

Carbon Composite Adsorbents for Post Combustion CO₂ Capture

Presenter: Yonggang Jin Research Team: Shi Su, Yonggang Jin, Ramesh Thiruvenkatachari, Jun Bae, Xinxiang Yu

HiPerCap EU-Australia workshop, Melbourne, 25-27 March 2015

ENERGY FLAGSHIP www.csiro.au

Lab Scale Study – Carbon Fibre Composites

Fabrication and Testing of Lab Size Honeycomb Carbon Fibre Composite Monoliths

Molding equipment

3 processing furnaces

Adsorbent Testing Equipments

Length: 80mm, Dia: 30mm, Number of

Microscopic morphology

Adsorbent Characterisation Breakthrough Test Rig with Lab Scale Adsorption Chamber

Solid Carbon Sorbent CO₂ Capture Technology

- Based on honeycomb carbon composite monoliths
 - ✓ Enable CO_2 capture with low pressure drop
 - ✓ Potentially low energy consumption for adsorbent regeneration
 - Lower heat capacity of solid adsorbents than liquid solvents
 - Physisorption lower heat of CO₂ adsorption
 - Utilisation of flue gas waste heat for CO₂ desorption
 - \checkmark Tolerant to moisture, SO_x and NO_x
 - Avoid flue gas pre-treatment prior to CO₂ capture; this is important as there are no FGD and SCR DeNO_x facilities at coal fired power plants in Australia

Evolutionary Journey

Lab scale CO₂ capture (2006 - 2008)

- Proof-of-Concept
- Capture studies using simulated flue gas

Large scale CO₂ capture with regeneration (2009-2011)

• CO₂ capture combined with thermal and vacuum regeneration

Lab scale studies

Development of next generation carbon composite adsorbents (2010 – present)

> Lab scale study New regeneration process with enhanced heat transfer (2011 - present)

NEXT

CO₂ capture site

trials

(2011 - 2014)

• To evaluate CO₂ capture and regeneration under real flue gas conditions

Large Scale Capture-Regeneration Studies

CF composites

Lab size adsorbent (Ø 30mm)

Large size adsorbent (Ø 123 mm)

Large scale moulding unit for composite fabrication

CO₂ adsorption Isotherms at 25 °C

Large scale CO₂ capture-regeneration unit

- Two 2 meter long columns
- Repetitive capture & regeneration capability
- Thermal and vacuum swing regeneration

R. Thiruvenkatachari, S. Su et al., International Journal of Greenhouse Gas Control, 2013, 13, 191-200.

Summary of Large Scale Study Results

Adsorption Breakthrough Profile Showing CO₂ capture at Real Time

- CO₂ capture carried out at ambient temperature and pressure
- Simulated flue gas consisting of 13% CO_2 , 5.5% O_2 and balance N_2
- CO₂ adsorption efficiency > 97% from adsorption breakthrough

R. Thiruvenkatachari et al., International Journal of Greenhouse Gas Control, 2013, 13, 191-200.

Thermal and Vacuum Regeneration

- Residual CO₂ inside column after thermal regeneration
- Vacuum regeneration alone is ineffective
- Heating is essential to desorb CO₂
- Combined thermal and vacuum regeneration with pure product purge is most effective
- Very high purity of recovered CO₂
- CO₂ recovery > 95%

Combined Thermal and Vacuum Regeneration

Time, h:m:s

Site Trials of Prototype CO₂ Capture Unit

- Objective
 - to evaluate the stability of honeycomb CF composite monolithic adsorbents using the real flue gas at Vales Point Power Station
 - to test the effect of real flue gas characteristics on the operation and performance of the CO₂ capture unit

Site installation, commissioning and testing

Opening of real flue gas to test unit for first time at Vales Point Power Station

Fully commissioned solid sorbent prototype unit at Vales Point power Station

Individual sensors to measure SOx, NOx, CO and CO_2 for accurate measurement

Site Trials of Prototype CO₂ Capture Unit (continued)

