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Abstract 
Many process systems, such as distillation columns and other equipment with phase 
change, exhibit multiple modes of physical behavior that can be described by non-
differentiable (i.e., nonsmooth) models. In this paper, we introduce a nonsmooth model 
for steady-state multistage distillation that can describe columns with dry and/or 
vaporless stages reliably. The model consists of a system of nonsmooth MESH and 
specification equations, without inequality or complementarity constraints, that can be 
directly solved with the semismooth Newton method using automatically computed 
generalized derivatives. With a modified version of pseudo-arclength continuation, we 
have been able to observe several novel types of bifurcations in dry and/or vaporless 
distillation columns. Many of the bifurcations exhibit degenerate behavior with an infinite 
number of steady states for certain critical input specifications, and occur in general 
multistage distillation systems regardless of the mixture components or thermodynamic 
models chosen. We present case studies drawn from the literature and analyze the 
occurrence and behavior of the bifurcations with respect to several types of column 
configurations, involving ideal stages, stage efficiencies, pressure gradients, tray heat 
transfer, multiple feeds, and side products. The associated bifurcation curves are 
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inherently nonsmooth and can be described mathematically by the concept of 
piecewise-smooth manifolds introduced in this paper. 
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ABSTRACT: Many process systems, such as distillation columns and other equipment with phase change, exhibit multiple modes
of physical behavior that can be described by non-differentiable (i.e., nonsmooth) models. In this paper, we introduce a nonsmooth
model for steady-state multistage distillation that can describe columns with dry and/or vaporless stages reliably. The model consists
of a system of nonsmooth MESH and specification equations, without inequality or complementarity constraints, that can be directly
solved with the semismooth Newton method using automatically computed generalized derivatives. With a modified version of
pseudo-arclength continuation, we have been able to observe several novel types of bifurcations in dry and/or vaporless distillation
columns. Many of the bifurcations exhibit degenerate behavior with an infinite number of steady states for certain critical input
specifications, and occur in general multistage distillation systems regardless of the mixture components or thermodynamic models
chosen. We present case studies drawn from the literature and analyze the occurrence and behavior of the bifurcations with respect
to several types of column configurations, involving ideal stages, stage efficiencies, pressure gradients, tray heat transfer, multiple
feeds, and side products. The associated bifurcation curves are inherently nonsmooth and can be described mathematically by the
concept of piecewise-smooth manifolds introduced in this paper.

■ INTRODUCTION

Distillation is the most widely used industrial separation
method; however, the large amounts of heat needed to create a
second phase for vapor−liquid contact make this unit
operation very energy-intensive. Distillation operations are
responsible for as much as 30% of the total energy use in the
industry1 and for 90−95% of separation energy.2 In order to
develop more energy-efficient distillation processes, we need
an accurate model that can be solved reliably under all process
conditions encountered during column design and flowsheet
optimization.
Trayed columns are still prevalent in unit operations for two-

phase contact, such as absorption, stripping, and distillation,3

whereas packed column simulation also commonly employs an
equivalent number of stages. Though the rate-based modeling
approach4 describes the complex transport phenomena in
multistage columns much more realistically than the
efficiency/equilibrium stage approach, the former relies on

empirical correlations for hydrodynamic, heat transfer, and
mass transfer parameters, which depend on tray geometry and
column configuration.5 Therefore, equilibrium stage models
are still invaluable for the preliminary stages of process design,
when detailed column specifications are not established yet.
This simpler modeling approach is also widely used in
industrial practice because it requires less computational effort,
and condenses all deviations from ideal mass transfer behavior
into a single parameter, the stage efficiency.

Received: May 7, 2020
Revised: September 4, 2020
Accepted: September 4, 2020
Published: September 4, 2020

Articlepubs.acs.org/IECR

© 2020 American Chemical Society
18000

https://dx.doi.org/10.1021/acs.iecr.0c02328
Ind. Eng. Chem. Res. 2020, 59, 18000−18018

D
ow

nl
oa

de
d 

vi
a 

N
O

R
W

E
G

IA
N

 U
N

IV
 S

C
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 o
n 

D
ec

em
be

r 
20

, 2
02

0 
at

 2
2:

56
:2

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Suzane+M.+Cavalcanti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+I.+Barton"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.0c02328&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=abs1&ref=pdf
https://pubs.acs.org/toc/iecred/59/40?ref=pdf
https://pubs.acs.org/toc/iecred/59/40?ref=pdf
https://pubs.acs.org/toc/iecred/59/40?ref=pdf
https://pubs.acs.org/toc/iecred/59/40?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.0c02328?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf


The efficiency/equilibrium stage approach to steady-state
simulation of multistage separations employs the MESH (Mass
balance, Equilibrium, Summation and energy balance, where H
stands for enthalpy) equations, which assume that vapor−
liquid equilibrium exists at the conditions of each stage. In the
rate-based approach, vapor−liquid equilibrium is also enforced
at the phase interface between the bulk vapor and liquid
phases. However, certain process specifications can lead to a
steady state in which the exiting liquid or vapor phase is absent
from one or more stages. In a dry/vaporless stage, the
remaining vapor/liquid outlet stream can be superheated/
subcooled; under these conditions, vapor−liquid equilibrium
no longer exists and consequently both the MESH-equation
and rate-based models are no longer valid. This gives rise to
the often-experienced “dry column” simulation errors in
commercial process software, such as the Aspen Plus6 RadFrac
multistage column model. For these “problematic” process
specifications, it is widely known that RadFrac’s equilibrium-
stage model aborts all calculations and exhibits a severe error
message stating that stages “dried up” of liquid and/or vapor.
In addition, we have found that RadFrac’s rate-based model
(previously called RateFrac) also fails to converge and prompts
a general error message, without detailing its cause.
One might argue that the absence of a valid model to

simulate distillation columns with dry/vaporless stages is
irrelevant, since such steady-state solutions correspond to
extreme and undesirable operating conditions. However, given
a certain set of process specifications, we cannot predict a
priori which phases will be present within each stage in the
column. When current distillation software is unable to find a
vapor−liquid equilibrium solution, the user is left with the
complicated task of changing specifications by trial-and-error
until the model can converge, which is especially challenging
within a flowsheet with several interconnected equipment and
recycles. Additionally, process specifications are iteratively
changed outside user control in sequential-modular simulation
of flowsheets with recycle streams, design specifications, and in
process optimization; therefore, the solution algorithms might
stray into dry/vaporless conditions and fail to converge.
Without a suitable model, we cannot answer a very

fundamental question: what is the steady-state behavior of
columns with dry/vaporless stages? In order to obtain these
steady states, we must change the model equations that
describe each stage to reflect which phases (vapor−liquid,
vapor only, or liquid only) are present at the solution; however,
we have no knowledge of the latter prior to simulation. It is
possible to create a single model that automatically “switches”
between describing equations and selects the correct ones, at
the cost of introducing nonsmooth (i.e., non-differentiable)
behavior and requiring more advanced mathematical tools not
present in commercial software.
Previous work on steady-state simulation of dry/vaporless

distillation columns, using MESH-based models, dates back to
the 1990s and is limited to two other papers.7,8 In the first
paper,7 the equilibrium relationship for each stage is relaxed in
dry/vaporless regimes by introducing inequalities in terms of a
slack variable. In order to address the inequalities, the original
task of simulating the process is transformed into the
optimization problem of minimizing the slack variable. In the
subsequent work,8 the KKT conditions for a similar
optimization formulation are used to create a model with
complementarity constraints. The latter are rewritten as
nonsmooth equations in terms of the max operator, and the

model must be solved iteratively as a series of smooth-
approximation problems. However, in both papers, only
limited simulation results with dry/vaporless columns are
reported, corresponding to very few sets of column
specifications. As demonstrated by the present paper, these
do not give the full picture of how the vapor/liquid “drying”
process occurs within the column.
To this date, all other subsequent papers that address

modeling of dry/vaporless distillation regimes9−14 have
considered flowsheet optimization onlythe type of problem
where complementarities are ostensibly easier to handle
mathematically. However, all the aforementioned approaches
rely either on a series of equation-solving problems or on
optimization algorithms even when only a single simulation is
needed. This increases computational effort and introduces
nonphysical variables and parameters that need to be
heuristically tuned for each process flowsheet.
On the other hand, recent advances in the automatic

evaluation of generalized derivatives15 have opened up the
possibility of creating explicitly nonsmooth algebraic models
that can be directly solved with Newton-like methods. By
introducing a single nonsmooth equation in terms of the mid
function, which returns the median of its three arguments,
Watson et al.16,17 have successfully reformulated the phase
equilibrium problem for a single stage in order to perform flash
calculations and model multistream heat exchangers with
phase change. With an analogous approach, Sahlodin et al.18

proposed a nonsmooth dynamic model for multistage
distillation columns, formulated in terms of liquid and vapor
molar holdups.
In this work, we extend the explicitly nonsmooth modeling

strategy to steady-state distillation simulation by proposing a
nonsmooth MESH model, which remains valid regardless of
the phases present in each stage. Using this compact equation-
based modeling strategy and by developing a nonsmooth
version of the pseudo-arclength continuation method,19 we
have been able to observe infinitely many steady states in
distillation columns with dry/vaporless stages. This degenerate
behavior occurs for certain critical input specifications
independently of the particular mixture being separated or
the thermodynamic models used, and persists even when
different column configurations are specified.
Bifurcations, or changes in the number of steady-state

solutions, have been previously observed in multistage
distillation column simulation with smooth models20−25 and
also confirmed experimentally.26,27 Most cases analyzed involve
homogeneous azeotropic distillation systems with at least three
components,20−22 although bifurcations have also been
observed in binary distillation23 and Petlyuk columns.24 In
the majority of cases, the curve of steady-state solutions
contains two turning points forming a hysteresis curve, and
therefore a total number of three steady states exist for
parameter values in between the turning points. An extended
hysteresis curve, with four turning points yielding up to five
steady states, has also been reported within azeotropic
distillation.25 In addition, hysteresis behavior is often
responsible for the more familiar occurrence of multiple
steady states in exothermic chemical reactors. On the other
hand, a Hopf bifurcation, with the corresponding appearance
of a limit cycle, has also been observed in association with a
hysteresis curve for a ternary azeotropic column.22 However,
the occurrence of multiple steady states in distillation
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simulation might depend, in some instances, on the
thermodynamic model used.20,28

