FME HighEFF

Centre for an Energy Efficient and Competitive Industry for the Future

Deliverable D5.2_2020.05

Cost-efficient thermal energy storage for increased utilization of renewable energy in industrial steam production – CETES

Delivery date: 2020-10-22

Organisation name of lead beneficiary for this deliverable:

AIT

HighEFF- Centre for an Energy Efficient and Competitive Industry for the Future is one of Norway's Centre for Environment-friendly Energy Research (FME). Project co-funded by the Research Council of Norway and Industry partners. Host institution is SINTEF Energi AS.				
Dissemination Level				
PU	Public	Х		
RE	Restricted to a group specified by the consortium			
INT	Internal (restricted to consortium partners only)			

Deliverable number:	D5.2_2020.05	
ISBN number:		
Deliverable title:	Cost-efficient thermal energy storage for increased utilization of renewable energy in industrial steam production – CETES	
Work package:	WP 5.2 Novel emerging concepts	
Deliverable type:	Presentation	
Lead participant:	AIT	

Quality Assurance, status of deliverable					
Action	Performed by	Date			
Verified (WP leader)	Arne Petter Ratvik	15.12.2020			
Reviewed (RA leader)	Ingrid Camilla Claussen	15.12.2020			
Approved (dependent on nature of deliverable)*)					

*) The quality assurance and approval of HighEFF deliverables and publications have to follow the established procedure. The procedure can be found in the HighEFF eRoom in the folder "Administrative > Procedures".

Authors					
Author(s) Name	Organisation	E-mail address			
Anton Beck	AIT	Anton.Beck@ait.ac.at			
Alexis Sevault	SINTEF Energi	Alexis.sevault@sintef.no			
Gerwin Drexler-Schmid	AIT	gerwin.drexler-schmid@ait.ac.at			
Michael Schöny	AIT	michael.schoeny@ait.ac.at			
Hanne Kauko	SINTEF Energi	Hanne.kauko@sintef.no			

Abstract

This deliverable is a presentation of results from the NEC project CETES - Cost-efficient thermal energy storage (TES) for increased utilization of renewable energy in industrial steam production – presented at the HighEFF Annual Workshop. The presented approach allows for detailed cost analysis of the individual TES technologies, yielding important decision-support for cost-efficient TES. The case studies show that case-specific cost estimations are necessary to identify the most cost-efficient TES solution.

Cost-efficient thermal energy storage for increased utilization of renewable energy in industrial steam production – CETES

AIT

SINTEF Hanne Kauko Alexis Sevault

<u>Anton Beck</u> Gerwin Drexler-Schmid Michael Schöny

😃 High**EFF**

Norges forskningsråd

- Share of **fluctuating energy sources** increases in future decarbonized, electricity driven energy systems
- Active market participation from industry required for stable and flexible electricity supply.
- TES + P2H can **decrease energy costs** by shifting the electricity consumption to low-cost periods.
- Short payback time and profitability are key criteria for investment decisions
- → Problem: How can we identify the most cost-efficient TES system?

😃 High**EFF**

- Most approaches for cost-optimal storage integration consider only storage capacity as a cost driver
- Especially for industries, heat load requirements are a crucial factor for storage costs
- Also available **storage temperature range** and **thermal requirements** have a significant impact on storage costs

Cost functions including all these requirements are necessary!

FORSKNINGS-

SENTER FOR MILJØVENNLIG ENERGI Norges forskningsråd

CETES – Storage Technologies

Molten salt storages

Latent Heat Thermal Storages (LHTS)

CETES – How?

Equipment costs from Database:

- Piping,
- Vessels, Tanks,
- Valves,

...

- Instrumentation,
- Insulation,
- Pumps, Motors,
- Storage Material,

Requirements & Energy Market:

- Steam demand (temperature, heat flow)
- Energy markets (fluctuating energy prices)

CETES – How?

