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Abstract 
This report analyzes two case studies on energy storage based on industrial visits. In the first case study, 
we analyze the use of a hot water tank in combination with a waste incineration plant and peak-heating 
boilers to supply heat in a district heating network, where the electricity prices and the heat demand are 
uncertain. In the second case study, we analyze the operation of two thermal storage devices (short-
term and seasonal storage, respectively), where surplus heat is stored and then upgraded by heat pumps 
to satisfy the heat demand of an agricultural school in combination with peak-heating boilers. In this 
second case study, the uncertain variables are the heat supply, the heat demand and the electricity 
prices. For each case study, we show how to model the problem, which control policy is currently used 
by industry and alternative control policies that are worth considering. 
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Abstract

This report analyzes two case studies on energy storage based on in-
dustrial visits. In the first case study, we analyze the use of a hot water
tank in combination with a waste incineration plant and peak-heating
boilers to supply heat in a district heating network, where the electric-
ity prices and the heat demand are uncertain. In the second case study,
we analyze the operation of two thermal storage devices (short-term and
seasonal storage, respectively), where surplus heat is stored and then up-
graded by heat pumps to satisfy the heat demand of an agricultural school
in combination with peak-heating boilers. In this second case study, the
uncertain variables are the heat supply, the heat demand and the elec-
tricity prices. For each case study, we show how to model the problem,
which control policy is currently used by industry and alternative control
policies that are worth considering.

1 Introduction

The problem of storing energy now to be used later arises in such a wide range of
settings that it has become a foundational problem, as ubiquitous in energy sys-
tems as inventory theory is in operations management. Storage problems have
to be solved in the presence of different types of uncertainty: uncertain gen-
eration from renewable sources, stochastic (and heavy-tailed) real-time prices,
infrequent failures of generators or transmission lines, as well as inaccurate fore-
casts of temperatures and loads (Powell, 2014). In this report, we examine
some control strategies used by industry to manage energy storage systems in
the face of these sources of uncertainty. We use two case studies based on indus-
trial visits to provide a framework to model the problem, explain which control
strategy is currently used by industry and alternative control policies that are
worth considering.
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2 Literature review

Energy storage is a form of inventory problem, which is the original stochastic
control problem used by Bellman to motivate his work on dynamic program-
ming (Bellman et al., 1955). Several researchers have focused on finding prov-
ably optimal control policies for special classes of storage/inventory problems.
For example, Harsha and Dahleh (2014) showed that for storage problems with
stochastic supply and demand, one storage device, and time-varying prices, the
optimal control policy has a dual threshold structure. Other works on struc-
tural analysis of optimal polices for storage problems are Zhou et al. (2016,
2019); van de Ven et al. (2013). Alternatively, most papers aim at designing
suboptimal, but effective, solution strategies for a wide range of settings. These
solution approaches include policy function approximations (Warrington et al.,
2012; Han et al., 2016), cost function approximations (Simao et al., 2017; Tha-
lassinakis and Dialynas, 2004), model predictive control (Arnold and Andersson,
2011), and approximate dynamic programming (Durante et al., 2017). Powell
and Meisel (2015) have shown that all classes of policies may work best for a
given energy storage problem, depending on the characteristics of the problem.
For this reason, when solving a particular problem, it is important to screen
over different classes of policies to find the one that works best.

3 Case study: A district heating network

This case study is based on the visit to the incineration plant in Heimdal, which
uses residual waste to heat the water used for district heating in the city of
Trondheim. From Heimdal, hot water runs in pipes to large parts of the city.
Among the institutions receiving district heating are St. Olav’s Hospital, the
Norwegian University of Science and Technology, Lerkendal Stadium, Nidaros
Cathedral, and most residential areas in the city.

In this problem, an operator of a district heating network must satisfy a
recurring energy demand with a time-varying supply of energy from a waste
incineration plant, unlimited supply of energy from electric boilers that consume
electricity from the grid at a stochastic price, and a local thermal storage device.
The objective is to control the system to minimize the cost of electricity over
time. The PI&D diagram in shown in Appendix A. However, we will model a
simplified version of this problem, whose configuration is illustrated in Figure 1.
This simplified model in terms of energy flows will allows us to be more precise
when modeling the problem and describing the control policy currently used.