Site trial testing involving two main scenarios

- CO₂ capture performance with flue gas pre-treatment
- CO₂ capture performance without flue gas pre-treatment

Performance of carbon composite solid adsorbents evaluated:

- Stability of adsorbents to real flue gas evaluated from over 200 tests
- CO₂ removal performance
- Solid sorbent performance to removal of other gases apart from CO₂

Results of Site Trials

✤ Adsorption & desorption: flue gas with pretreatment

Results of Site Trials (continued)

✤ Adsorption & desorption: flue gas without pretreatment

Results of Site Trials (continued)

Adsorbent stability

- > Excellent stability to real flue gas over 200 site tests
 - CO₂ adsorption efficiency consistently over 98%
 - CO_2 desorption efficiency between 90-95%.

Development of New-Generation Carbon Composite Adsorbents

Objective

- Enhance CO₂ adsorption capacity (smaller footprint, lower capital and operating costs)
- > Lower the cost of adsorbents using local biomass waste and brown coals

New-generation carbon composite adsorbents

- Carbon nanotube (CNT) modified carbon composite monoliths
- Biomass derived carbon composites (HiPerCap WP2)

CNT Composites - Source of CNTs

• CPD &CCI are home made, Com the commercial product

Specifications of as-produced/as-received CNTs

CNT samples	Diameter, D (nm)	Length, L (µm)	Alignment	Purity (%)	Aspect ratio, <i>L/D</i>
CPD	10	300	highly aligned	99.8	30,000
CCI	80	1500	aligned, some branching	97	18,750
Com	10-20	5-15	very tangled	95	400-1,500

Preparation of CNT Composite Adsorbents

Schematic of composite preparation procedures

Prepared CNT composite monolith

The current preparation method (physical activation with CO₂) is simpler and more economic than chemical activation (e.g. with KOH) and functionalisation with basic groups

SEM Morphology

Morphology and macropore size distributions of CNT composites

Morphology of activated phenolic resin

Y. Jin, S. Hawkins, C. Huynh, S. Su, Energy Environ. Sci., 2013, 6, 2591-2596.

Comparisons of CNT and CF composites

CO₂ uptake at 25 °C

Narrow micropore size distributions

CNT composites exhibit much higher CO₂ adsorption capacities

- CO_2 uptake: 15.9 wt% at 25 °C and 1 bar, and 5.2 wt% at 25 °C and 0.15 bar
- Up to 30% increase in CO₂ adsorption capacity at 25 °C and 1 bar
- Over 45% increase in CO₂ adsorption capacity at 25 °C and low CO₂ pressures (0.15 bar)

Y. Jin, S. Hawkins, C. Huynh, S. Su, Energy Environ. Sci., 2013, 6, 2591-2596.

Adsorption Selectivity & Kinetics

- CO₂/N₂ selectivity: 32.6 at 273 K and 19.8 at 298 K
- Fast adsorption kinetics observed in the CNT composites

Y. Jin, S. Hawkins, C. Huynh, S. Su, Energy Environ. Sci., 2013, 6, 2591-2596.

Conclusions

- Porous carbon composite monoliths show great promise in post-combustion CO₂ capture.
- Site trials demonstrate the excellent stability of the carbon composite adsorbent towards real flue gas.
- New-generation CNT carbon composite adsorbents exhibit significantly enhanced CO₂ uptake particularly under low CO₂ pressures, which is of more relevance for flue gas applications.

Acknowledgements

- Funding supports from:
 - Coal Innovation NSW for the site trials of prototype CO₂ capture unit at the Vales Point power station
 - ANLEC R&D for the development of CF/CNT composites
 - CSIRO
- Site support from Delta Electricity

Thank you

Dr Shi Su Senior Principal Research Scientist Team Leader

Phone: 07 3327 4679 Email: shi.su@csiro.au Web: www.csiro.au

ENERGY FLAGSHIP www.csiro.au

