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Abstract 
We present a novel steady-state model for distillation columns that allows simulation of dry and 
vaporless stages, a task that cannot be achieved with commercial software such as ASPEN Plus. The 
model employs the outer loop structure of the standard inside-out algorithm, which allows for reliable 
and low-cost convergence under non-ideal thermodynamics, and introduces a modified nonsmooth 
inner loop that can be solved using automatically-computed generalized derivative elements and direct 
equation-solving methods. The resulting nonsmooth inside-out model automatically resets one of the 
column specifications if necessary, to always provide a valid physical solution of the MESH equations 
even under poorly-chosen inputs. A binary distillation case study from the literature is presented to 
demonstrate the robustness of the algorithm to specifications that lead to liquid and vapor phase 
disappearance or that are infeasible. 
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Abstract 
We present a novel steady-state model for distillation columns that allows simulation of 
dry and vaporless stages, a task that cannot be achieved with commercial software such 
as ASPEN Plus. The model employs the outer loop structure of the standard inside-out 
algorithm, which allows for reliable and low-cost convergence under non-ideal 
thermodynamics, and introduces a modified nonsmooth inner loop that can be solved 
using automatically-computed generalized derivative elements and direct equation-
solving methods. The resulting nonsmooth inside-out model automatically resets one of 
the column specifications if necessary, to always provide a valid physical solution of the 
MESH equations even under poorly-chosen inputs. A binary distillation case study from 
the literature is presented to demonstrate the robustness of the algorithm to 
specifications that lead to liquid and vapor phase disappearance or that are infeasible. 

Keywords: distillation simulation, dry and vaporless stages, inside-out algorithm, 
nonsmooth models. 

1. Introduction  
Engineering software such as ASPEN Plus and HYSYS have well-known convergence 
problems caused by distillation column stages becoming dry or vaporless, which not 
only impact standard process simulation but further preclude the convergence of 
flowsheets with recycle and of process optimization algorithms. For any given stage we 
can define 3 different phase regimes: (I) 2-phase equilibrium with vapor and liquid 
outlets, (II): 1-phase equilibrium, with either dew-point vapor and no liquid, or bubble-
point liquid with no vapor, and (III): 1-phase non-equilibrium, with either superheated 
vapor and no liquid, or subcooled liquid with no vapor. The standard MESH equations 
do not yield a physical solution for process conditions that lead to dry/vaporless stages 
operating in Phase Regime III because the equilibrium and summation equations cannot 
be satisfied simultaneously in this case, as demonstrated by Sahlodin et al. (2016). 
 
In order to simulate all possible regimes, we can resort to nonsmooth (i.e. non-
differentiable) modeling strategies that automatically switch part of the describing 
equations and adapt to the regime that corresponds to process inputs, without a priori 
knowledge. Previous attempts at steady-state dry/vaporless distillation simulation in the 
literature are limited to the work of Bullard and Biegler (1993) and Gopal and Biegler 
(1999), which is based on a complementarity constraint formulation. These papers 
resort to either optimization or iterative smoothing approximations to tackle the 
simulation problem and report very few numerical results for dry/vaporless operation.  
 
On the other hand, in previous work (Cavalcanti and Barton, 2018) we proposed a 
nonsmooth modified MESH model by replacing the summation equation with an 
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explicitly nonsmooth equation for each stage in terms of the mid function, which returns 
the median of three arguments:  

, (1) 

where  and  are the vapor and liquid outlet flow rates of stage ,  and are 
the respective vapor and liquid mole fractions of component , and  is a flow rate 
reference value. With the method for automatic LD-derivative evaluation of Khan and 
Barton (2015), generalized derivative elements for the nonsmooth MESH model can be 
computed reliably and used within nonsmooth equation-solving approaches, such as the 
semismooth Newton method (Qi and Sun, 1993), to simulate dry/vaporless columns. 
With detailed parametric analysis, we discovered that decreasing input parameters, such 
as the reflux ratio, could unexpectedly lead to a critical input value at which a 
continuum of infinitely many steady-state solutions exist, which range from what we 
call the upper critical solution (approached from above the critical value) to the lower 
critical solution (approached from below the critical value). This bifurcation or change 
in the number of solutions is associated with singular generalized derivative matrices, 
requiring special continuation methods for simulation at or near the critical point. 
Moreover, in some cases no feasible solutions exist below the critical parameter value, 
which then becomes a positive lower bound that cannot be predicted prior to simulation. 
 
