

FME HighEFF HighEFF.no

FME HighEFF
Centre for an Energy Efficient

and Competitive Industry for the Future

Deliverable D2.1_2018.07
Heat exchanger modelling tool opportunities

Delivery date: 2018-12-17

Organisation name of lead beneficiary for this deliverable:
SINTEF ER

HighEFF- Centre for an Energy Efficient and Competitive Industry for the Future is one of Norway's
Centre for Environment-friendly Energy Research (FME).

 Project co-funded by the Research Council of Norway and Industry partners.
Host institution is SINTEF Energi AS.

Dissemination Level
PU Public X
RE Restricted to a group specified by the consortium

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 2 of 29

Deliverable number: D2.1_2012.07

ISBN number:

Deliverable title: Heat exchanger modelling tool opportunities

Work package: WP2.1 Heat Exchanges

Deliverable type: MEMO

Lead participant: SINTEF ER

Quality Assurance, status of deliverable

Action Performed by Date

Verified (WP leader) Geir Skaugen 20.12.2018

Reviewed (RA leader) Armin Hafner 20.12.2018

Approved (dependent on nature
of deliverable)*)

*) The quality assurance and approval of HighEFF deliverables and publications have to follow the established
procedure. The procedure can be found in the HighEFF eRoom in the folder "Administrative > Procedures".

Authors

Author(s) Name Organisation E-mail address

Geir Skaugen SINTEF Energy Research Geir.skaugen@sintef.no

Brage Rugstad Knudsen SINTEF Energy Research brage.knudsen@sintef.no

Abstract
The first part of this memo contains the information presented at the COPRO Consortium meeting 2018
with some additional information and results.
The models that was used in this analysis were developed and prepared as a task in HighEFF RA 2.1
The results from a screening of a tubes-in-shell heat exchanger compared to a novel plate-type design
for a given duty and desired maximum pressure loss indicated that for a plate type design a 90% core
weight- and 85% core volume reduction could be possible.
The investigated case was a heat recovery heat exchanger used in an indirect bottoming cycle for power
production for 150°C
The plate-type design will be followed up in HighEFF RA2.1 in cooperation with RA4 in 2019.

In the second part, experience on how derivative free optimisation framework NOMAD can be
implemented for process and heat exchanger optimisation are discussed. Comparison with gradient
based method in terms om time consumption and robustness are performed for a simple Rankine cycle.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 3 of 29

Table of Contents

1 Introduction .. 3

2 The "mBundle" model ... 3

2.1 Description and operating conditions ... 3

2.2 Geometry calculations .. 6

2.3 Performance data ... 10

3 Alternative concepts ... 17

3.1 Previous work in COPRO and HighEFF ... 17

3.2 Spiral-in-shell concept ... 19

3.3 Plate-(no)-fin concept ... 20

4 Summary and conclusions .. 28

5 Part 2 – Memo on the implementation and experience of derivative-free optimisation in the
process and heat exchanger modelling framework .. 29

1 Introduction

In COPRO WP2, an indirect cycle generating maximum of electric power from 150°C exhaust gas
has been analysed and optimized with respect utilizing a reasonable fraction of available fan
power and reasonable heat exchanger sizes. The indirect cycle is designed as pressurized water
circuit between the warm exhaust and the hydro-carbon (HC) circuit as the power producing
Rankine cycle. All heat exchangers in this process has been modelled quite detailed with a generic
heat exchanger model that is integrated in the process optimisation. These are the Heat recovery
heat exchanger (HRHE) that transfer heat from the exhaust gas to an indirect water circuit, the
evaporator, condenser and recuperator in the HC circuit. This memo focuses on the heat recovery
heat exchanger.

2 The "mBundle" model

2.1 Description and operating conditions

The mBundle-model was developed in cooperation with HighEFF RA2 as a simple and fast-
solving heat exchanger suitable for studying various optimisation techniques, for studying the

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 4 of 29

sensitivity on design from choices and the accuracy of the underlying physical and thermo-
hydraulic models and to investigate the possibilities of using variable tube geometry.

In COPRO WP1, the model has been used to do a screening of size/weight related to the
suggested operating conditions from the indirect cycle process optimisation.

Figure 1 The mBundle model

 Figure 1 describes the simple mBundle model. In the
analysis the exhaust gas is flowing inside several parallel
tubes that are placed inside a shell in a single pass design.
Three tube diameters a used, 60.3, 42.4 and 32.5 mm
outside diameter. These are plain tubes of carbon steel
with wall thicknesses 3.95, 3.53, 2.88 mm, with no internal
fins. The walls are assumed to be quite solid to withstand
possible erosion from the flue gas.

In the screening, the number of tubes are varied from 200
to 600 an the shell ID calculated automatically by solving a
tube-stacking algorithm within +/- 4 tubes. A fill ratio,
defined here as a fraction of the shell "height" that is filled
with tube rows is set to be 90%. The tubes are assumed to Figure 2 Details of tube stacking

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 5 of 29

be in a triangular pattern with equal tube distances of 1.15 times the outer tube diameter. Detail
of the tube stacking is shown in Figure 2. The tube lengths are varied between 1 and 20 m. The
process operating as inlet water and exhaust temperature and flow rate is held constant. The
water operating conditions comes directly from the WP2 process optimisation. The performance
of an "mBundle" is recorded for every combination of tube diameter, tube length and number of
tubes.

Figure 3 The operating conditions

Figure 3 show the operating conditions. This is for a modular case there the mass flow rate of
150°C exhaust gas is 12.0 kg/s. The flow rate in the indirect water circuit is 3.19 kg/s and the inlet
temperature is 64.4°C. Since the exhaust temperature is 150°C, the water is pressurized to an inlet
pressure of 5 bar to avoid boiling. At 5.0 bar, the boiling point of water is about 151°C. At design
point the desired duty is 846.7kW which corresponds to an outlet water temperature of 127.4°C.

In the screening, the mBundle-performance will vary depending of the heat transfer surface and
in cases with few, long tubes and small diameters, the pressure loss can be too high and boiling
may occur. (However, this did not happen during this screening). The exhaust was treated as dry
air in these simulations.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 6 of 29

2.2 Geometry calculations

Figure 4 Calculated shell diameter as a function of number of tubes for outside tube diameter of 60.3,
42.3 and 32.4 mm

Figure 4 shows the relation between the number of tubes and the shell diameter. As seen, this is
not linear since the number of tubes that are stacked inside the shell increase both horizontally
and vertically. If a maximum accepted shell diameter is, say 4.0 m, the maximum number of tubes
will be about 2800 for the largest diameters but 6000 and more for the smaller diameters.

Figure 5 show the relation between the specific heat transfer surface per. unit length for varying
number of tubes and tube diameters. The heat transfer surface is in this heat exchangers defined
as the sum of all the outside tube surfaces – or circumference as per unit length. This relation is
linear.