Cost function algorithms:

- 1. Calculate costs for lots of different storage configurations \rightarrow Datapoints
- 2. Eliminate suboptimal datapoints (if necessary)
- 3. Linear / Polynomial fit for optimal datapoints

costs = f(capacity, heat load)

Optimization Model

- Mathematical programming (=deterministic) \bullet
- (Non-)linear / quadratic cost functions \bullet
- Simple models
- Fast to solve

Evaluation of Results

The outputs of the optimization model are

- Storage capacities,
- Maximum heat loads and
- Optimal operation (Load profiles)

No details for the individual equipment such as piping, vessel geometry etc.

→ Details are calculated using cost function algorithms

SENTER FOR MILJØVENNLIG

Norges forskningsråd

Bayer process for producing alumina from Bauxite

Constant steam demand: 900 MW – 200°C saturated steam

Steam generation temperature: 300°C

Temperature range for storage integration: 200-300°C

Spot-market prices (Brazil – selected weeks from January (dry season) and March (wet season) 2020)

Dry Season

Wet Season

CETES – Example 2

Brewery

Varying steam demand: 105 °C saturated steam

Steam generation temperature: 155 °C

Temperature range for storage integration: 105-155°C

<u>Spot-market prices</u> (Belgium, 22.01.2020, repeated for each day)

FORSKNINGS-SENTER FOR MILJØVENNLIG ENERGI

CETES – Example 1

U High**EFF**

3500 HX costs (€) insulation costs (€) 3000 motor costs (€) ner steel parts costs (€) ot pump costs (€) 2500 sensor costs (€) storage material costs (€) tube costs (€) Costs (M€) 2000 valve costs (€) 85% Brewery 139 vessel costs (€) 86% 1500 7 -HX costs (€) insulation costs (€) 61% 1000 66% 6 motor costs (€) 13% 85% other steel parts costs (€) 86% pump costs (€) 500 47% 55% 5 64% 14% sensor costs (€) 10% 9% 87% 17% storage material costs (€) 0 tube costs (€) Costs (M€) 2 3 2 2 3 1 3 1 2 1 3 1 valve costs (€) LHTS Ruths Molten Salt Concrete vessel costs (€) 76% 3 79% 2 43% 1: low C / low HL 46% 49% 57% 2: high C / low HL 1 70% 46% 54% 30% 39% 6% 3: high C / high HL 23% FORSKNINGS 41% SENTER FOR MILJØVENNLIG 1 2 3 1 2 3 1 2 3 1 2 3

LHTS

Ruths

Molten Salt

Concrete

Bayer process for producing alumina from Bauxite

ENERGI Norges forskningsråd

FORSKNINGS-SENTER FOR MILIØVENNLIG ENERGI Norges forskningsråd

CETES – Example 1

Bayer process for producing alumina from Bauxite

CETES – Example 1

8 Concrete Storage C A A O Electricity price (Cent/kWh) 1500 Electric Boiler Steam demand heat load (MW) 1000 **Electricity price** ----500 0 -500 Brewery 4450 4500 4650 4400 4550 4600 4700 time (h) 6 4.0 (0.4 3.5 Cent/kMh) 3.0 C heat load (MW) 2 LHTS - HDPE price 2.5 Concrete Storage 0 HTHP Electricity **Electric Boiler** Steam demand 1.5 -2 Electricity price ORSKNINGS 1.0 SENTER FOR MILJØVENNLIG 3680 3690 3700 3710 3720 3730 3740 ENERGI time (h) Norges forskningsråd

Bayer process for producing alumina from Bauxite

😃 High**EFF**

- The new approach allows for detailed cost analysis of the individual TES technologies
- It yields important decision-support for cost-efficient TES
- The case studies show that case-specific cost estimations are necessary to identify the most cost-efficient TES solution
- The available temperature range for TES is especially crucial:
 - Ruths: vessel wall thickness rapidly increase with higher storage temperatures
 - LHTS: the availability of appropriate PCMs with both low costs and high volumetric energy density is a decisive factor regarding cost-effectivity.
- Case 2 shows that heat load requirements can be a major cost driver for LHTS and concrete storages due to large amounts of steel tubes

CETES Outlook

- Optimization model can easily be extended for PV or wind turbines for local power generation
- Cost functions can be used in other storage integration problems

Thank you very much! Questions?

USHighEFF