3.1 Mathematical model

To represent sequential energy allocation decisions in the context of this en-
ergy storage problem, we follow the modelling framework outlined in Powell
(2019), which includes five key components: state variables, decision variables,
exogenous information, state transition function, and objective function.
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Figure 1: Illustration of the energy storage problem. There are four nodes:
energy supply, the grid, storage, and demand; three exogenous variables: energy
generation, the price of electricity, and the demand; and five decision variables
representing energy allocations at each time step.

3.1.1 State variables

The state xt of the system at time t contains all the information we need to
know (from history) to model the evolution of the system and that is relevant
for future optimization. We distinguish between the initial state x0 and the
dynamic state xt for t > 0. The initial state contains all static parameters and
initial values of dynamic parameters. The dynamic state xt contains information
that is evolving over time.

In this problem, the initial state x0 contains the initial values of energy
supply E0 (in MWh), energy demand D0 (in MWh), electricity price P0 (in
kr/MWh) and storage level B0 (in MWh). Additionally, it includes the static
parameters that characterize the storage device: the energy capacity Bmax (in
MWh), the charging efficiency ηc, the discharging efficiency ηd, the maximum
charging rate γc (in MWh per time period), and the maximum discharging rate
γd (in MWh per time period). Therefore,

x0 = (B0, E0, D0, P0, Bmax, ηc, ηd, γc, γd).

The dynamic state xt contains the current energy supply Et, energy demand
Dt, electricity price Pt and storage level Bt. Therefore,

xt = (Bt, Et, Dt, Pt).

3.1.2 Decision variables

The decision variable ut encapsulates all energy allocation decisions made at
time t. Energy is bought from the grid at the current spot market price. Energy
from the waste incineration plant can either be stored or used to satisfy the
current demand.

Decisions are made with a policy π, a function which maps the state of the
system xt to a feasible decision, i.e., ut = π(xt).
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Let uIJt denote the amount of energy transferred from I to J at time t, where
superscript E stands for energy supply, D for demand, B for battery (storage
device) and G for grid. Therefore, the decision vector is given by

ut = (uEDt , uGDt , uBDt , uEBt , uGBt ).

In our model, the decisions are subject to several constraints. We require
that all energy flows are nonnegative for all t:

uEDt , uGDt , uBDt , uEBt , uGBt ≥ 0. (1)

Furthermore, the total amount of energy stored in the device at time t must not
exceed the energy capacity available or the maximum charging rate, whichever
is smaller:

uEBt + uGBt ≤ min{Bmax −Bt, γc}. (2)

We also make the assumption that all demand at time t must be satisfied:

uEDt + ηdu
BD
t + uGDt = Dt. (3)

Additionally, the amount of energy drawn from the storage device to satisfy the
demand must not exceed the amount of energy that is available in the device
at time t or the maximum discharging rate, whichever is smaller:

uBDt ≤ min{Bt, γd}. (4)

Finally, flow conservation requires that the amount of energy transferred from
the waste incineration plant is not greater than the amount of energy being
generated at time t:

uEBt + uEDt ≤ Et. (5)

The set of all constraints (1) - (5) defines the feasible decision space.

3.1.3 Exogenous information

Exogenous information variables, also known as disturbances, represent what
we learn from an exogenous source after we make each decision. We denote the
exogenous information arriving between t and t + 1 as ωt and it is therefore
random at time t. In our problem,

ωt = (Êt, D̂t, P̂t),

where Êt is the change in the energy supply between t and t + 1, D̂t is the
change in the energy demand between t and t + 1, and P̂t is the change in the
electricity price between t and t+ 1.

To complete the model, we would have to provide the probability distribution
for the exogenous variables P (ωt|xt, ut). These stochastic models can be con-
structed from historical data of energy supply, energy demand, and electricity
prices in Trondheim.
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3.1.4 State transition function

Also known as the system model, the state transition function is a mapping
from our current state xt to the next state xt+1, given our decision ut and the
realization of the exogenous information ωt:

xt+1 = f(xt, ut, ωt).

