

Innovation Type: Process

Development stage:

Theoretical analysis supported by lab scale experiments

Remaining uncertainties at current stage: **Some**

TRL: 2-3 Status: On progress Contact: Trine Asklund Larssen (Trine.A.Larssen@sintef.no)

Relevant Sectors

Oil, Gas and Energy Food and Industry

Food and Industry Chemical Clusters

Improving prereduction behaviour to decrease energy and carbon consumption

The ore-gas reactions occur in today's process at a temperature range favoring the occurrence of the Boudouard reaction causing increased energy and carbon consumption. It further leads to a high-energy off-gas rich in CO(g).

Challenge

The ore-gas prereduction reactions in ferromanganese production are well-known to be governed by kinetics and dependent on the characteristics of the manganese ores. Due to complex and multistep reaction schemes, in addition to a high number of commercial manganese ores, the behaviour of the ores in the furnace is not well understood. Promoting optimal reduction while still maintaining operational requirements (e.g. ore size due to decrepitation and fines generation during heating) is thus a complex affair.

Solution

Tailoring the sizing and feed location of the ores:

Size requirements for the ores may be specific for the given ore. Ores are less/more sensitive towards decrepitation, and the reaction rate is more/less promoted by the ores' particle size, so an optimum size range exist for each ore.

Introduction of pretreatment unit:

Utilization of the high-energy off-gas may be utilized through a pretreatment unit. This may also decrease the occurrence of the Boudouard reaction, as well as giving increased stability of the furnace, both resulting in lowered energy and carbon consumption. This is now currently being investigated in the EU HORIZON 2020 PREMA project, where data obtained in HighEFF is used to determine optimum conditions of such a unit.

Potential

Mass and energy balances show that the Boudouard reaction may typically consume 15-25% of the total energy consumption in production of HC FeMn alloys.

Further related HighEFF work

- Larssen, T. A., & Tangstad, M. (2021). Off-Gas Characteristics for Varying Conditions in the Prereduction Zone of a Ferromanganese Furnace–A Basis for Energy Recovery. Available at SSRN 3926228.
- Larssen, T. A., Senk, D., & Tangstad, M. (2021). Reaction Rate Analysis of Manganese Ore Prereduction in CO-CO2 Atmosphere. Metallurgical and Materials Transactions B, 52(4), 2087-2100.

Reference

Simple concept sketch

Larssen, T. A. (2020). Prereduction of Comilog-and Nchwaning ore. Dr. Ing thesis, NTNU.

HighEFF definition of innovation:

Innovation can be a product, a technology, a component, a process or sub-process, a model or sub-model, a concept, an experimental rig or a service that is new or significant improved with respect to properties, technical specifications or ease of use. Innovation can also be new application of existing knowledge or commercialization of R&D results.

The innovation should be adopted by somebody, or be ready for utilization provided that it is made probable that the innovation will be utilized within a limited timeframe

List:

- Product
- Technology
- Component
- Process
- Sub-process
- Model
- Sub-model

- Concept
- Experimental rig
- Service
- New application
- Methodology
- Organisation
- Market

								SINTEF		
			Develop energy integration between					IND,		
			energy intensive industry and other					SINTEF ER,		
OWP2020	14.1.1	Energy Cascading	users (energy cascading)		SINTEF IND	Med	High	NTNU	FFF	Concept
			Recycle off-gas from (ferro-)silicon							
			furnace to increase CO2-content in					SINTEF		
			off-gas and make CCS more					IND,		
OWP2020	14.1.2	Off-gas recycling	applicable/economic	4.1	SINTEF IND			NTNU	FFF	Concept
		Novel heat recovery	Novel design of efficient, robust and							
		concept for	non-scaling heat exchanger concept							
		Aluminium smelter	for heat recovery from Aluminium	4.2,					HYDRO; ALCOA, GE	
AWP2018	14.2.1	off-gas	smelter off-gas	2.1	SINTEF ER			SINTEF ER	POWER	Concept
		Concept for heat	Design of heat exchanger capable of							
		recovery from metal	recovering predominantly radiative						ELKEM; FINNFJORD;	
OWP2020	14.2.2	casting	heat from molten metal.		SINTEF ER			SINTEF ER	WACKER; ERAMET	Concept
			Novel business models for sharing							
		Novel business	energy and materials resources in					NTNU SR;		
OWP2020	14.3.1	models	closely located industries		NTNU SR	Med	Med	SINTEF ER	MIP	Market
			New optimal control strategies for							
			industrial thermal grids with							
		Optimal control	thermal storage for reduced peak					NTNU,		
OWP2020	14.3.2	strategies	heating demand		SINTEF ER	Med	Med	SINTEF ER	MIP	Model