Interestingly, Bekiaris et al.21 presented the theoretical
possibility of infinitely many steady states for homogeneous
azeotropic distillation with a simplified analysis, which
considered infinite reflux, infinitely many trays, and constant
molar overflow. However, to the best of our knowledge, this
degeneracy of steady states has not been observed in
distillation or other process systems described by more realistic
models. Moreover, a distinctive feature of the degenerate
bifurcations introduced in this paper is that they involve
nonsmooth behavior.
In the following sections, we first discuss the conceptual

challenges in describing dry and vaporless equilibrium stages,
and present existing nonsmooth modeling strategies and
simulation methods. We then describe our nonsmooth
MESH model and the numerical continuation strategy
developed to trace the curves of infinitely many steady states,
while introducing the mathematical concept of piecewise-
smooth manifolds that characterize these curves. Next, we
conduct detailed parameter continuations in two case studies
from the literature7,8 and vary several types of column
specifications, in order to describe and analyze the degenerate
and non-degenerate bifurcations that occur in dry/vaporless
distillation columns. Finally, we present a summary of the
novel, nonsmooth bifurcations and conclude with remarks on
the paper contributions and future lines of work.

■ THE ISSUES WITH DRY AND VAPORLESS STAGES
Consider an equilibrium stage at steady state depicted in
Figure 1, which could represent either a flash vessel or, in a

simplified analysis, one of the stages within a column. Let F, L,
and V be the total inlet, outlet liquid, and outlet vapor molar
flow rates, respectively, and z, x, and y the vectors with mole
fractions of the Nc components for each respective stream. The
system of MESH equations that models the stage, which
assumes that outlet liquid and vapor are in equilibrium, is

= +F L V (1)

= + =Fz Lx Vy i N, 1, ...,i i i c (2)

+ = +Fh Q Lh VhF L V (3)

= =y K x i N, 1, ...,i i i c (4)

∑ ∑− =
= =

y x 0
i

N

i
i

N

i
1 1

c c

(5)

where i is the index for a specific component, hj is the molar
enthalpy of stream j, T and P are the stage temperature and
pressure, respectively, Q is the heat transfer rate to the stage,
and Ki ≡ Ki(T, P, x, y) is the equilibrium ratio for component i.

Note that the single summation equation (eq 5) indirectly
enforces both the liquid and vapor phase mole fractions to sum
to one, since the mole balances for all the components are
included together with the overall mole balance.

Dry and Vaporless Phase Regimes. We define a stage at
steady state to be dry if its total outlet liquid flow rate is equal
to zero (L = 0). Analogously, a stage without a vapor outlet
stream is said to be vaporless (V = 0). This way, we can
characterize the following possible phase regimes for each
stage:

• Phase Regime I: a stage with vapor and liquid outlets in
equilibrium with each other;

• Phase Regime II: (a) a dry stage with a dew-point vapor
outlet and (b) a vaporless stage with a bubble-point
liquid outlet;

• Phase Regime III: (a) a dry stage with a superheated
vapor outlet and (b) a vaporless stage with a subcooled
liquid outlet.

Each set of feasible input parameters, in the correct number
to fix the necessary degrees of freedom, may yield a steady state
in a certain phase regime. For instance, consider a PT-flash
vessel for which all feed conditions are specified. Figure 2

presents a schematic view of the input parameter space in
terms of the specified temperature T and pressure P, with the
resulting phase regimes at steady state. Note that Phase
Regimes II correspond to the nonlinear boundaries between
the regions for Phase Regimes I and III.

The MESH Equations Are Not Valid in Phase Regimes
III. A robust model must encompass all possible modes of
behavior of the system and yield the correct steady state for
any set of feasible input specifications. This means that
variables characterizing the state of every possible stream in a
process, such as compositions and temperatures, must always
be included and solved for within the model variables. The
mole fractions of an absent liquid or vapor stream are examples
of fictitious variables; they bear no physical meaning but can
still be computed using the model equations, eqs 1−5, as long
as the correlations used to evaluate Ki and the phase enthalpies
remain well-defined.
However, suppose that a given set of input specifications

leads to a steady state in which the stage operates in Phase
Regimes IIIa or IIIb. It can be shown from the KKT conditions
for minimization of the Gibbs free energy18 that, in such a
steady state, fictitious mole fractions computed with eq 4 sum
to less than one. For instance, for a vaporless steady state with
subcooled liquid, ∑i = 1

Nc yi = ∑i = 1
Nc Kixi < 1. Since the MESH

equations (eqs 1−5) always enforce the mole fractions of both

Figure 1. Single-stage flash vessel.

Figure 2. Phase regimes at the solution for each temperature−
pressure pair in a PT-flash vessel.
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phases to sum to one, they cannot yield the correct steady-state
solution. Instead, we obtain a unique but non-physical MESH
solution in which the flow rate of the absent phase is negative;
in the previous example, V < 0. Therefore, the MESH
equations are a valid model to describe Phase Regimes I and II
but not Phase Regimes III.
Valid Equations for the Dry and Vaporless Phase

Regimes. We can propose modified systems of equations to
model dry or vaporless stages, both in Phase Regimes II and
III, depending on how we formulate and compute the fictitious
mole fractions. However, these models are not valid in Phase
Regime I (vapor−liquid equilibrium). Any fictitious mole
fraction formulation yields the same solutions in terms of
physical variables, but the convergence properties of the
equation system can be affected by the formulation chosen.
Formulation 1. In this strategy, fictitious mole fractions are

computed from the unchanged equilibrium relationship and
are not required to sum to one. The system of model equations
for a dry stage (Phase Regimes IIa and IIIa) consists of eqs
1−4 and

=L 0 (6)

which intuitively replaces the summation equation (eq 5).
Analogously, the model equations for a vaporless stage (Phase
Regimes IIb and IIIb) consist of eqs 1−4 and

=V 0 (7)

Formulation 2. In this approach, eqs 1−3 and the
summation equation (eq 5) are maintained, while the
equilibrium relationship in eq 4 is relaxed for all components
by introducing a non-physical variable β for each stage:

β= =y K x i N, 1, ...,i i i c (8)

This allows the fictitious mole fractions to sum to one but
requires an additional model equation to be included: eq 6 for
a dry stage and eq 7 for a vaporless stage. Note that, from the
previously mentioned result for minimization of the Gibbs free
energy, we must have β ≤ 1 for a dry stage and β ≥ 1 for a
vaporless stage.
The Phase Regime Cannot Be Predicted Prior to

Simulation. Since predicting the exact distribution of regimes
within parameter space is a complex task, the mode of behavior
corresponding to a given set of input parameters is usually not
known before simulating the system. On the other hand, we
must choose an equation system and its associated mode of
behavior to simulate the process. A naive way to approach this
conundrum is by trial-and-error, attempting each system of
model equations until one of them converges to a valid
solution. While this seems feasible in the case of a single-stage
flash, for which only three such models exist, it is not practical
for a multistage column. In the latter case, each stage has three
possible sets of describing equations. The overall number of
possible model equations for the column is equal to 3N, scaling
exponentially with the number of stages N. Process simulation
software such as Aspen Plus and HYSYS consider only the
MESH distillation model, in which all stages are assumed to be
in Phase Regime I (vapor−liquid); no dry or vaporless models
are included.
Instead, it is possible to create a single model that remains

valid in all possible phase regimes, automatically switching
between the equations for each stage and enforcing the correct
ones without prior knowledge of the regime at the solution.
However, this can only be achieved by introducing nonsmooth

or non-differentiable behavior (e.g., the complementarity
constraint and explicitly nonsmooth strategies described
below) or even discrete variables (e.g., generalized disjunctive
programming29).

■ NONSMOOTH MODELING APPROACHES

Complementarity Constraints. Modeling of equilibrium
stages with complementarity constraints is due to Biegler and
collaborators.8 In their strategy, Formulation 2 is chosen to
define fictitious mole fractions. In order to encompass both the
dry and vaporless equation systems, other two non-physical
slack variables, sV and sL, must be added for each stage, aside
from β. The overall model consists of eqs 1−3, 5, and 8 and
the additional relationships

β = − +s s1 L V (9)

≤ ⊥ ≥L s0 0L (10)

≤ ⊥ ≥V s0 0V (11)

A complementarity constraint 0 ≤ a ⊥ b ≥ 0 forces at least
one of the variables a, b to be zero and both to be non-
negative; it can be expressed by the smooth equation ab = 0
together with the inequalities a, b ≥ 0. Equivalently, a
complementarity constraint can be reformulated as a single
nonsmooth equation that is non-differentiable (at least) at the
origin, such as min(a, b) = 0, a = max (0, a − b), or the

Fischer−Burmeister equation + − + =a b a b( ) 02 2 .
In order to avoid handling inequality constraints within

equation solving, Gopal and Biegler8 implement distillation
simulation with dry and vaporless stages by solving a series of
smoothing approximations to the max reformulation a =
max (0, a − b). In subsequent work, Biegler and
collaborators9,10,12 incorporate the complementarity con-
straints into nonlinear programs for distillation optimization.
The current strategy13,14 is to include these constraints in the
form of exact penalty terms ρaTb in the objective function,
with the parameter ρ needing to be tuned for each problem at
hand. In both simulation and optimization settings, the
complementarity constraint approach introduces artificial
variables and parameters that need to be tuned, initialized,
and updated, and does not allow for simulation with direct
equation solving, creating the need to solve a series of
problems in addition to the original one. Moreover, the
infinitely many steady states described in the present paper
have never been obtained or presented within this modeling
strategy, perhaps due to difficulties in performing the necessary
continuation methods when complementarity constraints are
present.