The transition function for the energy in the storage device is given by

Bt+1 = Bt + ηc(u
EB
t + uGBt )− uBDt , (6)

which is an energy balance in the storage device. The transition dynamics for
the energy supply, energy demand, and price are given by

Et+1 = Et + Êt, (7)

Dt+1 = Dt + D̂t. (8)

Pt+1 = Pt + P̂t. (9)

3.1.5 Objective function

The objective function captures our performance at a particular time, and char-
acterizes the problem of finding optimal policies.

In this problem, we incur costs when purchasing electricity from the grid.
Therefore, our cost from being in the state xt and making the decision ut at
time t is given by

C(xt, ut) = Pt(u
GB
t + uGDt ).

Since we aim to minimize costs with real-time electricity prices over a finite
horizon, our objective function is given by

min
π∈Π

E

[
T∑
t=0

C(xt, ut)

∣∣∣∣x0

]
,

where xt+1 = f(xt, ut, ωt) is given by equations (6) - (9). Letting Π be the col-
lection of all mappings from state to decisions that satisfy the set of constraints
(1) - (5), we minimize over the set of all admissible policies π ∈ Π to determine
an optimal policy. In most cases, finding an optimal policy is just an aspiration
and we focus instead on designing suboptimal, altough effective, policies.

3.2 Control policy currently used in Heimdal

The operators in Heimdal currently use a simple threshold policy that depends
on the electricity price to manage the system.

The energy from the waste incineration plant is first used to satisfy the
current demand:

uEDt = min{Dt, Et}.
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If generation exceeds demand, the surplus energy is stored in the storage device,
respecting the capacity and charging constrains:

uEBt = min{Et − uEDt , Bmax −Bt, γc}.

If the current demand cannot be satisfied with energy from the waste inciner-
ation plant and the storage device, the electric boilers are used by purchasing
electricity from the grid at the current price:

uGDt = Dt − uEDt − uBDt .

When electricity prices are low (below certain threshold θlow), the storage device
is charged purchasing energy from the grid, respecting the capacity and the
charging constraints:

uGBt =

{
min{Bmax −Bt − uEBt , γc}, if Pt < θlow

0, if Pt ≥ θlow

When electricity prices are high (above certain threshold θhigh), the storage
device is discharged to satisfy the current demand, respecting the capacity and
the discharging constraints:

uBDt =

{
min{Dt − uEDt , Bt, γd}, if Pt > θhigh

0, if Pt ≤ θhigh

Pulling it all together, the control policy currently used in Heimdal is given by

π(xt|θ) =



uEDt = min{Dt, Et}

uBDt =

{
min{Dt − uEDt , Bt, γd}, if Pt > θhigh

0, if Pt ≤ θhigh

uGDt = Dt − uEDt − uBDt
uEBt = min{Et − uEDt , Bmax −Bt, γc}

uGBt =

{
min{Bmax −Bt − uEBt , γc}, if Pt < θlow

0, if Pt ≥ θlow

The policy is parameterized by θ = (θlow, θhigh), which are the thresholds on
the electricity prices. Therefore, choosing the right values for these parameters
will determine the performance of the policy. We believe that this policy is very
effective for Heimdal, where the energy supply is almost stationary (the waste
incineration plant burns waste almost at a constant rate) and the electricity
prices in Trondheim are not very spiky, as in other spot electricity markets.
This policy exploits well the structure of the problem employing a “buy low,
sell high” philosophy and allows the operators to re-tune the policy whenever
operating conditions change in the plant or in the spot electricity market.
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3.3 Alternative control policies

If we had access to forecasts of any of the exogenous variables (energy supply,
energy demand, or electricity prices), we could use this information in a looka-
head policy such as economic model predictive control. This method solves the
control problem over a horizon H at time t using a point forecast of the future,
then implements only the decision for time t and repeats the process at t + 1,
when new information has arrived. However, for this case study it is unclear
if a lookahead policy will outperform significantly a well-tuned simple thresh-
old policy as the one currently in used. We have investigated this problem in
a recent master thesis (Jeong, 2020) and the simulation results showed that
the simple threshold policy well-tuned outperformed different forms of model
predictive control for this particular problem.