In Figure 6 the total heat transfer surface is shown as a function of the number of tubes and the
tube length. Here, only the 42.3 mm outside tube diameter is shown. As seen within the
screening-range heat transfer surfaces between 200 and 10000 m² is "found". If there is a
restriction of, say 4 m tube length inside the shell, the maximum heat transfer surface for this
diameter that can be obtained is about 3000 m². This corresponds to a shell diameter of about 4.0
m as seen from Figure 7. Finally, in Figure 8 the corresponding weight of the heat exchanger core

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 7 of 29

is shown, ranging from 1 to 100 ton depending of the size. Much of weight is here related to the
use of relative large tube wall thicknesses of about 2.5 to 3.5 mm as listed earlier

Figure 5 Heat exchanger area per unit length for different outside tube diameters and number of tubes

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 8 of 29

Figure 6 Iso lines showing heat transfer surface a function of tube length and number of tubes for tube
OD of 42.3 mm

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 9 of 29

Figure 7 Heat exchanger surface as function of tube length and shell diameter for tubes with outside
diameter of 42.3 mm

Figure 8 Calculated heat exchanger weight as a function of tube length and number of tubes (shell
diameter) for tubes with outer diameter of 42.3 mm

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 10 of 29

2.3 Performance data

With tube length, number of tubes and tube diameter as input and with the inlet operating
condition listed Figure 3, various performance maps can be generated.

All the performance maps are shown as a function of tube length and shell diameter. The shell
diameter is a calculated value from the number of tubes and tube diameter given as input.

Figure 9 Outlet water temperature as a function of tube lengths and number of tubes (shell diameter)

In Figure 9 the iso-lines for the calculated outlet water temperature are shown. The inlet water
temperature are 64.4°C for all cases. The design outlet water temperature of 127.4°C is labelled in
green and as seen, a minimum of about 8.5 m tube length is will be required. We can also see that
as the number of tubes increases, with increasing number of tubes, there is not more to gain as
the iso-lines is steeper. From this graph only, a tube length of 10-12 m (possibly as to bundles in
series) would be a best compromise giving a shell diameter of about 2.0 m.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 11 of 29

The outlet temperature of 127.4°C comes from the process optimisation of COPRO WP2 where
this water temperature is required as inlet to the hydrocarbon evaporator that is used in the
power-producing cycle.

The companion graph, showing the capacity is Figure 10 where 127.4°C corresponds to ~846 kW.

In Figure 11 the corresponding heat transfer rate (UA-values) are shown. UA-values are often used
to simplify the size of a heat exchanger when doing a process simulation of optimisation. The UA-
value is defined as the ratio between heat exchanger "duty" and "temperature difference":

𝑈𝑈𝑈𝑈 =
Duty

Temperature difference
=

𝑄𝑄
∆𝑇𝑇

Figure 10 Heat exchanger capacity as a function of tube length and shell diameter

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 12 of 29

Figure 11 The heat transfer rate (UA) as a function of tube length and shell diameter

Figure 12 Average temperature difference

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 13 of 29

In Figure 12, the corresponding average temperature is shown. Here we see how a smaller sized
heat exchanger really increased the temperature difference – or visa versa how large a heat
exchanger need to be if a mean temperature difference of 10-15 K or less is desired based on
some exergy loss minimisation optimisation.

Figure 13 Obtained overall heat transfer coefficient related to outside heat transfer area and average
stream temperature difference between exhaust and water.

The UA-values in Figure 11 is calculated from the calculated capacity divided by the arithmetic
mean temperature difference between the cooled exhaust and heated water. From the UA-
values, the U-values can directly obtained. This is shown in Figure 13

The U-values shown in Figure 13 we see how they are mosly dependent of the shell diameter. At
small shell diameters , there are fewer tubes and thus a higher gas (and water) speed resulting in
higher U-values. As the shell diameter (number of tubes) increases the heat transfer on both the
water and exhaust side becomes very poor resulting in an overall heat transfer coefficient (U-
value) of less than 20 W/m²K. We also see that it show little dependence of the tube length.

The HRHE that is investigated with the "mBundle" model would be part of a modular heat to
power system where the size of the total system will matter.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 14 of 29

From the same mapping, if a size restriction on both tube length and shell diameter is defined, the
presented maps could indicate what the possibilities for heat recovery are. This is indicated in
Figure 14. Here we can see that if we are limited to design with the coloured box, the maximum
water temperature would only be slightly above 110°C. This would mean that there would be less
heat available for the HC evaporator and less power generated. It also tell us that by integrating
size, weight and cost as part of the KPI for the whole system, another optimum would possibly be
found.

Figure 14 Size vs. performance

In Figure 15 and Figure 16 the exhaust side pressure loss is shown . In Figure 15 we can see how
the pressure loss approaches a constant value for shell diameter above ~2.0 m. This is (probably)
the inlet/outlet pressure loss to the bundle that seem to be more or less constant for this case. In
Figure 16 some iso-pressure loss contours for the frictional pressure drop inside the tubes are
shown for 42.3 mm tubes (Total subtracted 3.74 kPa). From the table in Figure 3, 1.23 kPa was
listed as the desired maximum pressure loss (as calculated without inlet/outlet contributions) and
is "easily" found to possible in the investigated range.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 15 of 29

Figure 15 Pressure loss on the exhaust side

Figure 16 Exhaust side pressure loss for bundle- only

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 16 of 29

Figure 17 Heat transfer resistance in terms of temperature differences

The last Figure 17 of the performance graphs who the heat transfer resistance for a specific case
with 12 m tube length and about 2.0 shell diameter (from 1500 43.3 mm tubes). Here we see the
wall and fluid temperature profiles when the exhaust is cooled from 150°C to 90°C, while the
water is heated from 64 to 120°C. The temperature difference between the exhaust and the wall
are much higher than the difference between the water and wall which is another way of showing
that most of the total heat transfer resistance between exhaust and water are on the exhaust
side.

That was the reason why alternative concepts with varying heat transfer surface was investigated
in COPRO.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 17 of 29

3 Alternative concepts

3.1 Previous work in COPRO and HighEFF
In the first part of this work, a heat exchanger tube with variable perimeter along the flow length
was investigated as a possibility to increase the heat transfer surface on the exhaust side in gas to
water heat exchanger as the gas velocity decreased. A tube perimeter with a sine-wave pattern
were investigated.

𝑅𝑅(𝜃𝜃, 𝑧𝑧) = (𝑅𝑅0 − 𝑈𝑈(𝑧𝑧)) + 𝑈𝑈(𝑧𝑧) sin(𝑁𝑁 ∙ (𝜃𝜃 + 𝐵𝐵(𝑧𝑧) ∙ 𝜋𝜋))

By letting the amplitude, A and the parameter B of the sine-wave be a function of the axial
position in a tube circuit, a helix sin-wave pattern with varying perimeter can be described. The
concept has previously been presented in COPRO and is summarized in Figure 18

Figure 18 Simple concept for varying geometry HX

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 18 of 29

Figure 19 Previous results from use of variable geometry

The results previously shown in Figure 19 showed that there could be a potential of increasing the
gas side tube perimeter along the tube. In the previous case, a mixture of propane and butane
that was heated in the super-critical region was used as the working fluid and it could be heated
additional 3-5 °C inside the same heat exchanger core size. The cost was increased pressure loss
and an increase in tube weight. In that analysis standard heat transfer correlations for single
phase flow were applied, but it was suggested as further work to investigate this more closely by
computational fluid dynamic (CFD) analysis. This has been done in HighEFF RA.4 and the
conclusions from that study showed that for single phase gas the "pockets" in the sine-wave
circumference profile and an increased boundary layer thickness that had a negative effect on the
effective heat transfer coefficient almost directly opposite that of the increased circumference
and smaller hydraulic diameter. The increased boundary layer and thus increased heat transfer
resistance is shown in Figure 20 below.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 19 of 29

Figure 20 CDF analysis of a sine-wave tube perimeter

3.2 Spiral-in-shell concept
Another possibility of increasing the gas-side surface could be to use a spiral-in-shell concept as
shown in Figure 21. The positive sides of such a case would be increased tube side heat transfer
and area. In addition, the shell side heat transfer area would increase and due to a more cross
flow design on the water side, the heat transfer would also increase.

