed by: 5 universities (2 Australian), 2 R&D institutes, 3 SMEs and 2 large industries.

web-page:
www.sintef.no/projectweb/MATESA
The main idea

- Create a honeycomb material able to conduct electricity.
- Embed within this a material able to selectively adsorb CO\textsubscript{2}.
- Use this material in an innovative Electric Swing Adsorption (ESA) process.
- Evaluate the integration of the ESA process into the power plant.
- Make a full life cycle assessment of the entire capture process.
ESA Concept

Electrical Swing Adsorption

- A controlled (efficient), rapid, low cost regeneration process for conductive monolithic adsorbents

Desorption is the key to an efficient adsorption process
Objectives of Australian Study

Develop active carbon monoliths from brown coal
Embed this with a highly CO$_2$ selective adsorbent material
Evaluate performance at bench scale
Process modeling
Life cycle analysis

Victorian brown coal is a good carbon precursor
- it is very cheap
- it has very low inorganic content
Latrobe Valley Coal Fields

Flue gas composition:
- 60% N₂, 12% CO₂, 24% H₂O

Coal moisture content: ~ 60% (wb)

Loy Yang Mine and Power Stations
Heterogeneity of Victorian Brown Coal (VBC)
Active carbon monoliths from brown coal

Known features from work to date:

• Brown coal monoliths can be made.

• Active carbon from powdered brown coal has good reversible CO₂ capacity.

• Functionalised carbon monoliths improve CO₂ capacity.

• Active carbon monoliths prepared from polymers work for ESA.
Strength Development on Drying

Fig. 3. Drying behaviour of densified brown coals in still (●—●) and in forced draught (——) conditions. A, B and C = Morwell coal (Narracan bore) containing 5% magnesite. D = Maddingley coal. (5 h kneading in each case, 55% relative humidity, 20°C; forced draught of 0.5 m/s). D — = 10 mm pellets; ●—● = 3 mm pellets, both under forced draught conditions.

Coldry® Process*

* Environmental Coal Technologies Ltd

Active carbon monoliths from brown coal

Known features from work to date:

- Brown coal monoliths can be made.
- Active carbon from powdered brown coal has good reversible CO$_2$ capacity.
- Functionalised carbon monoliths improve CO$_2$ capacity.
- Active carbon monoliths prepared from polymers work for ESA.
Activated Carbons (ACs)

- High Surface Area & Porosity (wide PSD)
- Water tolerant (usually)
- Precursors inexpensive & readily available
- Surface chemistry easy to tailor
- Adsorption of gases on ACs is non-selective

AC Production

- Prepared by one of two activation methods:
 - **Physical Activation**: Pyrolysis, followed by partial gasification.
 1. **Pyrolysis** – Volatile Matter Removal
 2. **Partial Gasification** – Pore Development
 - **Chemical Activation**: Uses catalysts in addition to pyrolysis & partial gasification.
CO₂ adsorption of brown coal derived carbon

Active carbon monoliths from brown coal

Known features from work to date:

✔ Brown coal monoliths can be made.

✔ Active carbon from powdered brown coal has good reversible CO$_2$ capacity.

- Functionalised carbon monoliths improve CO$_2$ capacity.

- Active carbon monoliths prepared from polymers work for ESA.
CO$_2$ adsorption on functionalised VBC carbons

Polyethyleneimine (PEI)

CO$_2$ adsorption on synthetic mesoporous carbons

Mesoporous Carbon Synthesis

Amination procedure

Pellet products

PPSA on mesoporous carbon pellets
Active carbon monoliths from brown coal

Known features from work to date:

✔ Brown coal monoliths can be made.

✔ Active carbon from powdered brown coal has good reversible CO$_2$ capacity.

✔ Functionalised carbon monoliths improve CO$_2$ capacity.

