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The role of CCS economics 

• Economics is one of the four elements of quadruple bottom line 

business decision making 

• Decisions also need to ensure sustainable management of risk 

and reliability 

• Technology assessments used to support decisions on 

technology selection, capital investments, marketing 

strategies, R&D priorities, and related activities. 

– Understand where and what the cost drivers are to enable 

development of novel and creative ways to reduce cost. 



Measures of CCS economics 

• Indirect 

– Energy penalty 

– CO2 avoided/emission intensity 

 

• Direct 

– Cost/Present Value (PV, $) 

– Cost of CO2 avoided/captured/injected (($/t CO2 avoided/captured) 

– Production cost (eg. LCOE $/MWh, $/ton steel etc.) 

 



Techno-economic assessments 

• Compare costs of alternative options. 

• Differences reflect different configurations and operating 

alternatives.  

– Relativities just as important as absolute values. 

• Rely on “technology-levelling” assumptions.  

– Process assumptions e.g. plant size, fuel type, capacity factor, 

reference plant. 

– Economic assumptions e.g. cost of capital, cost year, discount 

rate, energy/fuel costs, nominal vs. real costs, project life. 

• Require appropriate technology benchmark. 

 



Reducing capture costs 

• Reduce Capital costs 

– cheaper equipment 

– more efficient (smaller) 

equipment 

• Reduce Operating costs 

– more efficient equipment 

– less energy demand 

• Reduce energy penalty 

– use improved technologies 

– heat and process integration 

 

 

• Increase CO2 captured  

– improve capture efficiency 

– improve capture rate 

• Reduce CO2 emitted 

– improve process efficiency 

– change fuel 

• Increase energy efficiency 

– heat and process integration 
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Process intensification eg. 
hybrid technologies, 
chemical looping etc. 

Adsorption 

Membranes 

Solvents 

Technology assessment 

Capture economics 



Adapted from: Stevens et al. Post-combustion Carbon Dioxide Capture Technologies for Brown Coal Power Generation - 

Final report for Brown Coal Innovation Australia (Condensed Version).CO2CRC Publication Number RPT11-2962 

Technology comparison (500 MW black Australian 

coal power plant) 
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Solvent improvement: size and capital costs 
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Adapted from: Raksajati et al (2013) ‘Reducing the cost of capture  from flue gas using aqueous chemical absorption’ IECR  52 16887 



Solvent improvement: reducing energy 
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Solvent properties improvement 
• Good stability to SOx and NOx 

• High working capacity  

• High solvent concentration 

Packing for slurry system 
• Prevent plugging 

• Maintain effective separation 

Low-grade heat utilisation 

Solvent properties 

improvement 

+ 



Membrane improvement: size and cost 
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Adapted from: Ho et al (2008) ‘Reducing the cost of capture  from flue gas using membrane technology’ IECR  47 1562-1568 
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Membrane improvement: compression energy 
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Adapted from: Ho et al (2008) ‘Reducing the cost of capture  from flue gas using membrane technology’ IECR  47 1562-1568 

Ideal 

Current 

commercial 

Ideal membrane should have 

CO2 selectivities of 40 and 

permeances of at least 2000 

GPU (operated under vacuum 

conditions) 



Adsorption development: compression energy 
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Adsorption improvement: size, energy, cost 
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Ideal adsorbent should have CO2 

selectivities of at least 50 and 

working capacity values of over 7 
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Process intensification: Hybrid capture 

• Combination of adsorption and solvent technologies, 

membrane and solvent, adsorption and cryogenic etc.  
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Energy and costs of VSA-solvent hybrid   
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Effects of emission source on costs 
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Adapted from: Ho et al (2010) Comparison of MEA capture cost for low CO2 emissions sources in Australia, IJGGC 5(1):49-60. ·   

CO2 concentration 
9 %      13%  22%          22%    30% 



Parameter Solvents Membranes Adsorption 

Capital cost 

Energy requirement 

Process complexity 

Technology readiness 

Environmental issues 

Comparison of capture development options 



Other factors to consider   

• Tolerance to impurities (SOx, NOx, water) 

• Process configuration design and optimisation 

• Optimising operating conditions 

• Heat integration 

• Load following and process flexibility 



Conclusions from comparative costing 

• Technology improvement driven by reductions in: 

– Energy usage 

– Capital costs (size of equipment, level of pretreatment) 

– Operating costs (materials replacement) 

• Application dependent 

– No silver bullet 

– Technology specific intensification and integration 

• Relies on consistent benchmarks and assumptions 
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