The negative aspects would be increased pressure loss and probably increased weight.

This concept is not screened in the same as shown earlier, but for the same capacity the bundle
length could be reduced significantly.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 20 of 29

Figure 21 Spiral - in - shell concept

3.3 Plate-(no)-fin concept

As a second alternative a concept using stacked plates were briefly investigated. It is modelled as
a plate-fin heat exchanger, but with only a few solid fins to keep the plates apart. In the
simulations, 4 fins per. meter is used – 1.0 mm thick.

The setup used for the preliminary screening of this concept is shown in Figure 22.

Here, the plate distance (or the fin height) is used as a parameter when the plate length and
number of layers are varied. The plate width is held constant as 1.0 m. The plate length is varied
between 1.0 and 6.0 m while the number of stacked layers for each stream is varied between 50
and 300. The design is considered "single-banked" meaning that the number of layers for each
stream is equal.

The "fin height" or here, the plate distance, is set to be 5.0 or 10.0 mm in all four combinations for
the cold and warm stream.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 21 of 29

The partition plates in this concept is set to be 2.0 mm.

A P(no)FHE is geometrically defined as "Depth" x "Width" x "Height" where the Depth means the
plate length, the "Width" the plate width and the "Height" is the stacking height. The stacking
height is a function of the total number of layers and is shown in Figure 23. The "compact" and
"porous" designs refer to plate distance of 5.0 or 10 mm for warm and cold layers.

Figure 22 Plate - (no)Fin concept as HRHE

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 22 of 29

Figure 23 Stacking height as a function of number of layers

The heat transfer area range for the number of layers and plate length is shown below in Figure
24 and the corresponding core weights are shown in Figure 25.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 23 of 29

Figure 24 Heat transfer surface as a function of core length and stacking height - various plate distances

Figure 25 PFHE weight iso-lines

The weights in Figure 25 comes from a re-calculation after the first presentation of this concept.
The material has been changed to steel. Moving from aluminium to steel would normally result in

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 24 of 29

a heavier core weight. However, the formulation of the fin attachment was changed to using thick
single fins instead of the "normal" rectangular fin patterns where the fin thickness was also added
to the partition plate thickness.

The change is illustrated in Figure 26 below, the original formulation as plain, rectangular profile is
shown to the left while the new single fin formulation is shown to the right. The fin material is
shown as dark grey so it is evident that with the previous formulation, even only 4 fins per/meter
would include a full layer of unnecessary fin material as part of the heat exchanger weight. This is
now corrected, an even using steel in both partition plate and in the support fins.

Figure 26 Fin profile formulation in evaluated concept

Rectangular fin profile Single-fin profile

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 25 of 29

Figure 27 A map of duty vs weight for the plate(no)fin concept

A map of possible heat exchanger duty within this range of stacking heights and plate lengths are
shown in a "duty vs weight" map in Figure 27. The different colours represent the variation in fin
heights for the hot and cold layers. The dashed line represents the desired duty of 846 kW, and it
can be seen that there are several combinations of plate length, number of layers and layer
distances that can achieve that, already as light as 2.5 ton. The combination showing the lowest
weight will be the ones with small layer distance, few layers and short plate lengths. These will
also be subjected to the highest pressure loss. Pressure loss and pressure loss vs. duty is shown
in Figure 28 and Figure 29. As seen from the latter of the two there are several design candidates
possible.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 26 of 29

Figure 28 Exhaust pressure loss for plate concept

Figure 29 Pressure loss vs duty for plate concept

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 27 of 29

Figure 30 Duty, pressure loss and core weight for the plate concept

In Figure 30 all the important results are compiled into one graph. On the axis we see the plate
length and the number of layers. The green curves show the heat exchanger duty of 845 kW for
the four different combinations of the fin height. The two (actually 4) magenta curves show the
exhaust side pressure low of 1.5 kPa for either 10 mm fin height (lower) and 5 mm din height
(upper). The blue curves show the constant weight for 2, 5,10- and 15-ton core weight from
Figure 25.

To fulfil the constraint of maximum pressure loss of for instance 1.5 kPa the solution must lie
above this curve. The intersection between the performance curves (green) and the pressure loss
curves (magenta) is labelled from 1 to 4 according to the weight. All the core weights in this
analysis lie between 3 - ~5 ton. The design with 5 mm fin height (or layer spacing) for both hot and
cold side have the lowest weight for a plate length of about 2.2 m requiring about 130 layers.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 28 of 29

4 Summary and conclusions

This summary show how various robust heat exchanger models can be used to map out a range
of possible design alternatives for a required duty and pressure loss constraint. The results in
this memo as all done as simulations, and the more the free variables that is desired to
investigate the more complex, time consuming and difficult to present in a clear manner. Here,
more or less manually, some sort of optimum is found as shown in Figure 30. To do this more
automatically, every heat exchanger model used in COPRO and HighEFF are prepared to be
solved by optimisation techniques where a simulation is merely an optimisation with no degree
of freedom.

As for the results itself. A tube -in -shell design is compared to a plate-(no)fin concept in terns of
size and weight in terms of a specified duty and desired maximum exhaust side pressure drop. The
analyse so far indicate that a plate concept could possibly be considerable more compact, with a
core volume of 2 .2 (D) x 1 (W) x 2.0 (H) = 4.4 m3 and with a core weight of about 3 ton, The
plates are of 2.0 mm steel with 4 support fins per. meter if 1.0 mm thickness and 5 mm height.

The actual concept will be studied in more detail in HighEFF RA2.1 together with HighEFF RA4 in
2019.

The reference tubes-in-shell model on the other hand, would require a core volume of 12 (L) x
1.76 m (D) = about 29 m3 and with a core weight of between 25 and 30 ton. (with 42.3 mm OD
tubes, with 2.88 mm wall thickness).

So, if flat narrow channels can withstand erosion and fouling from the relevant flue gases, it could
be a great potential for modular systems if space and weight are constrained.