Another important aspect of distillation simulation is that simultaneous convergence of 
the MESH equations in their original or primitive form can be unreliable and highly 
dependent on a good initial guess, especially with complex non-ideal multicomponent 
systems. To overcome this problem, Boston and Sullivan (1974) introduced the inside-
out method, an algorithmic strategy that creates 2 nested iterative loops to improve 
reliability of convergence and reduce the cost of repeated thermodynamic property 
evaluations. However, dry/vaporless solutions cannot be obtained and arbitrary scaling 
factors must be adjusted heuristically to avoid near-zero or negative flow rates. In this 
work, we develop a nonsmooth inside-out method that can retain the desirable 
convergence reliability under non-ideal thermodynamics and at the same time overcome 
the issues associated with liquid and vapor phase disappearance, to provide a physical 
solution robustly even in the face of infeasible specifications. 

2. The multistage inside-out algorithm 
The inside-out algorithms do not manipulate the physical or primitive variables 
(temperatures, flow rates, etc.) directly to converge the set of MESH equations. Instead, 
two nested outer and inner loops are created, each with its respective set of outer and 
inner iteration variables. In the outer loop, the complex thermodynamic property models 
for the equilibrium  values and for the vapor and liquid phase enthalpy departures 

 and  are used to generate simple approximate local models: 
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, (4) 

where  and  are weighting factors, and  is a reference 

temperature; the parameters  to , together with the relative volatilities 

, are the outer loop variables for each stage , with . Unlike 
the primitive variables, the outer loop variables do not require precise initialization. 
 
The inner loop employs the approximate property models to converge a rearrangement 
of the MESH equations. First, the mass balance, equilibrium and summation 
relationships are combined to create a tridiagonal linear system in terms of the 
component liquid flow rates , which is solved with the Thomas algorithm. Second, 
the residuals of the energy balances and of column specification equations are computed 
and iteratively driven to near-zero values with a quasi-Newton method. The main inner 
loop variables are derived from the stripping factors for each stage, 

. (5) 

From Eq. (5) it becomes evident that a dry stage ( ) leads to an undefined value 

of , creating a fundamental problem with the multistage inside-out algorithm and 
preventing convergence to the dry MESH solutions in Phase Regime II.  In order to 
avoid near-zero and negative flow rates, scaling factors  are introduced and 

heuristically adjusted, and  become the actual inner loop iteration variables.  
 
The original inner loop of Boston and Sullivan (1974) relies on all product rates being 
specified and is amenable to direct substitution methods. This way, Broyden’s method 
can be used with the identity as the initial Jacobian matrix and the inner loop can be 
converged at very low cost. However, their formulation does not allow for other 
specifications such as component purities and recoveries, which motivated Russell 
(1983) to propose a modified inside-out method that converges the set of energy 
balances and general specifications simultaneously. An approximation to the Jacobian 
matrix is computed and subsequently updated with Broyden’s formula. Several other 
versions of the inside-out method have been proposed, such as adaptations to reactive 
distillation systems (Venkataraman et al., 1990); in particular, RadFrac and related 
models of ASPEN Plus are proprietary modifications of the Boston-Sullivan method.  

3. The proposed nonsmooth inside-out algorithm 
We propose two main structural modifications to the inner loop of the multistage inside-
out method of Russell (1983). The end result is a nonsmooth inside-out algorithm that 
enforces the MESH equations at the final solution, is capable of converging to dry and 
vaporless solutions in Phase Regime II without running into singularities, and 
automatically resets input specifications that are infeasible or cannot be satisfied by the 
MESH equations to always yield a physical solution. 
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The first modification involves the specification equations, included in the set of inner 
loop residuals. The user chooses one of the column specifications to be flexible, say, the 
reflux ratio . The standard specification equation , which would enforce 

the user-specified value , is substituted by the nonsmooth equation  

, (6) 

which involves nested minimum operations. This ensures that specified values  
greater than the critical value  are enforced to yield a vapor-liquid solution in Phase 
Regime I, but any smaller values  (either infeasible or leading to a feasible 
solution in Phase Regime III) are overridden and the reflux ratio  is automatically set 
to its critical value to yield the upper critical solution in Phase Regime II.  
 