Explicitly Nonsmooth Equations. Non-differentiable
functions, such as the absolute value, min and max, can be
explicitly used to create a single system of nonsmooth algebraic
equations, without inequality constraints, that is a valid model
for all system behaviors. This concise approach neither
introduces non-physical variables nor increases problem size.
As detailed below, recent developments enable us to compute
generalized derivatives for these models and to use direct
nonsmooth equation-solving methods for process simulation.
In the explicitly nonsmooth model proposed by Watson and

Barton,16 Formulation 1 is used to define the fictitious mole
fractions. Equation 5 is replaced with
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∑ ∑− − =
= =

V
F

x y
V
F

mid , , 1 0
i

N

i
i

N

i
1 1

c ci

k
jjjjjj

y

{
zzzzzz (12)

where the piecewise-smooth function mid returns the median
of its three arguments. Equivalently, the third argument can be
substituted by − L

F
. The denominator F in the first and third

arguments acts simply as a scaling factor so that all three
arguments have a similar order of magnitude, and can therefore
be substituted by any other positive constant. With the mid
function, we can include three different model equations,
respectively eqs 7, 5, and 6, in a single one. The correct
expression is automatically satisfied (i.e., becomes the median)

according to the phase regime: vaporless =( )0V
F

, vapor−

liquid (∑i = 1
Nc xi − ∑i = 1

Nc yi = 0), and dry − = − =( )1 0V
F

L
F

.

Equation 12 is potentially nondifferentiable at points where
two of the arguments are equal. For instance, in Phase Regimes
II, one of the flow rates is zero and the summation relationship
in eq 5 is still satisfied. The explicitly nonsmooth approach has
been successfully applied to perform flowsheet flash calcu-
lations17 and model multi-stream heat exchangers with16 and
without30 phase change.
The explicitly nonsmooth strategy can also accommodate

Formulation 2 with a clear advantage over the complementar-
ity constraint approach, since no slack variables or inequality
constraints are introduced. In this case, the system of
piecewise-smooth equations consists of eqs 1−3, 5, and 8
and the additional relationship

β − − =V
F

V
F

mid , 1, 1 0i
k
jjj

y
{
zzz (13)

Alternatively, this extra equation associated with the extra
variable β in Formulation 2 can be further eliminated by

making use of the identity β ≡
∑

∑
=

=

y

K x
i
Nc

i

i
Nc

i i

1

1

. One way to do so, as

presented by Watson et al.,31 is to maintain eqs 1−3 and 5 and
replace the Nc equilibrium relationships in eq 4 with

∑ ∑= =
= =

y K x K x y i N, 2, ...,i
i

N

i i i i
i

N

i c
1 1

c c

(14)
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i i
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k
jjjjjj

y

{
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Watson et al.31 recommend choosing the most volatile
component to be left out from eq 14 in order to improve
numerical conditioning, although any choice of component i =
1 is valid.

■ NONSMOOTH ANALYSIS AND EQUATION
SOLVING

Piecewise-Smooth Functions. Nonsmooth models for
most chemical engineering processes, including distillation
systems as analyzed in the present paper and multistream heat
exchangers,16 can be formulated in terms of piecewise-smooth
(PC∞) functions.
Let r represent either an integer ≥ 1 or∞, and Cr denote the

class of r-times continuously differentiable functions. Accord-
ing to the definition by Scholtes,32 a vector-valued function

→ f: n m is said to be PCr at a point ∈ x n0 if f is

continuous at x0 and there exist an open neighborhood
⊂ N x( ) n0 and a finite collection of k Cr selection functions

→ Nf x: ( )i
m

( )
0 such that f is equal to at least one of these

functions at each point in this neighborhood; that is

= ∈ { } ∀ ∈i k Nf x f x x x( ) ( ) for some 1, ..., , ( )i( )
0

(16)

As illustrated in Figure 3, conceptually the domain of f
around x0 can be subdivided into regions where f is equal to a

Cr selection function f(i). A function → Xf: m, with ⊂ X n

open, is said to be PCr if it is PCr at every point in its domain X.
Since PCr functions are locally Lipschitz continuous, they can
only fail to have a well-defined derivative, represented by the
Jacobian matrix Jf(x), at points x that belong to a “small” set Zf
(i.e., with Lebesgue measure zero). In Figure 3, Zf could
correspond, at most, to the boundaries between regions.
PCr functions are closed under composition.32 Examples

include the absolute value (abs), maximum (max), minimum
(min), and mid operators, which are, in particular, piecewise-
smooth (PC∞).

Generalized Derivatives. A useful generalized derivative
for a PCr function f is its B-subdifferential ∂Bf(x0) at a point x0,
which corresponds to the set of limiting derivatives (Jacobian
matrices) as we approach x0:

{
}

∂ ≔

= ∉

→∞

→∞
Z

f x Jf x

x x x

( ) lim ( ) such that

lim and

i
i

i
i i f

B 0
( )

( )
0

( ) (17)

For instance, the B-subdifferential for the absolute value
function at the origin contains two elements, −1 and 1. The
algorithm by Khan and Barton15 provides the first method to
obtain exact B-subdifferential elements for PCr functions,
which is based on the concept of lexicographic-directional
(LD-)derivatives. Unlike other generalized derivatives, LD-
derivatives follow a (strict) chain rule and can be evaluated
using automatic differentiation techniques.

The Semismooth Newton Method. To solve the
nonlinear system of smooth equations f(x) = 0 with Newton’s
method, we start from a current solution estimate xk and
generate the next iterate xk + 1 by solving the linear system

− = −+Jf x x x f x( )( ) ( )k k k k1
(18)

The semismooth Newton method33 naturally extends this to
nonsmooth functions by using some adequate generalized
derivative element instead of the Jacobian Jf(xk) in eq 18. In
particular, when f is PCr and a B-subdifferential element is
used, the semismooth Newton method achieves the same
quadratic convergence rate as the standard Newton method in
a neighborhood of a solution x*, provided ∂

Bf(x*) contains no
singular matrices.34

Figure 3. Possible representation of the domain of a PCr function f.
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■ THE PROPOSED NONSMOOTH MESH MODEL
Consider a steady-state distillation column with N stages,
numbered from top to bottom, separating a mixture with Nc
components. For each generic stage j, as depicted in Figure 4,
we propose a modified system of nonsmooth MESH
equations:

+ + − + − + =− +L V F L W V W( ) ( ) 0j j j j L j j V j1 1 , , (19)

+ + − +

− + = =

− − + +x L y V z F x L W

y V W i N

( )

( ) 0, 1, ...,

i j j i j j i j j i j j L j

i j j V j c

, 1 1 , 1 1 , , ,

, , (20)
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j j
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j j
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j j
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j L j

j
V

j V j j
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− = =y K x i N0, 1, ...,i j i j i j c, , , (22)
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i j
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,
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,
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k
jjjjjj
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{
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(23)

where Vj and Lj are the liquid and vapor molar flow rates
leaving stage j, with the respective mole fractions yi, j, xi, j of
component i; Fj and zi, j are the molar flow rate and mole
fractions of the feed stream to stage j; WV, j and WL, j are the
flow rates of vapor and liquid side products withdrawn from
the stage; hj

V and hj
L are the molar enthalpies of the outlet

vapor and liquid phases; Ki, j is the equilibrium ratio for
component i; Qj is the heat transfer rate to the stage, and Fs is
the sum of the feed flow rates to all stages. As illustrated in
Figure 4, some of the streams are absent in the first and last
stages.
The Mid Equation. Two modifications are introduced into

the first and third arguments of the original mid equation (eq
12) for a single-stage flash. First, the numerators of these two
arguments, which represent the overall vapor and liquid outlets
of the stage, now include the side product stream flow rates
WV, j and WL, j, respectively. Second, instead of the overall inlet
flow rate Lj − 1 + Vj + 1 + Fj particular to each stage j, Fs is used
in the denominators as a constant scaling factor for all stages.
Here, we note that the mid equation not only relaxes the

summation equation in Phase Regimes III but also automati-
cally bounds the total outlet flow rates (Vj + WV, j) and (Lj +
WL, j) to be non-negative. To see why that is, consider a
vaporless stage: in case (Vj + WV, j) assumes a negative value,
both the first and third arguments of the mid function are
strictly negative and therefore the median cannot equal zero to

satisfy the equation. However, unlike the single-stage flash
case, the individual flow rates Lj or Vj are not guaranteed to be
non-negative at the solution if a liquid or vapor side product is
present, respectively.
The above equations employ Formulation 1 to define the

fictitious mole fractions, but the other two forms of
Formulation 2 can equivalently be used by making the
necessary modifications previously described. When using eq
13, one extra variable βj must be included for each stage.

