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Abstract

The objective of this work is to define the optimal operation and control for a thermal storage system
with heat sources and a consumer, which exchange utilities using one hot water thermal energy storage
tank. In this work, we compare a decentralized control structure using classical advanced control with
PID controllers and logic blocks (split-range control and selectors) and a centralized control structure
(model predictive control) to implement optimal operation for a simple thermal energy storage system,
which is a multivariable system with constraints. We analyze a varying heat supply profile over a horizon
of 24 hours. We show that the supply and demand can be balanced, and we achieve optimal operation
by using the energy stored in the tank while minimizing the heat from the market.
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Abstract

The objective of this work is to define the optimal operation and control for a thermal
storage system with heat sources and a consumer, which exchange utilities using one hot
water thermal energy storage tank. In this work, we compare a decentralized control
structure using classical advanced control with PID controllers and logic blocks (split-
range control and selectors) and a centralized control structure (model predictive control)
to implement optimal operation for a simple thermal energy storage system, which is a
multivariable system with constraints. We analyze a varying heat supply profile over a
horizon of 24 hours. We show that the supply and demand can be balanced, and we
achieve optimal operation by using the energy stored in the tank while minimizing the
heat from the market.

Keywords: thermal storage, optimal operation, split range control, model predictive
control

1. Introduction

Thermal energy storage has the potential to save energy in many applications by
balancing the asynchronous supply and demand of heating and cooling. Furthermore, it
can enhance the use of uncertain and highly fluctuating heat sources (e.g., power
generation from solar thermal plants and/or re-utilization of industrial waste heat).

A large emphasis in the literature on energy storage has been placed on technology
advances, design and applications (Arteconi et al., 2012; International Energy Agency,
2014). From an operational and control perspective, model predictive control has become
the multivariable control technique of choice in several papers for controlling thermal
energy storage systems in buildings, combined heat and power plants, and solar thermal
power plants (Ma et al., 2009; Cole et al., 2012; Knudsen et al., 2019). Although less
extensively, classical advanced control structures have also been studied in the context of
thermal energy storage in buildings (de Oliviera et al., 2016). In this work, we show how
to use classical advanced control using PID controllers and logic blocks (split-range
control and selectors) to control a simple thermal energy storage system, which is a
multivariable system with constraints. The control performance of the proposed solution
is compared with model predictive control (MPC).

This paper is organized as follows. In Section 2, we describe a typical thermal storage
system, in Section 3 we describe both a decentralized and a centralized control structure
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for the system, in Section 4, we present a simulation case study, and we make our final
remarks in Section 5.

2. Thermal storage system R .
The process studied in this work is a thermal
To stack storage system illustrated in Figure 1. For
ElL . .S )
* heat * example, this can be a district heating
Q ,

Q5 network, or an industrial cluster formed of

| A @ heat sources and heat sinks. We consider a

_ F'\ general system, composed of a variable heat

Q3 Q4 source (Qo) that utilizes industrial waste heat,

Charge Discharge an electric boiler that employs electricity from

the market (Qs), one consumer plants with

heat demand (Q), and a hot water tank used

for energy storage. The tank can either be

charged (Qs) or discharged (Q4). The tank acts

Hot water as a buffer between a varying heat supply and

tank demand to minimize electric heating. Note

that we may also heat the tank directly with

Figure 1. Process flowsheet indicating the  ¢lectric heating (not shown in the figure).
five degrees of freedom for operation. Excess heat is sent to the stack (Q).

Considering the relationship between demand and supply we can identify three cases:

Case 1. Low demand. No storage tank = send excess heat to the stack (Q>).
Case 2. Intermediate demand. Use tank to balance heat demand and supply.
Case 3. High demand. No storage tank = buy electric heating (Qs).

We analyse case 2, and we consider a scenario with constant electricity prices. Note that
with constant electricity prices we would not gain from charging the tank with electric
heating and discharge it subsequently to the consumer. We should instead supply the
consumer directly with electric heat to minimize heat losses.

2.1. Process model

We discuss optimal operation on a simple thermal storage example, and we start by
deriving a model based on first principle. On the consumer side, we assume that the
dynamics are considerable faster compared to the slow tank dynamics, and we write the
steady-state energy balance, given by Eq. (1).

Q:Q1+Q4+Q5 @

We assume constant density ( 0 ), heat capacity ( c, ), and volume (V). The energy
balance in temperature (T) form for the tank is given by Eqg. (2).

dT 1
% W(& -0,)

()

where, Q3 is the excess heat, given by a static energy balance in Eq. (3).
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O, =max(0,(Q, -0, - 0,)) (3)

3. Optimal operation and control

We analyse the system in the setting of plantwide control (Skogestad 2004), and we
systematically define the operational objective, manipulated variables (MVs) (i.e. degrees
of freedom for optimal operation), operational constraints, main disturbances
and controlled variables (CVs). The operational objective of the system is to keep
the heat demand setpoint, while minimizing electric heating. Table 1 shows the
MVs (also shown in Figure 1. Process flowsheet indicating the five degrees of
freedom for operation., CVs, and main disturbances.

Table 1 Manipulated variables, controlled variables and disturbances

Manipulated variables Controlled variables Disturbances
MV 1: Heat directly to CV1: Consumer heat

D1: Heat |
consumer (Q1) demand cat supply

D2: Electricity prices
MV2: Heat to stack (Q2) CV2: Tank temperature (not considered in this
work)

MV3: Heat to tank (Q3)
(not independent)
MV4: Heat from tank
(Q4)

MYVS5: Electric heating
(Q5)

Furthermore, during operation the tank water temperature must satisfy the following
constraints, as given by Eq. (4).
Tmin < T < Tmax (4)

where T™" is given by the consumer process specifications and T™ is the allowed
maximum temperature in the tank given by operation constraints.