The second alteration allows the algorithm to deal with zero and negative flow rates and 
to converge to dry/vaporless solutions in Phase Regime II. Instead of the stripping 
factors, the inner loop variables are chosen to be what we denote the vapor-ratio factors 

, (7) 

where  is a reference value of the same magnitude of . The  factors are 
analogous to the inner variables in the Boston and Britt (1978) single-stage flash inside-
out method; they are physically bounded between 0 and 1 but remain well defined for 
near-zero or negative flow rates and can be manipulated directly instead of their 
logarithm values. Additionally, in order to maintain well-defined mole fractions for 
absent vapor and liquid phases, the tridiagonal linear system in the inner loop is 
reformulated in terms of the alternative variables , which are direct proxies to the 
liquid-phase mole fractions and are related by 

.   (8) 
 

The resulting inner loop contains a single nonsmooth equation and preserves the 
original loop size. In this work, the set of energy balances and specifications are 
converged simultaneously with a semismooth Newton method, with exact generalized 
Jacobian matrices computed with the automatic LD-differentiation method of Khan and 
Barton (2015). The initialization procedure of Boston and Sullivan (1974) is employed 
and the outer loop is converged with direct substitution. 

4. Case study: binary distillation  
We illustrate the performance of our algorithm with a case study considered by Bullard 
and Biegler (1993) and Gopal and Biegler (1999). A saturated liquid stream with 70% 
benzene and 30% toluene (% mol) is fed to Stage 20 of a column with  stages, 
with a linear pressure profile from the total condenser (Stage 1) at 1.05 bar to the 
reboiler (Stage ) at 1.2 bar, and a feed-to-distillate ratio of 0.5. Here, the Peng-
Robinson equation of state is used to describe the liquid and vapor phases. 
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Figures 1 and 2 present the results of a parametric analysis in which we vary the 
specified reflux ratio  and plot the above-feed liquid flow rates  and , 
respectively, as obtained with 4 different models: (1) ASPEN Plus’ RadFrac inside-out 
model, (2) the standard MESH equations, solved simultaneously with Newton’s 
method, (3) the nonsmooth MESH model represented by Eq. (1), solved simultaneously 
with the semismooth Newton method and continuation methods (Cavalcanti and Barton, 
2018), and (4) the proposed nonsmooth inside-out model. For high values of reflux 
ratio, all stages operate with vapor and liquid in Phase Regime I and all models yield the 
same unique solution. As we decrease the reflux ratio and approach its critical value 

, which is not known prior to simulation, the liquid phase directly above 
the feed stage disappears ( ) and we obtain the upper critical solution, in which 
Stage 19 is the only dry stage and operates in Phase Regime II. 
 
Model 1 fails to find any solutions for , with severe error messages 
stating that stages are dried up. ASPEN Plus aborts all flowsheet computations if flow 
rate values or ratios between vapor and liquid flow rates within the column fall below 
an arbitrary small positive value. Model 2 yields the upper critical solution at ; for 
smaller values  we obtain a unique nonphysical solution characterized by 
negative liquid flow rates . Model 3 exhibits a continuum of infinitely many 
physical solutions at , evidenced by the vertical graph segment in Figure 2. These 
solutions range from the upper critical solution, with only Stage 19 being dry and in 
Phase Regime II, to the lower critical solution, with Stages 3-19 being dry in Phase 
Regime III and Stage 2 dry in Phase Regime II. Model 3 has a unique physical solution 
for  corresponding to Stages 2-19 all dry and operating in Phase Regime 

III, and no solution for , which reflects the actual physical behaviour of the 
system. On the other hand, the proposed Model 4 provides a unique physical solution 
for all specified values of reflux ratio, including poorly-chosen negative values, and 
automatically returns the upper critical solution for . As expected, the MESH 
Model 2 exhibits smooth solution curves with respect to the reflux ratio, while the 
nonsmooth models originate graphs with kinks (Model 4) or discontinuities (Model 3) 
at the critical reflux value. 
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Figure 1: Liquid flow rate versus specified reflux ratio for each of the 4 models. 

 
 

Figure 2: Liquid flow rate versus specified reflux ratio for each of the 4 models. 
 

 

5. Conclusions 
We have presented a novel inside-out model for steady state distillation simulation that 
is robust to liquid and vapor phase disappearance and to infeasible column 
specifications. The Russell (1983) inside-out algorithm was restructured to employ new 
inner loop iteration variables that allow convergence to solutions with dry and vaporless 
stages and do not require heuristic scaling factors. The new inner loop contains a single 
nonsmooth equation that automatically bounds the column to operating conditions at 
which the MESH equations are valid, without resorting to inequality constraints. As a 
result, a valid physical solution is obtained by nonsmooth equation-solving methods 
even if column specifications are unpredictably infeasible or poorly chosen. 
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