D2.1_2018.07 Heat exchanger modelling tool opportunities Page 29 of 29

5 Part 2 – Memo on the implementation and experience of derivative-
free optimisation in the process and heat exchanger modelling
framework

Memo
Derivative-free optimization in
FlexHX/CS

SINTEF Energi AS
SINTEF Energy Research
Address:
P.O. Box 4761 Torgarden
NO-7465 Trondheim
NORWAY
Telephone: +47 73597200
Telefax: +47 73597250
energy.research@sintef.no
www.sintef.no/energi
Enterprise/VAT No.:
NO 939 350 675 MVA

PERSON RESPONSIBLE / AUTHOR
Brage Rugstad Knudsen

FO
R
Y
O
U
R

AT
T
EN

T
IO

N

C
O
M
M
EN

T
S

A
R
E
IN

V
IT
ED

FO
R
Y
O
U
R

IN
FO

R
M
A
-

T
IO

N

A
S
A
G
R
EE

D

DISTRIBUTION

PROJECT NO/ FILE CODE
HighEff, WP2.1/

DATE
2018-12-20

CLASSIFICATION
Unrestricted

Abstract

This memo presents results from implementation and testing of the numerical optimiza-
tion solver NOMAD in the in-house software FlexCS for power cycles and heat exchanger design
optimization. Details of the implementation are included.

This memo contains project information and preliminary results as a basis for final reports.
SINTEF accepts no responsibility for this memo, and no part of it may be copied. 1 of 16

Contents
1 Background 3

1.1 Integrating NOMAD in FlexHX/CS . 4

2 Numerical testing with NOMAD in FlexHX/CS 5
2.1 Optimizing the design of heat-to-power cycles with NOMAD 5

3 Concluding remarks 6

4 Future work 7

References 7

A Implementation of NOMAD in FlexCS 9

B Additional files for integration of NOMAD in FlexHX/CS 14

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 2 of 16

This memo builds upon HighEFF deliverable D2_1.2017.01 on numerical optimization routines
in FlexHX/CS. The main conclusion from that memo was that a derivative-free optimization (DFO)
solver with support for integer variables is likely a preferred supplement to the currently available
optimization routines in FlexHX/CS, namely NLPQL . To this end, we have chosen to implement
the NOMAD solver (Nonlinear Mesh-Adaptive Direct search) by Le Digabel (2011). Expanding the
set of optimization routines in FlexHX and FlexCS with a DFO solver such as NOMAD provides the
users with alternatives in selection of an adequate optimization approach for the black-box type
optimization problems comprised by the FlexHX/CS models. This is important for the ability to
optimizing a wide range of power cycle and heat exchanger design optimization problems. NOMAD
can solve integer constrained optimization problems without access to derivatives. Additionally,
the code includes metaheuristic search methods and functionality for surrogate-model generation
which altogether may yield a more robust optimization approach than the available routines in
FlexHX/CS when applied to complex heat exchanger and design problems. The positive outcome is
an improved ability to optimize heat-exchanger and power-cycle design enabling innovative design,
novel solutions, new applications and reduced effort required for successful numerical optimization
of these models. This could benefit both HighEFF industry partners and beyond the center through
solutions and engineering designs that improves industrial energy efficiency and utilization of surplus
heat.

This memo presents implementation details of NOMAD in FlexCS , the solver’s main features
and comparative tests against NLPQL on a FlexCS model.

1 Background
FlexCS is an in-house SINTEF Energy software package for simulation and optimization of ther-
modynamic power cycles. FlexCS consists of many building blocks and components implemented
in separate C or FORTRAN software modules and libraries. The different software modules pro-
vide access to fluid properties, models and correlations for heat transfer and pressure drop, and
numerical routines and solvers. A central software module is the flexible modeling environment
FlexHX for multi-stream heat exchangers (Skaugen et al., 2013). This framework can be used to
model heat exchangers with a variety of surface geometries, flow areas and working fluids. FlexHX
models heat exchangers by defining fluid nodes, solid wall elements and heat transfer resistance
between them. Cycle models in FlexCS can choose heat-exchanger models of different detail levels
and geometries, including shell-tube and plate-fine heat geometries.

Current optimization approach in the FlexHX/CS software FlexHX/CS applies a black-box type
approach for solving design optimization problems. The software structure and integration ensure
physical rigorous heat-exchanger and power-cycle models. Thermodynamic libraries and cycle
components are efficiently integrated in the software, ensuring state-of-the-art and highly detailed
heat-exchanger models to serve as a basis for the design optimization. The main optimization
routine currently available in FlexHX/CS is the nonlinear programming (NLP) solver NLPQL
(Schittkowski, 1986). NLPQL is a general-purpose sequential quadratic programming (SQP) type
solver. It is a gradient-based solver, and features both augmented Lagrangian and `1 merit functions
(Powell, 1978) with the BFGS Hessian approximation for implementation as a quasi-Newton method.

To supply gradient information to NLPQL, FlexHX/CS uses finite-difference calculations. This is
the main hurdle for its numerical efficiency, and a prominent challenge in cases where outputs from
the underlying FlexHX/CS are noisy. Moreover, handling of integer decision variables arising for
instance in the geometrical design of heat exchangers is currently done through heuristic rounding
procedures (Skaugen et al., 2015).

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 3 of 16

1.1 Integrating NOMAD in FlexHX/CS

NOMAD (Nonlinear Mesh Adaptive Direct Search) implements the MADS algorithm (Audet and
Dennis, 2008) for constrained blackbox optimization. NOMAD1 solves both single-objective and
bi-objective constrained optimization problems without derivatives, and supports problems with
binary variables, general integer variables and so-called categorical variables which allows problem
structure (nature and number of variables) to change. The solver accepts optimization problems
defined on the form

minimize
x

f(x)

subject to cj(x) ≤ 0, j = 1, . . . ,m,
xl ≤ xi ≤ xu, i = 1, . . . , n.

(1)

where both the objective function f : Rn 7→ R and the constraints cj : Rn 7→ R may be non-
differentiable. xl and xu are lower and upper bounds on the optimization variables x ∈ Rn,
respectively, formulated separately from the constraints cj(x) but algorithmically handled in the
same way. Equality constraints must be reformulated as inequality constraints. MADS algorithms
as the one in NOMAD solves optimization problems (1) by generating iteration points on a series of
meshes with varying size, where the mesh is a discretization of the variable space. In each iteration,
the MADS algorithm generates a trial point on the mesh that seeks to improve the current best
solution (incumbent). This principally defines the SEARCH step of the algorithm. When an
iteration fails to improve the incumbent, the iteration is initiated on a finer mesh, adaptively
searching and refining the mesh in the vicinity of the incumbent. This latter is the core of the
algorithm’s POLL step. See Audet and Dennis (2008) for further details.

NOMAD handles constraints through barrier functions, either by using an extreme barrier (EB)
(Audet and Dennis, 2008) or a progressive barrier (Audet and Dennis Jr., 2009). The extreme barrier
function simply rejects infeasible points, i.e. f(x) = ∞ outside the feasible set. The progressive
barrier (PB) function approach allows iterates to be infeasible, and introduces a nonnegative barrier
threshold hk

max which is updated at the end of each iteration. Defining the constraint violation
h(x) as

h(x) :=


m∑

j=1
(max{cj(x), 0})2 if x ∈ X,

0, otherwise,
(2)

where X = {x ∈ Rn : xl ≤ x ≤ xu}, then every iteration point xk such that h(xk) > hk
max is

rejected. Upon this evaluation, PB performs a comparison of trial points and makes a ranking
with respect to progression in feasbility and objective value, to some extent resembling filtering
methods in nonlinear programming (Nocedal and Wright, 2006, Ch. 15.4). The threshold hk

max is
nonincreasing and updated at the end of each iteration. See (Audet and Hare, 2017, Ch 12.4) for
further details.