With the constant electricity prices assumption, optimal operation is trivial, and three
regions can be defined:

R 1. Q <@, . Charge the tank with surplus heat until 7" = 7"
R 2. Q> Q,. Discharge the tank.
R 3. 0> Q,and O, = 0 (fully discharged tank). Buy electric heat from the market.

The operational challenge arises from the fact that the degrees of freedom are dynamic,
that is, they are not available at all time (i.e. once the tank is discharged is can no longer
supply the consumers). The question we want to answer is: what is the simplest way to
implement optimal operation? We compare a decentralized control structure using
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classical advanced control using PID-controllers and logic, and centralized control
structure using Model Predictive Control (MPC).

‘Ql. 3.1. Decentralized control with
classical advanced control
structures

Q

Thermal . .
Enerey Optimal  operation can  be

Storage implemented in practice using
System I classical advanced control
structure, i.e. cascade, feedforward,
valve position control or split range
control together with logic elements

(selectors) (Reyes-Lua and
Figure 2 Decentralized control structure with split Skogestad, 2019). Split range

range f:ontrol and mip se.lectors. The split range (SR)  ¢ontrol is a multiple-inputs single-
block is represented in Figure 3 output control structure that allows
to use one input at a time and
extends the steady-state operating
range for the controlled variable. In
this work we propose a control
structure with split range control

—

j: (SRC) and selectors, which can be
B used for active constraints changes
E¥ Qmin (Reyes-Lua et al., 2018). Figure 2
alal e e——— shows the block diagram of the

—— A A% max proposed decentralized control

structure. The SRC keeps the heat

demand  setpoint Q¥ by

Figure 3 . Split range block manipulated the heat flows Qi, Qu,

and Qs. However, when T < Tmin

and the active set constraints changes, we use a min selector to give-up discharging the
tank. Similarly, when T = T™*, we use a min selector to give-up charging the tank.

Internal signal to split range block (v)

Figure 3 shows the split range block. Note that this is not a typical split range controller
because of the dynamic degrees of freedom. Consider a case when the tank is fully
discharged (Q3=0), there is no heat supply (Qo=0), and we operate on the red line in the
split range block in Figure 3. If the heat demand decreases, we could in theory operate on
the green line using Qs, but this is not physically possible because the tank is discharged.
To solve this issue, we propose to update the maximum values (Q:™* and Q3™*) in the
split range block to reflect the operational constraints. We set Q3™*=0, when the tank is
discharged (i.e. T=T™"), and Q™ = Q,. We follow the systematic design procedure from
the work of (Reyes-Lua 2019) to design the split range controller. In the split range block,
the split value is set at v*=0, which corresponds to maximum Q;, and minimum Q3 and
Q. The slopes = in the split block are equal, because the process gains from MVs to CV
are equal. To tune the Pl-controllers, we use the SIMC tuning rules (Skogestad2003).
Note that Eq. 3 is static, and we need to use a pure I-controller. The tuning parameters for
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the split range controller are: slope +=3, and integral gain K;=0.033. The other PI-
controllers are tuned following the SIMC rules for integrating processes.

3.2. Centralized control. Model predictive control

Model predictive control solves an open loop control problem subject to constraints with
a finite horizon at each sampling time to determine an optimal control sequence, and the
first control is applied to the plant (Mayne et al., 2000). It’s main advantage it that it
handles constraints and interactive processes by design, while it’s disadvantage is that it
required a details model.

We formulate the optimal control problem as to minimize electric heating (Qs), heat
discharged (Qs3) and heat sent to stack (Q2) subject to model equations and operational
constraints, as given in Eq. (5).

N
min Z a)zszk - 604ka + stszk ~

500, —0," =0

O, = 1(Q,),Vie{l,4,5}

T, = 2(0,). Vi< 3,4}
0<Q, <QM™,Vie{l,3,4,5
T,"" < T, <T,™
Vkell,..,N}

where, @ ) are the weights in the optimization problem and Q™ = Q°.

4. Simulation results

N

We anaylze a varying heat supply profile over
a horizon of 24 hours with a constant heat
supply, as shown in Figure The tank volume is
V =100, the initial tank temperature is To=105
°C. The MPC is solved in CasADi (Andersson
etal., 2013), and IPOT is used to solve the NLP 5 10 5 20
(Wichter and Biegler, 2005). We use N = 60 Time, [h]

control intervals and a sampling time of 60 s  Figure 4. Variable heat supply in pink,
and @, = 10, W, = 103’ , —10* and constant heat demand in blue

Ql)
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=

Figure 4, Figure 5, and 6 show the simulations results. Full lines show SRC and the
dotted lines MPC.
10

_ i i i 120 = o e e e == =
Z - | Q) e Qe QL .
b2} | — p
P - 5100
g
i3 — &
5 l_ 80
¥ I L
T 0 ’ M F [ ] —
0 5 10 15 20 0 5 10 15 20

Time, [h]
Figure 5. Input usage for SRC and MPC Figure 6. Temperature profile for SRC and MPC
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5. Discussion and conclusions

In this work we identify optimal operation for a simple thermal energy storage system
with constant electricity prices. We compare a decentralized control structure using PID
controllers and logic blocks (split-range control and selectors) and a centralized control
structure using MPC to implement optimal operation. For this example, we have shown
that a systematically designed advanced control structure using SRC and selectors gives
similar performance compared to MPC. The simulation results from Figures 4, 5 and 6
shows that the tank is discharging heat when the heat supply is not enough, and electric
heat is used when the tank is fully discharged, while satisfying the operational constraints.
Comparing both alternatives, SRC is considerable easier to implement in practice and
tune and does not require as full detail model as MPC. However, for a larger scale process,
PID-controllers and logic might not provide a simple implementation.
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