The Condenser. The total distillate flow rate D is given by

= +D W VL ,1 1 (24)

and the reflux ratio is defined as R = L1/D. The vapor distillate
fraction θ = V1/(WL,1 + V1) for the condenser, ranging from 0
to 1, must be specified with an additional equation.
For a partial condenser (0 < θ ≤ 1), the mid equation (eq

23) is maintained. For a total condenser (θ = 0), since V1 = 0 is
constant, the mid equation is replaced with

∑ − =
=

x y 0
i

N

i i
1

,1 ,1

c

(25)

to ensure a bubble-point outlet liquid stream.
Stage Efficiencies. Equations 19−23 define an ideal stage

in which vapor−liquid mass transfer happens to its full extent,
with outlet vapor and liquid mole fractions related through the
equilibrium relationship in eq 22. Instead, less-than-ideal mass
transfer in a real stage j can be approximately described by
introducing stage efficiencies ηi, j for each component i. If ηi, j

M

represents the Murphree vapor phase efficiency, eq 22 is
replaced with

η− − − =+ +y y K x y( ) ( ) 0i j i j i j
M

i j i j i j, , 1 , , , , 1 (26)

If the vaporization efficiency ηi, j
V is specified instead, eq 22 is

replaced with

η− =y K x 0i j i j
V

i j i j, , , , (27)

Side Products. Aside from the main top and bottom
products with flow rates D and LN, respectively, vapor and/or
liquid side products can also be withdrawn from intermediate
stages (2 ≤ j ≤ N − 1). Most formulations of the MESH
equations in the literature are defined in terms of withdrawal
ratios, such as WL, j/Lj or 1 + WL, j/Lj. However, these ratios
become undefined for dry or vaporless stages, and therefore it
is essential to choose the withdrawal flow rates WV, j , WL, j as
the variables in our model.
For stages without side products, WL, j and WV, j are set to

zero. When a vapor or liquid side product is present at an
intermediate stage, a corresponding specification equation

Figure 4. Intermediate stage j (left), the condenser (center), and the reboiler (right) in a distillation column.
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must be included, usually in terms of either the withdrawal
ratio or the side product flow rate.
Withdrawal Ratio Specification. In a non-dry stage, a

desired value for the withdrawal ratio RLj
= WL, j/Lj can be

enforced by adding a specification equation in the form

− =W R L 0L j L j, j (28)

This way, WL, j is enforced to zero for a dry stage despite the
withdrawal ratio itself becoming undefined, which reflects the
physical behavior of a splitter valve. An analogous equation is
included for a desired vapor withdrawal ratio RVj

= WV, j/Vj.
Flow Rate Specification. In order to enforce a desired

value WL, j, spec for the liquid side product flow rate in stage j,
the following nonsmooth specification is included:

− − =( )L W Wmin , 0j L j L j, , ,spec (29)

This equation enforces the specified value for WL, j and
simultaneously bounds Lj to be ≥ 0. An analogous equation is
included for a desired vapor side product flow rate WV, j, spec ,
bounding Vj to be ≥ 0.
Specifying the Degrees of Freedom. When we specify

the number N of stages, all feed stream conditions, all stage
pressures, the heat duties for intermediate stages (commonly
set to 0), and all side product ratios or flow rates for
intermediate stages, two degrees of freedom remain for a
distillation column. In the standard MESH model, these are
fixed directly by two specification equations. For instance,
desired values Rspec and Dspec for the reflux ratio and distillate
flow rate are specified, respectively, by the equations

− =R R 0spec (30)

− =D D 0spec (31)

However, if 0 ≤ θ < 1, a nonzero liquid distillate flow rate WL,1
is present and the condenser equations presented so far cannot
guarantee a non-negative reflux flow rate L1. To correct that,
we must modify one of these two specification equations and
create a formulation analogous to eq 29. For instance, the
distillate flow rate specification becomes

− − =( )L D Dmin , 01 spec (32)

Model Simulation and Parameter Continuation. Our
nonsmooth MESH model is valid for all possible combinations
of liquid-only, vapor-only, and liquid−vapor phase regimes in
each stage. Moreover, the mathematical behavior of the model
reflects the physical behavior of the system: all flow rates are
automatically enforced to be greater than or equal to zero, and
therefore any solution obtained with our model is physically
valid in that regard. Another distinctive feature is that infeasible
input parameter values are also mathematically infeasible, and
in this case the model has no solution.
The total set of n model equations is represented by the

nonsmooth nonlinear system

λ =f x 0( , ) (33)

where ∈ x n represents the n model variables that are solved
for, λ ∈  represents a single input parameter while all other
degrees of freedom remain fixed, and →+ f: n n1 is
piecewise-smooth (PC∞).
In this work, we wish to analyze how the steady-state

solutions x change as we vary the parameter λ. Specifically, we

say that a bifurcation occurs at a parameter value λ* when
there is a change in the number of solutions x for each λ. Many
concepts from bifurcation theory for dynamical systems can be
applied to analyze this problem; the only caveat is that no
dynamic or stability considerations can be made if x′(t) ≠ f(x,
λ), which is the case for the nonsmooth steady-state MESH
model. In a differential-algebraic dynamic model for a
distillation column, the differential equations express the
time derivatives of the molar and enthalpy holdups of each
stage, which are not present as variables in steady-state MESH
models.
Bifurcations can be identified with continuation methods,

which are responsible for the numerical approximation of the
solution set

λ λ= { ∈ = }+M x f x 0( , ) : ( , )n 1 (34)

If the limiting partial Jacobians of f with respect to x
(represented by Jxf(i)(x, λ)) remain invertible, we can perform
a simple parameter continuation, in which we fix λ and solve
for x using the semismooth Newton method. The limiting
partial Jacobians, used to compute the Newton step according
to eq 18, are obtained exactly with the automatic differ-
entiation algorithm of Khan and Barton.15

However, if the limiting partial Jacobians with respect to x
become singular, a bifurcation is likely to be present and
Newton-type methods fail in solving for x directly. In such
cases, as introduced in this paper, we can employ a nonsmooth
version of pseudo-arclength continuation to trace solution
points (x, λ) as long as the solution set remains a 1-
dimensional PCr manifold.

■ PCr MANIFOLDS
In this section, we extend the Scholtes32 definition of PCr

functions to include cases in which the domain is not an open
set in Euclidean space. In turn, this allows us to define the
concept of a PCr homeomorphism in non-necessarily local
terms and to propose the concepts of PCr manifolds and PCr

manifolds with boundary.
Definition 1 (PCr Homeomorphism). Let ⊂ U n and
⊂ V m be arbitrary sets and ϕ: U → V be a function.

(1) ϕ is said to be a PCr function if for every point x ∈ U
there exists an open neighborhood ⊂ N n

x of x and a
PCr function ϕ̂: Nx → V that coincides with ϕ on the
intersection Nx ∩ U.

(2) ϕ is said to be a PCr homeomorphism if it is invertible
and both ϕ and its inverse ϕ−1: V →U are PCr functions.

Definition 2 (PCr Manifold). A set ⊂ M n is called a k-
dimensional PCr manifold if for every point x ∈ M there exists
an open neighborhood U ⊂ M of x, an open subset ⊂ V k,
and a PCr homeomorphism ϕ: U → V.

Definition 3 (PCr Manifold with Boundary). Let k

denote the closed half-space

= { = ∈ ≥ } x x xx ( , ..., ) : 0k
k

k
k1 (35)

A set ⊂ M n is called a k-dimensional PCr manifold with
boundary if for every point x ∈ M there exists an open
neighborhood U ⊂ M of x, an open subset ⊂ V k, and a PCr

homeomorphism ϕ: U → V.
Note that, in Definitions 2 and 3, the neighborhood U of x is

open with respect to the topology of M but usually not open
with respect to n, which justifies the need for Definition 1.
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Now, suppose the solution set ⊂ +M n 1 to f(x, λ) = 0 is a
1-dimensional PCr manifold (Figure 5a). This means that, on
an open neighborhood U ⊂ M of every solution point (xk, λk)
∈ M, points in the solution set can be expressed as a function
of a single parameter ∈ v :

λ ϕ= − vx( , ) ( )1 (36)

where ϕ−1: I → U is a PCr homeomorphism and ⊂ I is an
open interval. The PCr functions ϕ−1 and ϕ are called a local
parametrization and a local coordinate map, respectively. On
the other hand, if M is a 1-dimensional PCr manifold with
boundary (Figure 5b), then I might also be a half-closed
interval, and any point (x, λ) corresponding to the closed
endpoint of such an interval I is called a boundary point.

■ PSEUDO-ARCLENGTH CONTINUATION METHODS

Smooth Systems. The pseudo-arclength continuation
method, developed by Keller19 for smooth functions, can be
used to trace the solution set ⊂ +M n 1 to f(x, λ) = 0 when

→+ f: n n1 is a C2 function that satisfies the regularity

condition, i.e., its Jacobian matrix λ ∈ × +Jf x( , ) n n( 1) is full
row rank at every solution point (x, λ). When this assumption
holds, the solution set M is a 1-dimensional C2 manifold and
constitutes a single solution branch. Examples of such behavior
include a turning point (Figure 6a), two turning points forming
a hysteresis curve (Figure 6b) and a hysteresis or cusp point
(Figure 6c), at which Jxf(x, λ) is singular but Jf(x, λ) remains
full row rank. In contrast, Jf(x, λ) is rank-deficient at a
pitchfork bifurcation point (Figure 6d), where two solution
branches intersect.
Starting from a known solution (xk, λk) of eq 33, the next

point (xk + 1, λk + 1) on the solution branch is obtained in three
steps, as schematically illustrated in Figure 7.

Step 1: Obtain the Unit Tangent Direction. A unit tangent
vector (xk̇, λ̇k) to the solution branch at (xk, λk) is obtained
from the 1-dimensional null space of Jf(xk, λk). Its direction is
chosen such that the continuation process moves in the same
direction along the solution branch, which, according to
Keller,19 can be done by enforcing a positive inner dot product
between the current and previous tangent vectors:

λ λ̇ ̇ + ̇ ̇ >− −x x( ) 0k k k k
T

1 1 (37)

Step 2: Take a Predictive Step along the Tangent
Direction. While arc length corresponds to the distance
between any two points along the actual solution branch,
pseudo-arclength is locally defined with respect to each point
(xk, λk) and corresponds to the distance traveled in the tangent
direction determined by (ẋk, λ̇k). Starting from the current
point (xk, λk), we take a pseudo-arclength step of size σ to
generate the point

λ λ σ λ̅ ̅ = + ̇ ̇x x x( , ) ( , ) ( , )k k k k k k (38)

Figure 5. (a) 1-dimensional PCr manifold. (b) 1-dimensional PCr manifold with two boundary points.