NOMAD uses mesh refining to integer lattices for solving DFO problems with integer or binary
variables. The solver incorporates the metaheuristic Variable Neighborhood Search (VNS) (Mlade-
nović and Hansen, 1997). The latter improves the solvers ability to escape from regions with no
feasible solution as well as local minima. Furthermore, NOMAD includes a library for surrogate-model
generation and evaluation. Through this functionality, NOMAD uses the sequence of performed black-
box calls to generate surrogate models of certain types, e.g. quadratic or spline surrogates, which
can then replace or complement the blackbox evaluations in the SEARCH and POLL steps. For
FlexHX/CS models where simulations for a given configuration is highly time consuming, e.g. for
detailed and complex heat-exchanger models, these features may prove to valuable. Finally, NOMAD
has support for parallelization of blackbox evaluations.

1https://www.gerad.ca/nomad/Project/Home.html

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 4 of 16

2 Numerical testing with NOMAD in FlexHX/CS

2.1 Optimizing the design of heat-to-power cycles with NOMAD

Problem description This section compares the performance of NOMAD with NLPQL applied for
optimizing the design of a simple organic Rankine cycle (ORC) implemented in FlexCS. We name
the optimization problem SimpleCycle, which characteristics are shown in Table 1. The objective
is to maximum net power produced by the ORC.

Extensive tuning of the NLP staring point and step-lengths in the FD approximations has been
performed to optimize the performance of NLPQL for solving the SimpleCycle model. To evaluate
the solvers’ performance, we use as a reference this tuning of the derivative approximations for NLPQL
and the solution obtained, while we use different initial starting points to compare the performance
of the two solvers. In particular, with all variables normalized, we generate 10 different starting
points by multiplying the reference stating point with a pseudo-random number in the range [0, 1).

We use the following settings for the solvers:

• NOMAD:

– Termination criteria: maximum iterations (equal to black-box/FlexCS calls) MAX_BB_EVAL
= 1000 OR mesh size parameter ∆m ≤ 10−6 (MIN_MESH_SIZE).

– Initial poll and mesh sizes (INITIAL_POLL_SIZE/INITIAL_MESH_SIZE are both
set to 0.005.

– Variable neighborhood search (VNS) is used by its default settings (VNS_SEARCH(true)),
in which NOMAD will try to perform a maximum of 75% blackbox evaluations within
the VNS search.

– The extreme-barrier function (EB) is used for constraint handling.

• NLPQL:

– Forward Euler FD approximations are applied as derivatives.
– Maximum function calls in line search (MAXFUN) is set to 100000, while maximum

number of iterations (MAXITER) is set to 2500000.

Model name # Cont. opt var. # Equality const. # Inequality const. Simple var. bounds.
SimpleCycle 5 0 5 10

Table 1: Properties of test problem SimpleCycle

Results from solving SimpleCycle with NLPQL and NOMAD, respectively, are shown in Table 2.
Test #0 is the results from the reference starting point. NLPQL can be seen to require an order of
magnitude less solution time compard with NOMAD for converging to a local solution to SimpleCycle.
As expected, the superior local properties of NLPQL makes it outperform NOMAD whenever it is
initialized sufficiently close to a stationary point and the FD approximations provide sufficiently
accurate derivative information for approximate gradient and Hessian computations. However,
NLPQL fails on converging to a solution on four of the starting points. In contrast, NOMAD finds
a solution to SimpleCycle for all instances, indicating better robustness properties than NLPQL
for solving this type of power cycle problems when information about a good starting is lacking,
that is, with higher degree of infeasibility measured by some norm. NOMAD requires a high number
of black-box (FlexCS) evaluations on the given model, and on most instances terminates either
close to or on its set maximum number of iterations. At the optimal solution found by NLPQL,
three out of five of the inequality constraints are active while none of the simple variable bounds.

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 5 of 16

NLPQL NOMAD

Test # Sol. time [s] Obj. val. BB calls # SQP iter Sol. time [s] Obj. val. BB calls ||∆m||∞
0 1.4 4.40 32 5 15.9 4.39 1000 10−5

1 1.2 4.40 25 4 14.0 4.39 994 10−6

2 - - - - 14.0 4.37 1000 10−5

3 2.9 4.40 37 6 15.5 4.36 1000 10−4

4 2.7 4.40 31 5 14.1 4.38 1000 10−4

5 - - - - 8.8 4.40 618 10−6

6 1.8 4.40 74 10 13.4 4.39 943 10−6

7 3.2 4.39 34 7 12.6 4.37 814 10−6

8 - - - - 15.3 4.37 816 10−6

9 - - - - 16.8 4.38 879 10−6

10 1.67 4.40 38 6 14.6 4.39 773 10−6

Table 2: Comparison of results from solving SimpleCycle with NLPQL and NOMAD . A - sign means
that algorithm did not converge to a feasible solution. Note that objective is scaled.

NOMAD appears to not push solution close to constraint bounds, i.e. solutions are in the interior
of the feasible set. Consequently, it can be seen in Table 2 that the solutions obtained by NOMAD
often are close but slightly poorer than the solution found by NLPQL in the cases where the latter
convergences to a stationary point (local solution).

The tuning of NOMAD may significantly impact its performance. To options (algorithmic
settings) appear to be particularly important:

1. The type of barrier function for constraint handling (BB_OUTPUT_TYPE for each con-
straint).

2. Initial mesh and poll size (INITIAL_MESH_SIZE/INITIAL_POLL_SIZE).

From initial testing, EB seems to perform better than PB when starting from “difficult” initial
points in the sense of being largely infeasible or far from a local solution. On the other hand, with
a good initial starting point, NOMAD may perform better with PB for constraint handling, both in
terms of reduced computation time and improved solution.
Remark 1. The step lengths εi for the FD approximations have been extensively tuned prior to
the comparative test shown in Table 2. Comparing the effort and required preparation time for
optimizing a power cycle in FlexCS with NLPQL and NOMAD, respectively, one should also consider
the user’s time spent on tuning the FD step lengths required for NLPQL as well as generation of
a suitable NLP starting point. The latter is also required for NOMAD, that is, a suitable starting
point, however, the Latin Hypercub (LH) and VNS metaheuristics implemented in the code can
be exploited to generate an initial point.
Remark 2. NOMAD allows the user to fix variables. As such, NOMAD allows user of FlexHX/CS to
easily switch or reduce the degrees-of-freedom during the course of designing and optimizing heat
exchangers and power cycles.

3 Concluding remarks
If physical insight about the optimal design of an FlexHX/CS model can utilized to define a good
starting point, and moderate effort is required to tune FD derivative approximations, then NLPQL
should first be tested for optimization. When the design and specifications of either the heat

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 6 of 16

exchanger design, thermodynamical/fluid properties and/or the cycle components are complex and
prohibits generation of good starting points, then NOMAD should be explored due to its ease of use,
better robustness and integration of global-search heuristics.