• Active carbon monoliths prepared from polymers work for ESA.
Electrically heated reactor units

- Monoliths acquired from Mast Carbon Pty Ltd, UK
- Thermocouple reading on external surface of monolith
- Sealed in glass vessel or with heat shrink wrap
ESA Investigation

Protocol
- **Adsorption**
 - Feed gas (15% CO\textsubscript{2} in N\textsubscript{2}) at 80ml/min, ‘breakthrough’ at 35-40ml of CO\textsubscript{2} adsorbed
- **Electrical Stimulation**
 - Power requirements (10W)
 - ~65 sec to heat to 105\textdegree C (~5V, 2A)
- **Desorption**
 - Thermal evolution
 - Purge flow (4 – 8 ml/min), varied durations
- **Cooling**
 - High purge (cool) flow rates

S Delaney, PhD Thesis, 2009, Electrically Regenerable Carbon Adsorbents for CO\textsubscript{2} Capture
ESA Investigation

Protocol

- Adsorption
 - Feed gas (15% CO$_2$ in N$_2$) at 80ml/min, ‘breakthrough’ at 35-40ml of CO$_2$ adsorbed

- Electrical Stimulation
 - Power requirements (10W)
 - ~65 sec to heat to 105°C (~5V, 2A)

- Desorption
 - Thermal evolution
 - Purge flow (4 – 8 ml/min), varied durations

- Cooling
 - High purge (cool) flow rates

ESA Investigation

Protocol

- **Adsorption**
 - Feed gas (15% CO$_2$ in N$_2$) at 80ml/min, ‘breakthrough’ at 35-40ml of CO$_2$ adsorbed

- **Electrical Stimulation**
 - Power requirements (10W)
 - ~65 sec to heat to 105°C (~5V, 2A)

- **Desorption**
 - Thermal evolution
 - Purge flow (4 – 8 ml/min), varied durations

- **Cooling**
 - High purge (cool) flow rates

Amination procedure

ESA Investigation

Protocol
- **Adsorption**
 - Feed gas (15% CO₂ in N₂) at 80ml/min, ‘breakthrough’ at 35-40ml of CO₂ adsorbed
- **Electrical Stimulation**
 - Power requirements (10W)
 - ~65 sec to heat to 105°C (~5V, 2A)
- **Desorption**
 - Thermal evolution
 - Purge flow (4 – 8 ml/min), varied durations
- **Cooling**
 - High purge (cool) flow rates

Functionalisation
- Improved CO₂ adsorption capacity
- Slower breakthrough time
- Working capacity slightly increased for functionalised sample
ESA test unit - Effect of functionalisation

Purity and Recovery of Desorbed CO₂

- Increased rate of recovery for functionalised sample.
- Electrical stimulation higher (~30%) to effect same temp increase
 - ~30% increase in resistivity for functionalised sample
Active carbon monoliths from brown coal

Known features from work to date:

✔ Brown coal monoliths can be made.

✔ Active carbon from powdered brown coal has good reversible CO$_2$ capacity.

✔ Functionalised carbon monoliths improve CO$_2$ capacity.

✔ Active carbon monoliths prepared from polymers work for ESA.
ESA Equipment – Mk 2 and 3

Bench scale testing

Under construction

4-bed testing
Computational Fluid Dynamics

Dimension of Monolith

- Diameter: 20mm
- Length: 200mm
- Wall: 0.525mm
- Channel: 1.05mm
- CPSI: 286
- Open area: 42%

Due to symmetry, need to study the velocity of just 1/8 of monolith
ESA Concept

Electrical Swing Adsorption

• A controlled (efficient), rapid, low cost regeneration process for conductive monolithic adsorbents

Desorption is the key to an efficient adsorption process

Thank you!
Acknowledgement

The authors wish to acknowledge financial assistance provided by Brown Coal Innovation Australia Limited, a private member-based company with funding contracts through Australian National Low Emissions Coal Research and Development Ltd (ANLEC R&D) and the Victorian State Government.