Figure 6. (a) Turning point. (b) Hysteresis curve (two turning points). (c) Hysteresis point. (d) Pitchfork bifurcation point.

Figure 7. Pseudo-arclength continuation method.
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which is an initial guess (or an Euler predictor) for the next
point on the solution branch.
Step 3: Make an Orthogonal Correction. The next point

(xk + 1, λk + 1) on the solution branch corresponds to the
solution of the following augmented nonlinear system:

λ
λ

λ λ λ σ
=

̇ − + ̇ − −
=h x

f x

x x x
0( , )

( , )

( ) ( ) ( )k k k k
T

i

k

jjjjjjj
y

{

zzzzzzz (39)

This system can readily be solved with Newton’s method,
since its Jacobian matrix

λ
λ

λ
=

̇ ̇
Jh x

Jf x

x
( , )

( , )

k k

i

k

jjjjjj
y

{

zzzzzz
(40)

is guaranteed to remain invertible for σ > 0 small enough, and
the predictor point (x̅k, λ̅k) is used as the initial guess. The first
n equations in eq 39 ensure that the next point lies on the
solution manifold within numerical precision, and thus no
integration errors are incurred. On the one hand, this allows
for an adaptive step size strategy, in which σ can be increased
by a suitable percentage whenever the Newton correction
converges, and decreased otherwise until convergence is
reestablished. On the other hand, in this work we chose
instead to trace the solution branch in terms of its actual arc
length; this can be achieved by keeping σ small enough so that
the distance between consecutive solution points becomes
numerically indistinguishable, within a 0.1% relative tolerance,
from their pseudo-arclength distance. Finally, the last equation
in eq 39 geometrically enforces the next point to belong to a
plane that is orthogonal to the tangent direction and situated at
an orthogonal distance σ from the current point (xk, λk).
Nonsmooth PCr Systems. In this work, we extend the

pseudo-arclength continuation method to PCr functions
→+ f: n n1 for which the solution set to f(x, λ) = 0 is a

1-dimensional PCr manifold. This means that the solution
branch can only fail to be differentiable at isolated points, for
which two distinct limiting tangent directions exist. We further
assume that only two distinct limiting Jacobians Jf(i)(x, λ) can
exist at the non-differentiable points; this assumption is
satisfied by the nonsmooth MESH model. The modifications
introduced into each of the three steps of the smooth pseudo-

arclength method are described below and depicted in Figure
8.

Step 1: Obtain a Limiting Unit Tangent Direction. A
limiting Jacobian matrix at the current point, Jf(i)(xk, λk), is
computed exactly with the method of Khan and Barton,15 and
its 1-dimensional null space yields a limiting unit tangent
vector (x ̇(i), k, λ̇(i), k) to the PCr solution branch at (xk, λk). We
have found that requiring a positive dot product between
subsequent limiting tangent vectors (eq 37) is not a valid
strategy in general to ensure the correct direction, since these
pairs of vectors are often orthogonal. Instead, we have resorted
to problem-specific information; for instance, for a drying
column, the direction is chosen so as to decrease the liquid
flow rates in the column.

Step 2: Take a Predictive Step, Detect Nonsmooth
Boundaries, and Update the Direction. An Euler predictor
step is taken with eq 38 using (ẋ(i), k, λ̇(i), k), and the active
selection function for the PCr equation system is monitored. If
the latter function changes, we know that the method has
crossed a nonsmooth boundary in the domain of f. We have
found that convergence of Step 3 is unlikely in this case, since
the orthogonal hyperplane corresponding to the limiting
tangent direction on one side of the boundary might not
intersect the solution branch on the other side. To address this
problem in our case studies with the nonsmooth MESH
model, we compute a limiting Jacobian matrix Jf(j)(x̅k, λ̅k) at
the predictor point. Its null space yields an updated unit vector
(ẋ̅k, λ̇̅k) (Figure 8a) that substitutes (x(̇i), k, λ̇(i), k) and provides
a different orthogonal hyperplane, which we have found to be
more likely to intercept the solution manifold. The Euler
predictor step is recomputed, and we proceed to Step 3 with
the updated unit vector (x ̅̇k, λ̇̅k) (Figure 8b).

Step 3: Make a Nonsmooth Orthogonal Correction. The
augmented nonlinear system in eq 39, which is now PCr, is
solved with the semismooth Newton method to generate the
next point (xk + 1, λk + 1).

■ BIFURCATIONS IN DRY/VAPORLESS
DISTILLATION COLUMNS

In this section, we present detailed parameter continuations for
the two case studies previously considered in the relevant
literature7,8 and describe new types of bifurcations observed in
dry and/or vaporless multistage distillation columns, in light of

Figure 8. PCr pseudo-arclength continuation.
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the proposed concept of PCr manifolds. Several of these
nonsmooth bifurcations exhibit degenerate behavior, with the
occurrence of infinitely many steady-state solutions at certain
input parameter values.
Case Study 1: Ideal Binary Mixture. A bubble-point

liquid stream with 70% benzene, 30% toluene (% mol) is fed to
Stage 6 of a column with N = 27 ideal stages, and the vapor
and liquid phases are described by ideal thermodynamics
(Raoult’s Law). The intermediate stages are adiabatic, and a
linear pressure profile is specified, ranging from the total
condenser (Stage 1) at 1.05 bar to the reboiler (Stage N) at 1.2
bar. The distillate-to-feed ratio is fixed at D/F = 0.5, and the
feed flow rate is chosen as F = 100 mol/s. The only change
made to the original case study7,8 is that we have switched the
feed from Stage 20 to 6 to create clearer plots and illustrations
of the drying process. For all case studies in this paper,
parameters for the K value and phase enthalpy correlations are
retrieved from the Aspen Plus V10 database.6 The nonsmooth
model equations, and the nonsmooth equation-solving and
pseudo-arclength continuation methods previously described
were implemented in Matlab.
We fix the remaining degree of freedom in this system by

specifying the reflux ratio R, which represents a single
parameter λ on which the nonsmooth MESH model equations
(represented by eq 33) depend. Figure 9 illustrates how the

steady-state solutions of the model vary as functions of R, in
terms of the liquid flow rates coming out of the stages above
the feed. When the value of R is high enough, all stages operate
with vapor−liquid equilibrium (Phase Regime I); therefore,
the original and nonsmooth MESH models have the same
unique solution, which varies smoothly with respect to R.
In general, decreasing the reflux ratio causes the vapor and

liquid flow rates throughout the column to diminish. The value
of R at which one or more flow rates first become zero is
denoted here as the critical reflux ratio Rcr. Similarly, we can
define the critical value λcr for a general parameter λ. We avoid
the “minimum reflux ratio” nomenclature used by Bullard and
Biegler7 because, as evidenced by Figure 9, it might be possible
for the column to operate below Rcr while still satisfying all
process specifications. Moreover, this phenomenon is not to be
confused with the Underwood concept of the minimum reflux
ratio to perform a separation, which corresponds to infinitely
many stages.

For this particular case study, it is the liquid flow rate L5
directly above the feed stage that disappears as we approach
the critical reflux ratio Rcr ≈ 0.0024 from above. We call the
system state corresponding to R → Rcr

+ the upper critical
solution. In this state, Stage 5 is the only dry stage but it still
operates in Phase Regime IIa, and thus the standard MESH
equations are still satisfied. However, the MESH model yields a
unique but non-physical solution for R < Rcr, with the above-
feed liquid flow rates assuming negative values. On the other
hand, the nonsmooth MESH model remains physically valid
and reveals an unexpected behavior at Rcr, where a continuum
of infinitely many steady states exist instead of a unique
solution. This is evidenced by the vertical lines in the graphs of
L2, L3, and L4 at Rcr in Figure 9. For this reason, the overall
model solution is discontinuous with respect to the reflux ratio
at Rcr: the lower critical solution corresponding to R → Rcr

− is
different from the upper critical solution (R → Rcr

+ ).
The non-uniqueness of solutions at Rcr gives rise to singular

limiting partial Jacobians of the model equations f(x, R) = 0
with respect to x, and therefore the semismooth Newton
method fails at or near Rcr. In order to obtain these infinitely
many steady states, which range from the lower to the upper
critical solutions, we had to develop the previously described
nonsmooth version of the pseudo-arclength continuation
method. By taking small enough continuation steps, we can
trace the solutions in terms of arc length as a substitute
parameter, which corresponds to the distance traveled along
the solution curve in (x, R) space. Geometrically, arc length
acts as an extra coordinate that allows us to “move”
perpendicularly to the paper at the vertical line R = Rcr.
Moreover, since a unique steady-state solution exists at each
value of arc length, the latter constitutes a more adequate
parameter than R to describe the overall set of solutions.
Figure 10 portrays the complete curve of solutions in terms

of its arc length starting from R = 0, with the corresponding
values of reflux ratio represented by the juxtaposed R axis. The
vertical line R = Rcr from Figure 9 is expanded horizontally in
terms of arc length in Figure 10 to reveal an overall solution
curve that is continuous but non-differentiable at several points
between (and including) the upper and lower critical solutions.
The state of the distillation column is schematically
represented in Figure 10 for all the nonsmooth points, which
correspond to when each stage first becomes dry.
Exactly at the upper critical solution (R → Rcr

+ ), Stage 5 is
dry in Phase Regime IIa and V5 is a dew-point vapor. As we
continue tracing the solutions toward smaller values of arc
length, L4 starts decreasing in the same amount that V5
increases, keeping Stage 5 in mass balance. Concurrently, T5
increases and makes the vapor V5 progressively more
superheated, putting Stage 5 into Phase Regime IIIa. This is
a completely local process, in which only the variables directly
associated with Stage 5 change. When L4 finally reaches zero,
we arrive at the next nonsmooth point represented in Figure
10, and further decreasing of arc length initiates this same local
process around Stage 4. This way, as we traverse the solutions
from R → Rcr

+ to R → Rcr
−, the above-feed Stages 2−5 become

dry one at a time, sequentially from bottom to top. For R < Rcr,
decreasing the reflux ratio leads to smaller values of L1 until the
latter reaches zero at R = 0. However, the condenser does not
become dry because of the specified liquid distillate output
WL,1. Darker shades of red in Figure 10 represent the degree of
“supersaturation” of the vapor streams, which increases as we
go up the column due to the pressure drop in each stage.

