FME HighEFF

Centre for an Energy Efficient and Competitive Industry for the Future

Deliverable D3.1_2017_04 Numerical framework for power cycle simulation and optimization

Delivery date: 2017-11-30

Organisation name of lead beneficiary for this deliverable:

SINTEF Energy Research

HighEFF- Centre for an Energy Efficient and Competitive Industry for the Future is one of Norway's Centre for Environment-friendly Energy Research (FME).			
Project co-funded by the Research Council of Norway and Industry partners.			
Host institution is SINTEF Energi AS.			
Dissemination Level			
PU	Public	Х	
RE	Restricted to a group specified by the consortium		

Deliverable number:	D3.1_2017.04
ISBN number:	-
Deliverable title:	Numerical framework for power cycle simulation and optimization - FlexCS
Work package:	WP3.1
Deliverable type:	Presentation
Lead participant:	Brede Hagen

Quality Assurance, status of deliverable				
Action	Performed by	Date		
Verified (WP leader)	Trond Andresen	30.11.2017		
Reviewed (RA leader)	Trond Andresen	30.11.2017		
Approved (dependent on nature of deliverable) ^{*)}	Trond Andresen	08.12.2017		

*) The quality assurance and approval of HighEFF deliverables and publications have to follow the established procedure. The procedure can be found in the HighEFF eRoom in the folder "Administrative > Procedures".

Authors				
Author(s) Name	Organisation	E-mail address		
Brede Hagen	SINTEF Energy Research	Brede.hagen@sintef.no		
Trond Andresen	SINTEF Energy Research	Trond.andresen@sintef.no		

Abstract		

Numerical framework for power cycle simulation and optimization - FlexCS

The numerical framework: Flexible cycle simulator (FlexCS)

What is FlexCS?

- In-house "Cycle simulator" with flexible building blocks/component models
- Access to fluid properties, correlations for heat transfer and pressure drop and numerical methods
- Medium-high user threshold to assemble models (code written in C)
- Low-Medium user threshold to run parametrized models (user interface is text file or Excel)
- Cycle model can choose HX-models of different levels of detail according to the task

Why rely on in-house models?

- Required features not available in commercial software
 - Components models
 - System models
 - Off-design behaviour
 - Optimization
- Tailored to best address the problem
 - Direct implementation of state-of-the-art knowledge (correlations, fluid properties)
 - Models for novel and new components, adding new correlations when required
 - Free choice of optimization object function and constraints
- Full control of problem formulation and solution
 - Equations describing fundamental behaviour
 - Correlations for heat transfer, pressure drop, void fraction
 - Parameterization and discretization
- Our in-house models are built to predict behaviour of fluids, components and systems
- In-house models are used when available commercial software is inadequate

System Solver – NLPQL*

- A constrained non-linear optimisation solver
- Applied in all power cycle models in FlexCS
 - For balancing the system and optimizing the process/HX geometry
- Typical variables: Working fluid mass flow, pressure levels, heat exchanger geometry
- Typical constraints:
 - Avoid two-phase expansion, ensure a closed cycle, maximum allowed heat exchanger area
- Flexible selection of objective function
 - Minimize weight, maximize net power etc.

UHighEFF * Schittkowski K (1986) NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems. Annals of Operations Research 5(2):485–500.

Component models (in addition to heat exchangers)

- Compressors / Pump
 - Isentropic and isochoric
- Expanders / Turbine (Three alternatives)
 - Fixed isentropic efficiency
 - Efficiency curve for a radial expander with Variable Inlet Guide Vanes (VIGV)
 - 1D radial turbine model under development
 - Valve
 - Isenthalpic
 - Separators
 - Liquid receiver, Suction drum, Flash tank
- Piping
 - FlexHX tube model
- Mixers and splitters
 - Adiabatic

Flexible heat exchanger model selection

- Simple heat exchanger models
 - Pinch point or UA-based models
- Simplified geometry based models
 - Independent of heat exchanger type
 - Characterize the heat exchanger by:
 - Tube diameter, length and number of tubes
 - Obtain estimates for local heat transfer coefficients and pressure drop and total heat transfer area
 - FlexHX flexible heat exchanger library*
 - Detailed models based on geometry and local fluid behaviour.
 - Heat exchanger types:
 - Printed circuit, Plate type, Shell and tube, Tube-in-fin, Finned tube, ...

Skaugen Geir, et. al (2014). DESIGN AND OPTIMIZATION OF WASTE HEAT RECOVERY UNIT USING CARBON DIOXIDE AS COOLING FLUID. ASME Power 2014 Conference

* Skaugen G., Kolsaker K., Walnum H. T., Wilhelmsen Ø. (2013) A flexible and robust modelling framework for multi-stream heat exchangers. Computers and Chemical Engineering 49, 95–104.