4 Future work
It was observed during testing that NOMAD often quickly reduces the objective value in its first
iteration after which the improvement significantly drops off. To speed up solution time, the
user may therefore abort NOMAD when a satisfactory solution has been obtained. While the solver
appears robust, it cannot compete with NLPQL’s local support. As a result, it would be interesting
to study the potential of combining NOMAD and NLPQL as an integrated DFO and FD gradient-type
algorithmic approach to exploit the advantages of both. For this purpose, we propose to asses
and compare the following standalone and hybrid optimization approaches on several instances of
FlexHX/CS:

• NOMAD with VNS.

• NOMAD with VNS possibly with surrogate models.

• NLPQL standalone.

• NOMAD with VNS, switching to NLPQL for fast local convergence when improvement of NOMAD
iterates is observed to abate.

• On FlexHX/CS models with integer variables: Use NOMAD to generate initial good solutions, fix-
ing the integer variables and subsequently optimize continuous variables (degrees-of-freedom)
using NLPQL. A challenge with this approach is that it is difficult to anticipate when NOMAD
has found optimal values for the integer variables. A heuristic may be to switch to NLPQL if
the values of integer/binary variables are observed to remain unchanged over many iterations
of NOMAD.

• Finally, distinction between hard constraints for FlexHX/CS models compared to soft con-
straints that are desirable for the ultimate design may be exploited in specifying constraints
for extreme (EB) and progressive barrier (PB), respectively.

The successful outcome of such a comparison could provide new insight and solutions of heat-
exchanger and power-cycle design, and should lead to a journal publication.

References
Audet, C. and Dennis, J. E. (2008). Mesh adaptive direct search algorithms for constrained
optimization. SIAM Journal on Optimization, 18(4):1501–1503.

Audet, C. and Dennis Jr., J. (2009). A progressive barrier for derivative-free nonlinear program-
ming. SIAM Journal on Optimization, 20(1):445–472.

Audet, C. and Hare, W. (2017). Derivative-Free and Blackbox Optimization. Springer.

Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear Optimization with the MADS Algorith.
ACM Transactions on Mathematical Software, 37(4):1–15.

Le Digabel, S., Tribes, C., and Audet, C. (2017). NOMAD User Guide.
https://www.gerad.ca/nomad/Downloads/user_guide.pdf.

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 7 of 16

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24(1):1097–1100.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer.

Powell, M. J. (1978). Algorithms for nonlinear constraints that use Lagrangian functions. Mathe-
matical Programming, 14(1):224–248.

Schittkowski (1986). NLPQL: A FORTRAN subroutine for solving contrained non-linear program-
ming problems. Annals of Operations Research, 5(11):485–500.

Skaugen, G., Hammer, M., Wahl, P. E., and Wilhelmsen, Ø. (2015). Constrained non-linear
optimisation of a process for liquefaction of natural gas including a geometrical and thermo-
hydraulic model of a compact heat exchanger. Computers and Chemical Engineering, 73:102–115.

Skaugen, G., Kolsaker, K., Walnum, H. T., and Wilhelmsen, Ø. (2013). A flexible and robust
modelling framework for multi-stream heat exchangers. Computers and Chemical Engineering,
49:95–104.

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 8 of 16

A Implementation of NOMAD in FlexCS

NOMAD is implemented C++, and comes with a range of interfaces to different software. The struc-
ture of FlexCS requires integrating the NOMAD solver as a callable library (Le Digabel et al., 2017,
p. 47). As FlexHX/CS is implemented in C and Fortran, a parser is required for linking with NOMAD.
All FlexCS models is defined through three files: MODELNAME.c, MODELNAMEsim.c, MOD-
ELNAME.h. For using NOMAD, we will use the same set of files, subject to certain modifications,
and define the file:

MODELNAME_optNOMAD.cpp: Defines an Evaluator class, specific for each
model, and a function system_optimizeNOMAD() which replaces function solvesystem()
in MODELNAME.c. The optimization call by solvesystem() is done in the file MOD-
ELNAMEsim.c.

Using NOMAD as a callable library requires the user to define the function system_optimizeNOMAD()
for executing the underlying MADS solver, and an evaluator class that calls CalcDeviation() as
a blackbox for evaluating the power cycle, thereby acting as an interface between the optimization
solver and the model. In the evaluator class, the user defines how the black-box is called with
the current iteration point xk of NOMAD, and sets the output objective function and constraint
residuals from the blackbox as iterate/evaluation-point attributes (through x.set_bb_output).
system_optimizeNOMAD() defines output types from calling the black-box model (FlexCS), sets
parameters for the solver and lower/upper bounds on the optimization variables. An example
of MODELNAME_optNOMAD.cpp is shown in Listing 1. system_optimizeNOMAD() needs to
be callable both from MODELNAMEsim.c and is thus declared in MODELNAME.h. Observe
that instead of calling the optimization solver inside MODELNAME.c as is currently done with
solvesystem(), we move the call to system_optimizeNOMAD() to the file MODELNAMEsim.c.

Below we describe changes that must be made to the existing FlexCS model files for calling
NOMAD:

1. Changes to file MODELNAMEsim.c: MODELNAMEsim.c calls MODELNAME() to
define cycle model and system_optimizeNOMAD() to optimize system using NOMAD. To this end,
MODELNAMEsim.c need to access FCSSystem *system. An example of MODELNAMEsim.c
in terms of the simple_cyclesim.c is shown in Listings 2. Observe that we call the “main”
function MODELNAME() (e.g. simple_cycle (argv[1])) to construct but not optimize the power-
cycle model.

2. Changes to file MODELNAME.c: Calling NOMAD to optimize a model in FlexCS requires
commenting out Solvesystem() in function MODELNAME(char *cfgFileN) and the subsequent
plotting and output functions. CalcDeviation() remains unchanged.

3. Changes to file MODELNAME.h: Additions to existing file MODELNAME.h is shown
in Listings 3.

4. The makefile: A nomad.o target to must be created. An example makefile for the model
simple_cycle is shown in appendix B, Listings 4.

Listing 1: Example of function system_optimizeNOMAD()

#include <stdio.h>
#include "nomad.hpp"

using namespace std;
using namespace NOMAD;

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 9 of 16

extern "C"{
#include "simple_cycle.h"

}

/*--*/
/* The problem: the evaluation is made */
/* by calling CalcDeviation */
/*--*/
class My_Evaluator : public Evaluator {
public:

My_Evaluator (const Parameters & p) :
Evaluator (p) {}

~My_Evaluator (void) {}

bool eval_x (Eval_Point &x ,
const Double &h_max ,
bool &count_eval) const {

int n = x.size();
double *xx = new double[n];

FCSSystem *system = getFCSSystem();

// Update scaled versions of variable vector x (as system->xscale):
int i;
for (i = 0 ; i < n ; ++i){

xx[i] = x[i].value();
system->xscale[i] = xx[i]; // Set new variable values to (FCSSystem) system.
}

// Execute black-box call:
double g[system->m];
CalcDeviation(&(*system).f, g);

x.set_bb_output (0 , system->f); // set obtained objective value:

bool DisplayConstraintResidual = false;

for (i=0 ; i<system->m ; ++i){
x.set_bb_output (i+1 , -g[i]); // set constraint residuals
if(DisplayConstraintResidual){

if(i==(system->m - 1)){
printf(" g_%i: %.6f \n", i,-g[i]);