4 Case study: An agricultural school

This case study illustrates the use of energy storage in an agricultural school
in Mære. The school needs heating for office spaces, greenhouses, and farm
animals. There are two thermal storage devices, which operate on different
time scales: short-term and long-term (seasonal) storage. These devices are
charged by waste heat collected from ambient heat, lighting, sun radiation, and
plant transpiration, using chill beams and underfloor harvesters installed in the
buildings. The available surplus heat is highly stochastic and it depends on
factors such as whether conditions and room occupancy. The main difference
with respect to the previous case study is the use of two storage devices, which
work on different time scales. The objective is to minimize the total expected
energy cost. The PI&D diagram is shown in Appendix B.

4.1 Mathematical model

Due to the complexity of this system, we will not derive a simplified model in
terms of energy flows as we did in the previous case study. This implies that we
will be more descriptive, but following the same modeling framework.

4.1.1 State variables

The state of the system is given by all the temperatures and mass flow rates in
the network, the heating and cooling demand, the surplus heat available, the
temperatures of the storage devices and the price of electricity.

4.1.2 Decision variables

The decision variables are the heat flows in the system. Of particular impor-
tance is whether to charge/discharge the thermal energy storage devices and
when to use the dry cooler, aerotempers, and the electric boiler. In a low-level
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representation of the system, the decision variables are actually valve openings
and speeds of compressors and pumps.

4.1.3 Exogenous information

The exogenous information (random variables) is the change in the heating de-
mand in the building and green houses, the change in the ambient heat available
from the aerotempers, the change in the heat recovered from the dry cooler and
the chnage in the price of electricity from one time to the next.

4.1.4 State transition function

The system model is given by the mass and energy balances in the system, as
well as the stochastic models that govern the state transitions in the exogenous
variables.

4.1.5 Objective function

The objective is to minimize the total expected cost of operating the system,
which implies minimizing the expected electricity cost from the heat pumps and
the electric boilers over time.

4.2 Control policy currently used in Mære

The current control strategy for the storage devices in Mære is based on balanc-
ing the temperatures in the system. To see this in more detail, let us consider
the subsystem “Mære 1” in the PI&D diagram in Appendix B. In this subsys-
tem, the heat pumps connect the low temperature side (in green) with the high
temperature side (in red). The low temperature side is where heat from the
dry cooler and the aerotempers is recovered and also where the thermal energy
storages charge/discharge energy. The thermal energy storages are charged if
their temperature is lower than the circuit temperature and discharge otherwise.
This is what we mean by balancing the temperatures in the system. The heat
sources (dry cooler and aerotempers) are activate whenever their temperature
is higher than the temperature in the circuit. All this heat is upgraded by the
heat pump to meet the heating demand in the buildings. The electric boiler is
only active whenever the temperature in the heat pump is not enough to meet
the building demand. The control strategy for the thermal energy storages, the
dry cooler and the aerotempers is the same for the subsystem “Mære 2”.

4.3 Alternative control policies

Model predictive control with information about the weather conditions and
stochastic models for cooling and heating demand based on historical data could
improve the performance of the system.
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5 Conclusion

These two case studies have shown that the control policies most used in prac-
tices are simple parametric functions derived from experience or heuristics and
not solution strategies that are based on solving optimization problems online.
In the case of Heimdal, we see little room for improvement over the existing
policy, which has proven to give better performance than different implementa-
tions of model predictive control in Jeong (2020). Our assessment for Mære is
different. In this problem, the existence of two energy storage devices operating
on different time scales (daily and seasonal storage) makes the problem more
complicated. More research is needed to analyze the structure of the optimal
solution for this problem class. The existence of weather forecasts and historical
data on the building energy demand motivates the implementation of a looka-
head policy like economic model predictive control. In this case, we believe
there is room for improvement over the current policy.
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A PI&D diagram for Heimdal case study
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B PI&D diagram for Mære case study
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