Figure 9. Above-feed liquid flow rates as functions of the reflux ratio
R.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://dx.doi.org/10.1021/acs.iecr.0c02328
Ind. Eng. Chem. Res. 2020, 59, 18000−18018

18009

https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig9&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.0c02328?ref=pdf


For negative values of the reflux ratio (R < 0), the standard
MESH model continues to have a unique mathematical
solution, which is nevertheless not physically valid because L1

= RD and several other liquid flow rates become negative. On
the other hand, the nonsmooth MESH model has no
mathematical solution for R < 0 since its equations bound L1

to be non-negative, and therefore reflects the behavior of the
physical system.
The Bifurcations at R = Rcr and R = 0. Recall the

representation in eq 33 of the nonsmooth MESH model
equations as depending on a single parameter λ, which here
corresponds to R. We can say that a 1 -∞ - 1 bifurcation exists
at Rcr, since the number of model solutions for each value of R
changes from 1 for R < Rcr, to infinitely many at R = Rcr, and
back to 1 for R > Rcr. Similarly, we observe a 0 - 1 - 1
bifurcation at R = 0, where the solution branch ends abruptly.
We can represent the essential aspects of both of these
bifurcations in Figure 11 by plotting just the liquid flow rate L4

against R. However, the behavior of the overall solution set
cannot be represented by every one of the variables; for
instance, the graph of L5 does not reveal the occurrence of the
bifurcation at Rcr. Moreover, note that the intermediate
nonsmooth points between the upper and lower critical
solutions cannot be observed in terms of L4 only in Figure 11.

We can also observe a bifurcation of type 1 - ∞ - 1 in very
simple smooth systems. For instance, for f(x, λ) = λx = 0, there
is a unique solution x = 0 for λ ≠ 0, but the whole real line

= x of solutions at λ* = 0. What makes the bifurcation at R
= Rcr unique and novel is that the overall solution set remains a
1-dimensional and connected PCr manifold, as illustrated in
Figure 11. Moreover, the set of infinitely many solutions at Rcr
is bounded and, in this case, consists of a 1-dimensional and
connected PCr manifold with two boundary points: the upper
and lower critical solutions. Intuitively, this type of bifurcation
can be thought of as a hysteresis region: a hysteresis point
(Figure 6c) that has been “stretched” vertically into a whole

Figure 10. Above-feed liquid flow rates as functions of the arc length of the solution curve, with schematic representations of the column at non-
differentiable points.

Figure 11. The 0 - 1 - 1 and 1 - ∞ - 1 bifurcations at R = 0 and R =
Rcr, respectively, in terms of L4.
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segment of constant R = Rcr. Note how this differs from the
smooth hysteresis curve (Figure 6b) observed in most other
distillation systems with bifurcations, which are modeled with
the (smooth) MESH equations.
Mathematically, for each of the infinitely many solutions at R

= Rcr, at least one of the limiting partial Jacobian matrices
Jxf(i)(x, Rcr) with respect to the variables x is singular, with a
rank 1 deficiency. For the nonsmooth MESH model of a
distillation column, these singularities arise from complex
interactions between the model equations of types M, E, S, and
H of several stages. Intuitively, the singularities are associated
with an extra degree of freedom for the model equations,
which appears only at Rcr and makes the system momentarily
underdetermined.
On the other hand, the limiting partial Jacobian matrices

Jxf(i)(x, R) at R = 0 remain invertible despite the occurrence of
a bifurcation, and therefore the semismooth Newton method
can be used to solve for x directly at or around R = 0. In this
case, singular matrices are only present in the Clarke Jacobian
set of f, which corresponds to the set of all convex
combinations of the limiting Jacobian matrices Jxf(i)(x, 0).
The Choice of Parameter and the Bifurcation at B = Bcr.

We can analyze how the solutions of the nonsmooth MESH
model change with respect to any other parameter λ. If we
choose to specify and vary the boilup ratio B = VN/LN instead
of R, we also arrive at a critical boilup ratio Bcr at which the first
flow rate in the column becomes zero. Figure 12 presents the

above-feed liquid flow rates for Case Study 1 in terms of B,
with Bcr ≈ 1.0108. Even though the overall solution set remains
the same, its representation in terms of B gives rise to a
different bifurcation at Bcr of type 0 - /∞ - 1; here, /∞
indicates that the set of infinitely many solutions at the
bifurcation parameter Bcr is bounded and ends abruptly on one
end. The upper critical solution solution (R → Rcr

+ ) now
corresponds to B → Bcr

+ , and the solution for R = 0 would
correspond to approaching Bcr from below. The essential
aspects of this bifurcation can be described by the graph of L4
versus B in Figure 13; the solution set at Bcr is bounded and
consists of a 1-dimensional PCr manifold with two boundary
points.
Since no solutions exist below the critical boilup ratio, Bcr

represents a positive lower bound for the parameter that

cannot be predicted prior to simulation. This happens because,
once L5 becomes zero at the upper critical solution, the
distillation column is split into two halves (Stages 1−4 and
Stages 5−27). Changes in the upper half, such as decreases in
the value of R, can no longer impact the lower half, whose
describing variables (including B = Bcr) remain the same for
0 ≤ R ≤ Rcr.

Vapor Feed. Now, consider the same specifications in Case
Study 1 except that the feed stream is a dew-point vapor,
directly introduced into Stage 6. Figure 14 presents some of
the vapor flow rates in the below-feed column section as
functions of either R or B. In this case, it is the vapor phase that
disappears, but only in the stages below the feed. We can
observe a behavior that is mostly analogous to the dry column
case, except that the roles of R and B are switched; the critical
points for this system are Rcr ≈ 1.054 and Bcr ≈ 0.0195. The
below-feed stages become sequentially vaporless from top to
bottom, starting with V7 = 0 at B → Bcr

+ , then V26 = 0 at B →
Bcr
−, and finally with the reboiler “turning off” and becoming

vaporless (V27 = 0) at B → 0+. However, the solution curve
behavior at B = 0 for a vaporless column is qualitatively
different than that of a dry column at R = 0.
No solutions exist for B < 0 since the mid equation (eq 23)

for the reboiler ensures VN > 0. However, at B = 0, the reboiler
is vaporless and thus the liquid bottoms product LN is
mathematically allowed to become subcooled. This generates
infinitely many solutions associated with a negative reboiler
heat duty QN and gives rise to a 0 - ∞ - 1 bifurcation both at B
= 0 and at R = Rcr. This type of bifurcation differs from the 0 -
/∞ - 1 bifurcation depicted in Figure 13 because the solution
set is now unbounded at the bifurcation parameter, and
consists of a connected 1-dimensional PCr manifold with a
single boundary point (the upper critical solution). The
essential aspects of the 0 - ∞ - 1 bifurcations at B = 0 and at R
= Rcr can only be represented in terms of some of the reboiler
variables, such as the graph of the reboiler temperature TN
versus the boilup ratio B at B = 0 in Figure 15.
Note that a negative reboiler heat duty is physically

realizable in terms of heat exchange. However, we can choose
to eliminate these infinitely many solutions mathematically by
bounding QN to be positive, which can be attained by
employing a nonsmooth equation analogous to eq 32.

Case Study 2: Five-Component Non-ideal Mixture. A
bubble-point liquid stream composed of 15% methanol, 40%
acetone, 5% methyl acetate, 20% benzene, and 20% chloroform
(% mol) is fed to Stage 7 of a column with N = 19 ideal stages.
The UNIQUAC activity model is used for the liquid phase,
and the Hayden−O’Connell correlation is used to compute the
second virial coefficients that model the vapor phase fugacity.
The feed-to-distillate ratio is fixed at D/F = 0.3, the

Figure 12. Above-feed liquid flow rates as functions of the boilup
ratio B.

Figure 13. The 0 - /∞ - 1 bifurcation at Bcr in terms of L4.
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intermediate stages are adiabatic, and the linear pressure profile
ranges from 1.1 bar at the reboiler to 1.015 bar at the total
condenser. This system was also considered in the same papers
previously mentioned.7,8

Due to its low feed concentration, methyl acetate reaches
very small vapor phase mole fractions in the above-feed stages,
to the point that its fictitious liquid mole fractions defined via
Formulation 1 (eqs 22 and 23) would have to be negative in
the dry stages. This precludes convergence of the model
equations since the K value correlations contain logarithmic
terms that would become undefined. Instead, Formulation 2
can be used to trace all model solutions, with the variable β
present either explicitly through eq 13 (Formulation 2a) or
implicitly through eqs 14 and 15 (Formulation 2b). In both
cases, it is β that changes to reflect deviations from liquid−
vapor equilibrium, with the fictitious liquid mole fractions
remaining approximately constant. We note that convergence
with Formulation 2a is much more robust, which comes at the
price of adding an extra βj variable to each stage j. Formulation
2b can become numerically unstable depending on the
component chosen as i = 1 in eq 14, including when the
most volatile component (acetone) is chosen, and thus smaller
continuation steps must be used.
Using either form of Formulation 2, we can observe the

same qualitative behavior in this five-component system as
seen in the binary Case Study 1, with stages becoming dry (for
a liquid feed) or vaporless (for a vapor feed) through the same

previously detailed bifurcations. Therefore, for the sake of
brevity, we omit the plots and report only the critical
parameter values: Rcr ≈ 0.0013 and Bcr ≈ 0.4382 when the
feed is a bubble-point liquid, and Rcr ≈ 2.2976 and Bcr ≈
0.0068 when the feed is a dew-point vapor.