}
else{

printf(" g_%i: %.6f ", i,-g[i]);
}

}
}

count_eval = true; // count a black-box evaluation

return true; // the evaluation succeeded
}

};

void system_optimizeNOMAD (

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 10 of 16

int *n , // # of variables
int *m , // # of outputs (obj + m-1 constraints)
double *x , // starting point (IN) / solution (OUT)
double *lb , // lower bounds for each variable
double *ub , // upper bounds
int *max_bbe , // max # of evaluations (-1: not considered)
int *display_degree, // display_degree (0-4; 0: no display)
char outputlist[], // list of strings (without quotes) for defining

output stats of NOMAD
char WriteToFile[] // output filename
) {

Display out (std::cout);
out.precision (DISPLAY_PRECISION_STD);

try {

int i;

// parameters creation:
Parameters p (out);

p.set_DIMENSION (*n); // number of variables

vector<bb_output_type> bbot (*m); // definition of output types:
bbot[0] = OBJ; // first output : objective value to minimize
for (i = 1 ; i <*m ; ++i) // other outputs: constraints cj <= 0

bbot[i] = EB;
p.set_BB_OUTPUT_TYPE (bbot);

// NOMAD starting point and simple variable bounds
Point px0 (*n);
Point plb (*n);
Point pub (*n);
for (i = 0 ; i < *n ; ++i) {

px0[i] = x [i];
if (lb[i] > -1e20)

plb[i] = lb[i];
if (ub[i] < 1e20)

pub[i] = ub[i];
}
p.set_X0 (px0);
p.set_LOWER_BOUND (plb);
p.set_UPPER_BOUND (pub);

// SET OPTIONS FOR NOMAD

// maximum number of black-box evaluations:
if (*max_bbe > 0)

p.set_MAX_BB_EVAL (*max_bbe);

// display degree:
p.set_DISPLAY_DEGREE (*display_degree);
p.set_INITIAL_POLL_SIZE(0.005);
p.set_INITIAL_MESH_SIZE(0.005);
p.set_VNS_SEARCH(true);
p.set_MIN_MESH_SIZE(1e-6);
p.set_DISPLAY_STATS(outputlist);
p.set_STATS_FILE(WriteToFile,outputlist);
p.set_MIN_POLL_SIZE(1e-6);
// p.set_DISPLAY_ALL_EVAL(true);
// parameters validation:

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 11 of 16

p.check();

// custom evaluator creation:
My_Evaluator ev (p);

// algorithm creation and execution:
Mads mads (p , &ev);
mads.run();

// get the solution:
const Eval_Point * bf = mads.get_best_feasible();
if (bf)

for (i = 0 ; i < *n ; ++i){
x[i] = (*bf)[i].value();

}
// Set best feasible point to system:
printf("\nPerforming final CalcDeviation with best found feasible solution\n");
FCSSystem *system = getFCSSystem();

for(i = 0 ; i < system->nvar ; ++i){
system->xscale[i] = x[i];

}
// Call simulator for simulation with final optimization result:
double g[system->m];
CalcDeviation(&system->f, g);

}
catch (exception & e) {
cerr << "\nNOMAD has been interrupted (" << e.what() << ")\n\n";

}
}

Listing 2: Example of file MODELNAMEsim.c used to call NOMAD for optimizing design of power-
cycle models in FlexCS .

#include <stdio.h>
#include <stdlib.h>
#include "simple_cycle.h"
#include "timing.h"
#include "fhxcmdopt.h"

// Additional includefiles:
#include "fcssystem.h" // To access FCSSystem *system
// #include "simple_cycle_solvesystemNOMAD.h"

int main (int argc, char **argv) {

int i;
double CpuStart = CpuTime();
options_init();
cmdlineFile2(OptionPtr, COptionPtr, IOPT,IOPTC, argc, argv);

// Use simple_cycle() to create but NOT solve system:
int iret = simple_cycle (argv[1]);

FCSSystem *system = getFCSSystem(); // Get the actual FCS system.

int NOMADMaxIter = 1000;
int NOMADDisplayLevel = 2;
int numconstraints = system->m + 1; // m +1 (objective function)

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 12 of 16

char listOfOutputStats[] = "BBE OBJ"; // Define outputs to show during execution of NOMAD and
in output file

char WriteToFile[] = "SimpleCycleResNomad"; // Name of output result file.

FCSSystem_scaleInVar(system); // Scale optimization variables

// Call NOMAD:
system_optimizeNOMAD(&(system->nvar), &numconstraints, system->xscale, system->xlowscale,

system->xupscale, &NOMADMaxIter, &NOMADDisplayLevel, listOfOutputStats, WriteToFile);

FCSSystem_scaleOutVar(system); // Update unscaled final variables.

printf("\n\n Solution at termination of NOMAD: \n");
for (i = 0 ; i < system->nvar ; ++i){
if (i== system->nvar - 1){ printf("x_%i = %.3f. \n ",i ,system->xscale[i]);}
else{printf("x_%i = %.3f. \t ",i ,system->xscale[i]);}

}

printf("Unscaled: \n ");
for (i = 0 ; i < system->nvar ; ++i){
if (i== system->nvar - 1){ printf("x_%i = %.3f. \n ",i ,system->x[i]);}
else{printf("x_%i = %.3f. \t ",i ,system->x[i]);}

}

printf(" \n Obj. value at termination: f(x) = %.4f \n \n", *(&system->f));
printf("Number of equality constraints: %i \n", system->me);
printf("Number of inequalities: %i\n", (system->m-system->me));
printf("Simple bounds on variables: \n");

printf ("CPU time used is %g seconds\n", CpuTime() - CpuStart);

return iret;
}

Listing 3: Additional definitions/declarations in MODELNAME.h

// Additional external declariations:
extern void CalcDeviation(double *f, double g[]);
extern void FreeAAAMemory(void);
extern FCSSystem* getFCSSystem(void);

#ifdef __cplusplus
extern "C"
#endif
void system_optimizeNOMAD (

int *n ,
int *m ,
double *x ,
double *lb ,
double *ub ,
int *max_bbe ,
int *display_degree,
char outputlist[],
char WriteToFile[]);

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 13 of 16

B Additional files for integration of NOMAD in FlexHX/CS

Listing 4: Makefile for the model simple_cycle

#Common part for all models
#
ifeq ($(shell uname -o), Msys)

CODES = /c/progs
EXE = .exe

else
CODES = $(HOME)/codes
EXE =

endif

include $(CODES)/flexcs/models/Makefile.models.common

#LDFLAGS += -Wl,-V,-t

CO2DIR = $(CO2ROOT)/iupac
CO2VERSION = $(IUPACVERSION)
include $(CO2DIR)/version.mk

##
#
NOMAD defintions:
#
LIB_DIRNOMAD = $(NOMAD_HOME)/lib
LIB_NOMAD = libnomad.dll

LDLIBSNOMAD = -lm -lnomad -lstdc++

COMPILATOR_OPTIONSNOMAD = -ansi -Wall -O3
INCLUDENOMAD = -I$(NOMAD_HOME)/src -I$(NOMAD_HOME)/ext/sgtelib/src -I.
COMPILENOMAD = $(CXX) $(COMPILATOR_OPTIONSNOMAD) $(INCLUDENOMAD)

