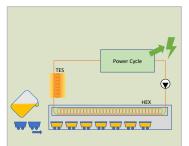


Innovation Type: Concept

Development stage: Theoretical concept studies


Remaining uncertainties at current stage: *Few*

TRL: 3-4 Status: In progress, 2022 Contact: Trond Andresen (trond.andresen@sintef.no)

Oil, Gas	Metal and			
and Energy	Material			
Food and	Industry			

Chemical

Clusters

Simple concept sketch

Energy recovery with integrated thermal storage

The significant quantities and high temperature of the heat rejected during ferroalloy casting makes it an interesting source for energy recovery. The heat released during casting is rarely utilized today.

Challenge

The casting processes in all Norwegian ferroalloy plants are performed batch-wise, while all common forms of heat utilization needs a continuous supply. Furthermore, the initial temperatures of the liquid metal during casting are very high, and heat transfer will dominantly occur via radiation. A heat recovery solution will therefore somehow have to surround the metal during solidification. Combined with demand for efficient production and plant logistics, this adds significant complexity to both heat capture and practical power production.

Solution

A new system concept has been proposed and is currently under evaluation and further refinement. The system utilises an actively cooled tunnel to efficiently absorb heat radiation from casting moulds, as well as thermal energy storage to buffer the intermittent heat for consistent and smooth export to heat-to-power conversion, either in a standalone system or integrated into an existing cycle.

Potential

A 2021 HighEFF case study showed <u>heat</u> recovery potential for a single plant of up to 46 GWh/y captured above ~300 °C. With identical applicability across the whole Norwegian ferroalloy sector, this would equate to over 500 GWh/y.

Reference

Andresen et al., 2020. Dynamic Analysis of Energy Recovery Utilizing Thermal Storage from Batch-wise Metal Casting. IIR Rankine Conference 2020

Coming in 2022: New case study in PhD thesis of Brede Hagen

HighEFF definition of innovation:

Innovation can be a product, a technology, a component, a process or sub-process, a model or sub-model, a concept, an experimental rig or a service that is new or significant improved with respect to properties, technical specifications or ease of use. Innovation can also be new application of existing knowledge or commercialization of R&D results.

The innovation should be adopted by somebody, or be ready for utilization provided that it is made probable that the innovation will be utilized within a limited timeframe

List:

- Product
- Technology
- Component
- Process
- Sub-process
- Model
- Sub-model

- Concept
- Experimental rig
- Service
- New application
- Methodology
- Organisation
- Market

	_					_		Success	Potential	R&D		Category of
Kild	e '	• N	lo 🔻	Title 💌	Short description	w -	Responsi 💌	probabil 🔻	impact 💌	parters 🔻	User partners	innovation 💌
				Low and medium	Competitive low and medium							
				temperature H2P	temperature power cycle concepts					SINTEF ER;		
W	S2019		3.1.1	cycles	with cross-sectorial applicability	3.1	SINTEF ER	Med	Med	NTNU		Process
				Energy recovery	Energy recovery concept with							
				systems with	integrated thermal buffering for							
				integrated thermal	mitigation and/or utilization of	3.1,			Med-			
W	S2019		3.1.2	energy storage	transient conditions	3.3	SINTEF ER	Med	High	SINTEF ER	FFF	Concept
					World-class cycle optimization	. .						
					model for energy recovery concept	- C						
OV	VP202	0 1	3.1.3	FlexCS	design and analyses Concept and electrical	2.1	SINTEF ER	High	Med	SINTEF ER		Model
					architecture of a novel 1 kWel TEG					SINTEF		
A1A	/P2020	. I.	3.1.4	1 kWel TEG module		3.1	SINTEF IND	Low-Med	Med	IND		Concept
	11 2020		5.1.4	1 KWEI IEG IIIOUUIE	High-efficient HTHP cycle concepts		SINTELIND	Low-Incu	wicu	into .		concept
				Steam producing	for upgrading surplus heat to 10				Med-			
14/	S2019		3.2.1	heat pumps	bar steam, displacing fossil fuel	3.2	SINTEF ER	Med	High	SINTEF ER	FROON	Technology
	32019		5.2.1	near pumps	Integrated heat pump system for	3.2	SINTELER	Weu	riigii	SINTLI LK	LFCON	recimology
				Propane-Butane	combined heating and cooling				Med-	NTNU:		
14/	S2019		3.2.2	HTHP	solutions.	3.2	SINTEF ER	Med	High	1 1	TINE, CADIO, DORIN	Process
	32019		3.2.2	11111		3.2	SINTELER	Weu	Med-	SINTEL EK	TINE, CADIO, DOKIN	FIOCESS
	/P2020		3.2.3	Brayton heat	temperature heat pump with turbo compressor and expander	3.2	SINTEF ER	Med			GE (Baker Hurst)	Technology
AW	792020		5.2.5	brayton neat		5.2	SINTEPER	wed	High	SINTEPER	GE (baker Hurst)	Technology
					Large-scale cold TES for food							
					industry to balance between high							
					cooling demand and varying							
					availability of low-cost electricity				Med-	NTNU,		
W	S2019		3.3.1	Large scale cold TES	from renewable sources	3.3	SINTEF ER	Med	High	SINTEF ER	REMA	Technology
					Methodology for choosing the							
					correct TES technology to enable							
				Steam thermal	cost-efficient steam production				Med-			Methodolog
w	S2019		3.3.2	energy storage	based on renewable electricity	3.3	SINTEF ER	Med	High	SINTEF ER	HYDRO, Elkem	v
				5, 5	dimensioning and operation of a							
				TES for industrial	TES tank in a DH system based on							
				waste heat recovery	utilization of industrial waste				Med-			Methodolog
WP-	-leade	er I	3.3.3	in District Heating	heat	3.3	SINTEF ER	High	High	SINTEF ER	MIP	v
												,