■ ANALYSIS OF THE BIFURCATIONS

The bifurcations that occur at the critical parameter values
represent the transition of some of the column stages from
Phase Regime I (vapor−liquid) into Phase Regimes III
(superheated vapor or subcooled liquid), and are intrinsic to
cascades of equilibrium stages. In this section, we use the
original Case Study 1 (with a liquid feed) as a basis for
comparison and introduce several modifications into the
column configuration and types of specifications, in order to
analyze which factors can influence and give rise to these
bifurcations.

Type of Modeling Approach. Any modeling approach
capable of enforcing the necessary MESH-based physical laws,
with equilibrium relationships only between the phases that are
actually present, will invariably lead to the same steady-state
solutions and bifurcations described in this paper. In this sense,
all three different formulations using the explicitly nonsmooth,
PC∞ function mid that we have employed (eqs 12, 13, and 14,
15) are equally valid. Equivalently, we could have used the
complementarity constraint modeling approach represented by
eqs 9−11 by first rewriting them with explicitly nonsmooth
equations (e.g. the Fischer−Burmeister formulation), and then
employing our pseudo-arclength continuation method to yield
the same steady-state solutions. However, this approach would
be more costly, given that it includes the additional variables sV,
sL, and β for each stage.

The Critical Parameter Value. The critical parameter
value λcr is particular to each system and cannot be predicted
or computed with the MESH equations in general, since the
location of the first flow rate(s) to equal zero cannot be
predicted. However, λcr and the upper critical solution can be
readily computed by replacing the specification equation for
the parameter in the standard MESH model:

λ λ− = 0user (41)

with the explicitly nonsmooth equation

Figure 14. Below-feed vapor flow rates as functions of (a) the reflux ratio R and (b) the boilup ratio B.

Figure 15. Reboiler temperature TN as a function of the boilup ratio
B.
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Mixture Components and Thermodynamic Models.
Our numerical experiments have shown that all bifurcations
presented in this paper are independent of the number and
identity of components and the thermodynamic model used,
which was also illustrated by Case Study 2. For instance,
employing the Peng−Robinson equation of state in the original
Case Study 1 maintains the same bifurcation behaviors, while
the critical parameter values change slightly (Rcr ≈ 0.0023, Bcr
≈ 1.007). The only issue to consider, as discussed in Case
Study 2, is that certain fictitious mole fraction formulations
might preclude convergence of the model equations at or
below the critical parameter value, depending on the mixture.
Pressure Gradients and Tray Heat Loss. Mathemati-

cally, the degenerate bifurcations at the critical parameter
values will only occur if “external driving forces” are included
in the column specifications, in the form of a pressure gradient
and/or external heat transfer in the trays (i.e., intermediate
stages). Without at least one of these imposing forces, the
vapor and liquid streams cannot drive themselves out of
saturation and thus the column stages cannot reach Phase
Regimes III. In such cases, there is a unique solution at the
critical parameter value, corresponding to when one or more
stages first become dry/vaporless but remain in Phase Regimes
II.
To demonstrate that, consider Case Study 1, now with a

uniform column pressure of 1 bar. As Figure 16 illustrates, the

stages above the feed can only become dry simultaneously,
with a unique critical solution at R = Rcr = 0. In terms of the
boilup ratio, this unique solution corresponds to Bcr ≈ 0.986.
Further decreasing of either R or B would necessarily lead to
negative liquid flow rates, which is not allowed by the
nonsmooth MESH model; as a result, we have a 0 - 1 - 1
bifurcation both at Rcr and Bcr.
On the other hand, we can specify a uniform column

pressure and still observe the same 1 - ∞ - 1 and 0 - /∞ - 1
bifurcations at Rcr and Bcr, respectively, by including non-zero
tray heat duties Qj. If we impose a uniform column pressure of
1 bar and include a heat gain Qj ≈ 9.6 × 102 J/s in all trays
(2 ≤ j ≤ N − 1) in Case Study 1, we are able to reproduce
essentially the same solutions and corresponding bifurcations
of the original case study, with the same Rcr, Bcr values. In the
case of a vapor feed, the original bifurcations with vaporless

stages are recovered by imposing an external heat loss in the
trays.
In a real distillation column, a significant fraction of the tray

pressure drop is due to vapor flow through tray perforations.
Therefore, we can expect a pressure gradient to be present in
dry stages, creating the mathematical conditions for the
occurrence of infinitely many steady states with superheated
vapor streams at the critical parameter values. Additionally,
tray columns are not perfectly insulated and heat exchange
with the environment occurs at every stage. In above-ambient-
temperature processes, tray heat losses could allow the liquid
in vaporless stages to become subcooled, providing the
necessary conditions for infinitely many vaporless states to
be observed.

Stage Efficiencies. All numerical examples presented thus
far involve ideal stages. If, instead, we specify a vaporization
efficiency of 30% in all intermediate stages in Case Study 1, we
still observe the same bifurcations previously presented, only at
different critical parameter values (Rcr ≈ 0.00308, Bcr ≈ 2.000).
On the other hand, if we specify vapor-phase Murphree tray
efficiencies of 30%, we obtain the slightly different behavior
depicted in Figure 17. In this case, mathematically there exists

a unique solution for each value of R and therefore no
bifurcation is present at Rcr ≈ 0.0024. However, the limiting
partial Jacobian matrices Jxf(i)(x, R) become extremely ill-
conditioned, despite being non-singular, and the resulting
behavior in Figure 17 remains essentially the same. We observe
an extremely abrupt change in steady states at Rcr, with graphs
that still appear to be vertical. Finally, we note that the
numerical values chosen for the tray efficiencies (either of the
vaporization or Murphree types) do not change the types of
behaviors observed. The difference in results depending on the
type of efficiency chosen suggests that the functional form of
the equilibrium relationship (eq 22), maintained when using
vaporization efficiencies, is necessary for the mathematical
existence of infinitely many solutions.
Notwithstanding, we must take into account that stage

efficiencies are only simplified descriptions of non-ideal vapor−
liquid mass transfer in real stages, with shortcomings that
become more pronounced in multicomponent, non-ideal
mixtures.3 Moreover, Murphree stage efficiencies are known
to become undefined and/or physically incorrect in several

Figure 16. Liquid flow rates L1 and L5 versus R for Case Study 1 with
a uniform column pressure of 1 bar.

Figure 17. Above-feed liquid flow rates versus R for Case Study 1
with vapor-phase Murphree efficiencies of 30%.
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instances, while vaporization efficiencies can be shown to, at
least, always remain well-defined.35 For these reasons, column
simulation in distillation design is customarily performed with
ideal stages, with stage efficiencies being estimated and
included post-simulation only to yield an updated number of
trays. In contrast, the non-equilibrium or rate-based modeling
strategy is much better suited to describe mass transfer effects
in real stages, and thus a nonsmooth version thereof could be
more reliable in predicting the steady-state behavior of dry/
vaporless columns.
However, the rate-based approach relies on correlations for

mass and heat transfer, interfacial areas, and other parameters,
which depend on knowledge of column and tray design
details,5 and are expected to be valid only when both vapor and
liquid phases are present. On the other hand, in general, the
efficiency/equilibrium stage approach still remains quite
accurate to describe binary, close-boiling ideal mixtures,3

such as the benzene−toluene system from Case Study 1. As
demonstrated in this section, the fact that the infinitely many
steady-state solutions of the nonsmooth MESH model persist
under different types of column specifications, stage
efficiencies, mixture components, and thermodynamic models
at least supports the hypothesis that some type of degenerate
or near-degenerate behavior could be observed experimentally.
The Feed State. It is the state of the feed stream(s) that

determines which phase(s) can disappear in the column. We
illustrate this for the original Case Study 1 in Figure 18, which

shows how Rcr changes as we vary the feed temperature, and
the corresponding phase regimes at, above, or below the
critical reflux curve. A change in regimes occurs at the feed
temperature Tf* = 366.07 K, which is between the bubble and
dew-point temperatures Tbubble = 362.0 K and Tdew = 367.9 K
of the feed mixture. For feed temperatures below Tf*, the
column goes dry above the feed stage for R ≤ Rcr, starting with
L5 = 0, in the same fashion depicted in Figure 9. For higher
feed temperatures, the column becomes vaporless below the
feed stage at R = Rcr in the same fashion of Figure 14, starting
with V7 = 0, and smaller reflux ratios R < Rcr are infeasible.
However, exactly at the transitional feed temperature Tf*, the

column becomes simultaneously dry above the feed and
vaporless below the feed for R ≤ Rcr, starting with L5 = V7 = 0.
In this case, any of the infinitely many vaporless states of the
below-feed part of the column can occur simultaneously with

any dry state of the above-feed section corresponding to
0 < R ≤ Rcr. As a result, we arrive at another type of
nonsmooth bifurcation with a higher degree of degeneracy.
The main aspects of this complex behavior can be illustrated by
Figure 19, where L4 (representing above-feed states) and V8

(representing below-feed states) are plotted against R at Tf =
Tf*. At R = Rcr, the solution set is a 2-dimensional PCr manifold
of steady states instead of a 1-dimensional PCr manifold. For
each individual reflux ratio 0 ≤ R < Rcr, there are infinitely
many vaporless steady states forming a 1-dimensional PCr

manifold, whereas the overall solution set for 0 ≤ R ≤ Rcr is a
2-dimensional PCr manifold containing dry and vaporless
steady states.
While all other bifurcations presented in this paper have

codimension 1 and thus require only a single parameter to be
varied, the bifurcation at R = Rcr, Tf = Tf* is of codimension 2:
two parameters are involved simultaneously, the reflux ratio
and the feed temperature. Therefore, it is much less likely to be
observed in practice during simulation of the nonsmooth
MESH model.
Figure 20 presents the phase regimes in terms of the boilup

ratio versus Tf for the same system, and we see a qualitatively

analogous behavior. We can also conclude from Figures 18 and
20 that the magnitude of the critical parameter value is not
necessarily small and depends on several factors. As a result,
engineers or solution algorithms could inadvertently choose
input parameters close to or below their critical values during

Figure 18. Critical reflux ratio Rcr versus feed temperature Tf for Case
Study 1, with phase regimes for each (Tf, R) pair.