OBJS = \
$(OUTDIR)/simple_cyclesim.o \
$(OUTDIR)/simple_cycle.o
$(OUTDIR)/nomad.o

OBJSNOMAD = $(OUTDIR)/nomad.o
##

$(info VAR="$(OUTDIR)")

FLEXHX_OPTIM = libflexhx_optim.a
FLEXHX_DEBUG = libflexhx_debug.a
FLEXHX_PROFILE = libflexhx_profile.a

FLEXCS_OPTIM = libflexcs_optim.a
FLEXCS_DEBUG = libflexcs_debug.a
FLEXCS_PROFILE = libflexcs_profile.a

Additional targets
FHXCS_OPTIM = flexhx_optim flexcs_optim
FHXCS_DEBUG = flexhx_debug flexcs_debug
FHXCS_PROFILE = flexhx_profile flexcs_profile

Define nomad.o target:
nomad.o: $(SRC)/simple_cycle_solvesystemNOMAD.cpp

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 14 of 16

$(COMPILENOMAD) $(CFLAGS) -c $(SRC)/simple_cycle_solvesystemNOMAD.cpp -o $(OUTDIR)/nomad
.o

$(info VAR="$(OUTDIR)")

cdebug: clean_objects debug
coptim: clean_objects optim
cprofile: clean_objects profile

debug: simple_cycle_debug
optim: simple_cycle_optim
profile: simple_cycle_profile

simple_cycle_optim: CFLAGS = $(CFLAGS_OPT)
simple_cycle_optim: FFLAGS = $(FFLAGS_OPT)
simple_cycle_optim: CLIBS = $(OPTIMLIBS)
simple_cycle_optim: objectdir $(TPBLOCK) $(OBJS)
simple_cycle_optim: nomad.o

$(CXX) -o simple_cycle_optim $(LDFLAGS) $(OBJS) $(OBJSNOMAD) $(CLIBS) $(LDLIBSNOMAD) -L$
(LIB_DIRNOMAD)

strip $@$(EXE)

simple_cycle_profile: CFLAGS = $(CFLAGS_DEBUG) -fno-omit-frame-pointer -pg
simple_cycle_profile: FFLAGS = $(FFLAGS_DEBUG) -fno-omit-frame-pointer -pg
simple_cycle_profile: CLIBS = $(PROFILELIBS)
simple_cycle_profile: objectdir $(TPBLOCK) $(OBJS)

$(CXX) -o simple_cycle_profile $(LDFLAGS) -pg $(OBJS) $(CLIBS)

simple_cycle_debug: CFLAGS = $(CFLAGS_DEBUG)
simple_cycle_debug: FFLAGS = $(FFLAGS_DEBUG)
simple_cycle_debug: CLIBS = $(DEBUGLIBS)
simple_cycle_debug: objectdir $(TPBLOCK) $(OBJS)
simple_cycle_debug: nomad.o

$(CXX) -o simple_cycle_debug $(LDFLAGS) $(OBJS) $(OBJSNOMAD) $(CLIBS) $(LDLIBSNOMAD) -L$
(LIB_DIRNOMAD)

simple_cyclegibb_optim: CO2DIR = $(CO2ROOT)/gibb
simple_cyclegibb_optim: CFLAGS = $(CFLAGS_OPT)
simple_cyclegibb_optim: FFLAGS = $(FFLAGS_OPT)
simple_cyclegibb_optim: CLIBS = $(OPTIMLIBS)
simple_cyclegibb_optim: CO2VERSION = $(GIBBVERSION)
simple_cyclegibb_optim: objectdir $(TPBLOCK) $(OBJS)
simple_cyclegibb_optim: nomad.o

$(CXX) -o simple_cyclegibb_optim $(LDFLAGS) $(OBJS) $(CLIBS)
strip $@$(EXE)

simple_cyclegibb_profile: CO2DIR = $(CO2ROOT)/gibb
simple_cyclegibb_profile: CFLAGS = $(CFLAGS_PROFILE)
simple_cyclegibb_profile: FFLAGS = $(FFLAGS_PROFILE)
simple_cyclegibb_profile: CLIBS = $(OPTIMLIBS)
simple_cyclegibb_profile: CO2VERSION = $(GIBBVERSION)
simple_cyclegibb_profile: objectdir $(TPBLOCK) $(OBJS)

$(CXX) -o simple_cyclegibb_profile $(LDFLAGS) -pg $(OBJS) $(CLIBS)

simple_cyclegibb_debug: CFLAGS = $(CFLAGS_DEBUG)
simple_cyclegibb_debug: FFLAGS = $(FFLAGS_DEBUG)
simple_cyclegibb_debug: CLIBS = $(DEBUGLIBS)
simple_cyclegibb_debug: CO2DIR = $(CO2ROOT)/gibb

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 15 of 16

simple_cyclegibb_debug: CO2VERSION = $(GIBBVERSION)
simple_cyclegibb_debug: objectdir $(TPBLOCK) $(OBJS)

$(CXX) -o simple_cyclegibb_debug $(LDFLAGS) $(OBJS) $(CLIBS)

$(LIB_DIR)

Testing new approach for defining components and mixtures
Involves new commandline-parser that allows text values in addition to float.

flexhx_optim:
cd $(FLEXHXDIR); make $(FLEXHX_OPTIM); cd -

flexhx_debug:
cd $(FLEXHXDIR); make $(FLEXHX_DEBUG); cd -

flexhx_profile:
cd $(FLEXHXDIR); make $(FLEXHX_PROFILE); cd -

flexcs_optim:
cd $(FLEXCSDIR); make $(FLEXCS_OPTIM); cd -

flexcs_debug:
cd $(FLEXCSDIR); make $(FLEXCS_DEBUG); cd -

flexcs_profile:
cd $(FLEXCSDIR); make $(FLEXCS_PROFILE); cd -

clean_objects:
rm -f $(OUTDIR)/*.o

objectdir:
@mkdir -p $(OUTDIR)

===== GENERAL TARGETS =====

$(OUTDIR)/%.o: $(SRC)/%.c
$(CC) -c $(CFLAGS) -o $@ $<

symlinks:
include $(CODES)/flexcs/models/Makefile.models.symlinks

PROJECT NO/ FILE CODE
HighEff, WP2.1/ 16 of 16

	D2.1_2018.07 Heat exchanger modelling tool opportunities_pt1
	1 Introduction
	2 The "mBundle" model
	2.1 Description and operating conditions
	2.2 Geometry calculations
	2.3 Performance data

	3 Alternative concepts
	3.1 Previous work in COPRO and HighEFF
	3.2 Spiral-in-shell concept
	3.3 Plate-(no)-fin concept

	4 Summary and conclusions
	5 Part 2 – Memo on the implementation and experience of derivative-free optimisation in the process and heat exchanger modelling framework

	NOMAD_MemoHighEFFWp21_2018
	Background
	Integrating NOMAD in FlexHX/CS

	Numerical testing with NOMAD in FlexHX/CS
	Optimizing the design of heat-to-power cycles with NOMAD

	Concluding remarks
	Future work
	References
	Implementation of NOMAD in FlexCS
	Additional files for integration of NOMAD in FlexHX/CS