Different level of detail of heat exchanger models for different tasks

- Pinch-point or UA-based models
 - Estimate power production potential from a given heat source
 - Screening of heat to power technologies for a given application
 - Working fluid screening
- Simplified geometry models
 - Working fluid screening with few candidate working fluids
 - More fair comparison than UA-based models as pressure drop and heat transfer coefficients are based on geometry and fluid properties
 - Initial cycle evaluation of a more detailed study
 - Initial off-design evaluation
 - Especially when HX-type is not determined
- Detailed geometry based models
 - Detailed case studies taking into account heat exchanger type and size
 - Off-design evaluation
 - Component sizing and optimization

- Single stage direct heat recovery systems
 - With or without internal heat recovery _
 - Several versions exists in terms of level of details _

WHRU

- Pinch point analysis •
- **UA-based analysis** •
- Geometry based FlexHX models
- Expander efficiency curves •

- Single stage indirect heat recovery systems
 - With or without internal heat recovery
 - Developed in HighEFF WP3.1 in 2017
 - Applied by summer researcher Goran Durakovic for analysis of heat recovery from Aluminium industry

- Combined heat and power cycle
 - Developed in KPN EFFORT

4

- Detailed heat exchanger models from FlexHX or
- UA-based heat exchanger models

- Dual stage heat recovery systems*
 - Developed in KPN EFFORT
 - A bottoming cycle model for CO₂ as working fluid
 - Detailed heat exchanger models from FlexHX
 - Also applied in industry projects investigating offdesign conditions and part load

* Walnum H. T., Nekså P., Andresen T. (2013) Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions. *Computers and Chemical Energy 59, 513–520*.

U High**EFF**

Summary of available models

More advanced heat exchanger models towards right

	Pinch analysis	UA-based analysis	Simplified geometry	FlexHX HX models
Single stage direct heat recovery	YES*	YES*	YES*	YES
Single stage indirect heat recovery	YES*	YES	NO	NO
Combined heat and power cycle	NO	YES	NO	YES
Dual stage/ Multiple pressure level	NO	NO	NO	YES (CO ₂ bottoming cycle)

* Recently developed

User interface

Excel

Text file

OPTIMIZATION VARIABLES:

#-varmfl_sink -mfl_sink_min:5.0 -mfl_sink_max:20.0 Fixed

-p_wf_highset:55.0E5 # Fixed high pressure if not variable -varp_wf_high -p_wf_highmin:50.0E5 -p_wf_highmax:60.0E5

-mfl_wf_set:0.8 # Fixed mass flow if not variable -varmfl_wf -mfl_wf_min:0.5 -mfl_wf_max:3.5

-T_wf_highset:130 -varT_wf_high -T_wf_highmin:100 -T_wf_highmax:150

Define low pressure directly or inderictly by condensation temperature #-p_wf_lowset:l0e5 #-varp_wf_low -p_wf_lowmin:3e5 -p_wf_lowmax:14e5

-T_wf_condset:23.5 -varT_wf_cond -T_wf_condmin:13 -T_wf_condmax:40

CONTRAINTS -evap_min_DT:2 -cond_min_DT:2 -minSourceTemperature:80 -max_total_A_simple_hx:51.2927 #-fixed_subcooling:0 -expInletSuperheat: -expOutletSuperheat:

######## NLPQL (solver) parameters -nlmaxit:30 -nlobjscale:1.0E-4 # Scale factor for objective function -nlopdopt:2 # Method for numerical differentiation. 0: Forward, 1: Bacwka Grd, 2: cantral differentiation -nleps:1E-6 # Sum of constraint violation ~ sqrt(nleps)

FlexCS – Recent development

- Developed simplified power cycle models for screening purposes
 - Single stage cycle with pinch point or UA-based HX models
 - Development of a simplified geometry based HX model
 - Tested in the single stage cycle model
 - These models will be applied next year in HIGHEFF WP2.1 for evaluating the most promising heat to power technologies described and discussed in 2017 activities
 - Power cycle models of more realistic layout
 - Indirect heat recovery system model
- Fundamental development
 - Added new correlations for heat transfer and pressure drop relevant for natural working fluid mixture

Example of a UA-based analysis for working fluid screening.

Similar analysis can be performed for different heat to power technologies

FlexCS – Future work

- Develop simplified models of other heat to power technologies
 - Dual stage/dual pressure systems
 - Absorption cycles (Kalina Cycle for instance)
 - Can be used for a quantitative comparison between heat to power technologies
- Further work on simplified geometry heat exchanger models
 - Currently under development
 - Expander model
 - Further development of 1D radial turbine model
 - Addition of efficiency curves for scroll and screw expander
- Develop heat pump models
 - Different technology, but applies similar components

High**EFF**

Additional technical slides

• The following slides describe the structure in how to build and solve a system model

Building and solving system model – The API

- Add components
 - Describing geometry and performance parameters

FCSHx_createFixedUA("evaporator"); FCSSystem_registerHx(system,evaporator); FCSExpander_createIsentropic("expander", expInlet, expOutlet, eta, nstages) FCSSystem_registerExpander(system, exp);

U High**EFF**

Building and solving system model – The API

- Add components
 - Describing geometry and performance parameters
- Add the streams
 - Contains fluid properties (p, h, \dot{m})
 - Connects the components

FCSStream_setPT (evaporatorInlet, PRefHigh, TRefHigh); FCSSystem_appendStream (system, evaporatorInlet);

...

Building and solving system model – The API

- Add components
 - Describing geometry and performance parameters
- Add the streams
 - Contains fluid properties (p, h, m)
 - Connects the components
- Set calculation sequence
 - Define starting point

...

FCSHx_solveHx(evaporator, savedata); FCSExpander_CalculateExpander (expander); FCSHx_solveHx(condenser, savedata); FCSCompressor_CalculateCompressor (compressor)

Building and solving system model – The API

- Add components
 - Describing geometry and performance parameters
- Add the streams
 - Contains fluid properties (p, h, m)
 - Connects the components
- Set calculation sequence
 - Define starting point
 - Set solver parameters
 - Iteration streams
 - Variables
 - Equality and inequality constraints
 - Objective function