Figure 19. The codimension-2 bifurcation at Tf = Tf*, in terms of L4
and V8 versus R.

Figure 20. Critical boilup ratio Bcr versus feed temperature Tf for
Case Study 1, with phase regimes for each (Tf, B) pair.
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column simulation and optimization, leading to failure of any
current MESH-based software.
Multiple Feeds. When multiple feeds are present, the

location and phase (vapor/liquid) of the first vanishing stream
is not obvious and cannot be predicted prior to simulation, but
is usually directly above or below one of the feed stages since
flow rates tend to vary monotonically in each column section.
To exemplify the different types of behavior that can be

observed, consider the original Case Study 1 with a bubble-
point liquid fed into Stage 6. If we introduce a second liquid
feed stream into a stage above, say, Stage 4, then the same type
of bifurcation from Figure 9 now happens above this second
feed only, with Stages 2−3 becoming dry. If instead we
introduce a second vapor feed below Stage 6, say, at Stage 8,
the type of bifurcation observed at Rcr might change according
to the behavior in Figure 18, with the horizontal axis now
representing the vapor feed flow rate F8. That is, for large
enough values of F8, the column is vaporless below Stage 8 at R
= Rcr, and for small enough F8 values, it remains dry above
Stage 6 for R ≤ Rcr. At a transitional vapor feed flow rate F8*,
the column is simultaneously dry above Stage 6 and vaporless
below Stage 8 for R ≤ Rcr.
The Type of Condenser and the Bifurcation at R = 0.

The nonsmooth bifurcation that occurs at R = 0 in a column
with dry stages depends on the type of condenser specified. As
long as the vapor distillate fraction θ is smaller than 1, a non-
zero amount of liquid distillate WL1 is present and the
condenser never goes dry. As a result, the solution curve stops
at R = 0 and we observe the same 0 - 1 - 1 bifurcation
described in the original Case Study 1.
However, if θ = 1, the condenser becomes dry at R = 0 and

the outlet vapor V1 can become superheated, which is
associated with a positive condenser heat duty Q1. The
solution curve is allowed to continue varying at R = 0 as the
condenser temperature T1 progressively increases, and we
observe a 0 - ∞ - 1 bifurcation, depicted in Figure 21 for Case
Study 1. This bifurcation is analogous to that observed at B = 0
for the reboiler in a vaporless column, which is illustrated in
Figure 15.

Side Products. The type of bifurcations occurring at the
critical parameter values might change when we withdraw side
products from intermediate stages, depending on their phase
(vapor/liquid) and location relative to the feed streams. We
illustrate the possible behaviors with Case Study 1, in which a
liquid feed is introduced into Stage 6. If a vapor side product is

included anywhere in the column or if a liquid side product is
withdrawn from a stage below the feed, the types of
bifurcations previously presented remain the same. However,
the system behavior changes if we include a liquid side product
above the feed, depending on the type of specification chosen
and stage location.

Withdrawal Ratio Specification. If we specify a liquid
withdrawal ratio RL, j for an intermediate stage j above the feed,
the stage’s drying process can proceed normally due to eq 28
but is no longer degenerate, as illustrated in Figure 22a for
Stage 3 with RL,3 = 0.5. At the new critical reflux ratio value Rcr
≈ 0.0030, we observe infinitely many solutions due solely to
the drying process of Stage 4. The drying process of Stage 3
happens with a unique solution for each R, until we reach a
second reflux ratio value R* = 0.0024 with infinitely many
solutions corresponding to the drying process for Stage 2.
Therefore, two 1 - ∞ - 1 bifurcations happen in series: at Rcr
and R*. Taking a step further, if we specify the same liquid
withdrawal ratio RL, j = 0.5 for Stages 2, 3, and 4, we can
eliminate the occurrence of infinitely many solutions and the
corresponding bifurcations altogether, as shown in Figure 22b.

Flow Rate Specification. When we specify a liquid side
product flow rate WL, j in stage j above the feed, the stage can
never become dry. If the stage’s liquid outlet Lj reaches zero, its
corresponding mid equation (eq 23) does not switch between
its arguments and remains enforcing the summation relation-
ship. Once Lj = 0 in the continuation process, the only way to
continue tracing solutions would be with Lj < 0, which is not
allowed by eq 29. Therefore, the nonsmooth MESH model
ceases to have a solution, which is illustrated in Figure 23a for
Case Study 1 withWL,5 = 0.1 mol/s. Stage 5, directly above the
feed, goes dry at Rcr ≈ 0.00446 and the solution curve cannot
proceed any further, with a 0 - 1 - 1 bifurcation observed at Rcr.
On the other hand, if we specify a liquid side product flow rate
WL,2 = 0.1 mol/s in Stage 2, the drying process of Stages 3 and
4 is allowed to happen in the original degenerate fashion, as
depicted in Figure 23b. This originates infinitely many
solutions at Rcr = 0.00445; however, the solution curve stops
once the outlet liquid L2 reaches zero, and we obtain a 0 - /∞ -
1 bifurcation at Rcr.

■ SUMMARY OF BIFURCATIONS

Table 1 presents all codimension-1 bifurcations introduced in
this paper in their simplest or normal form, which corresponds
to the bifurcation at λ = 0 of a simple single-equation, single-
variable system f(x, λ) = 0 with the same essential behavior. In
all instances, the overall solution set is a connected 1-
dimensional PCr manifold, with or without boundary;
moreover, the three first bifurcations depicted in Table 1 are
degenerate. Finally, we draw attention to the possibility that
other combinations of column specifications not considered in
this paper could give rise to other types of novel, nonsmooth
bifurcations in dry/vaporless distillation columns.

■ CONCLUSIONS AND FUTURE WORK

We have presented a MESH-based steady-state model for
multistage distillation, consisting of a system of nonsmooth
equations, that can simulate columns operating with dry and/
or vaporless stages. This task cannot be achieved with
commercial software such as Aspen Plus, which has well-
known dry column simulation failures, since the describing
equations for each stage need to be automatically switched

Figure 21. Condenser temperature T1 versus R for Case Study 1 with
θ = 1.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://dx.doi.org/10.1021/acs.iecr.0c02328
Ind. Eng. Chem. Res. 2020, 59, 18000−18018

18015

https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c02328?fig=fig21&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.0c02328?ref=pdf


according to the phases present at the solution. The only other
competing modeling strategy in the literature relies on
complementarity constraints, which require several equation-
solving tasks or the use of optimization algorithms. On the
other hand, our model can be solved in a single equation-
solving task using automatically computed generalized
derivatives, and can bound flow rates and other variables to
be non-negative. Moreover, the algebraic nature of our model
has allowed us to develop the necessary continuation methods
to reveal, for the first time, the occurrence of an infinite
number of steady states in distillation columns with dry and/or
vaporless stages.
In two case studies involving dry/vaporless distillation

columns from the pertinent literature, we have observed four
novel types of codimension-1 bifurcations, classified according
to the change in the number of steady states with respect to a
single input parameter: 1 - ∞ - 1, 0 - ∞ - 1, and 0 - /∞ - 1
(degenerate) and 0 - 1 - 1 (non-degenerate). By further
analyzing several types of column configurations, we
demonstrate that degenerate bifurcations occur at critical
input parameter values in a general context, regardless of the

mixture and thermodynamic models, as long as there is either a
pressure gradient in the column or imposed heat transfer in the
trays. The degeneracy persists even when non-ideal stage
efficiencies of different types are specified and when multiple
feed streams and side products are included. We have also
found that a codimension-2 bifurcation with a higher degree of
degeneracy can occur when two input parameters are varied
simultaneously. All presented bifurcations exhibit nonsmooth
behavior, mathematically described by the proposed concept of
piecewise-smooth manifolds.
Our findings further demonstrate that the input parameter

values leading to dry/vaporless stages in a distillation column
are not necessarily small, cannot be predicted prior to
simulation, and often give rise to an infinite number of steady
states. This degeneracy is associated with singular generalized
derivatives; therefore, it requires special continuation methods
that are not currently implemented in general process
flowsheeting software. Moreover, in some cases, no feasible
solutions exist below the critical parameter values.
In the subsequent work, we will focus on developing

alternative nonsmooth formulations to address both the

Figure 22. Above-feed liquid flow rates versus R for Case Study 1 with (a) RL,3 = 0.5 and (b) RL, j = 0.5, j = 2,3,4.

Figure 23. Above-feed liquid flow rates versus R for Case Study 1 with (a) WL,5 = 0.1 mol/s and (b) WL,2 = 0.1 mol/s.
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singularity and infeasibility limitations, in order to create a
distillation model that is robust to the issues associated with
dry/vaporless stages and applicable for flowsheet simulation in
industrial practice. Another line of future work involves the
dynamic simulation of dry/vaporless distillation columns and
stability analysis of the predicted infinitely many steady states,
which could shed light on the possibility of observing this
degenerate behavior in an experimental setting. Finally, we
note that our nonsmooth modeling and continuation strategies
could be extended to analyze phase regime transitions in
vapor−liquid−liquid systems. Previous computational and
experimental results on heterogeneous azeotropic distilla-
tion36,37 seem to indicate a discontinuity in steady states
associated with the appearance of a second liquid phase in
several stages, which could suggest the occurrence of
degenerate bifurcations analogous to the ones we presented
in this paper.
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