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Context: Neural Network (NN) algorithms have been successfully adopted in a number of Safety-Critical Cyber- 

Physical Systems (SCCPSs). Testing and Verification (T&V) of NN-based control software in safety-critical do- 

mains are gaining interest and attention from both software engineering and safety engineering researchers and 

practitioners. 

Objective: With the increase in studies on the T&V of NN-based control software in safety-critical domains, it is 

important to systematically review the state-of-the-art T&V methodologies, to classify approaches and tools that 

are invented, and to identify challenges and gaps for future studies. 

Method: By searching the six most relevant digital libraries, we retrieved 950 papers on the T&V of NN-based 

Safety-Critical Control Software (SCCS). Then we filtered the papers based on the predefined inclusion and ex- 

clusion criteria and applied snowballing to identify new relevant papers. 

Results: To reach our result, we selected 83 primary papers published between 2011 and 2018, applied the the- 

matic analysis approach for analyzing the data extracted from the selected papers, presented the classification of 

approaches, and identified challenges. 

Conclusion: The approaches were categorized into five high-order themes, namely, assuring robustness of NNs, 

improving the failure resilience of NNs, measuring and ensuring test completeness, assuring safety properties of 

NN-based control software, and improving the interpretability of NNs. From the industry perspective, improv- 

ing the interpretability of NNs is a crucial need in safety-critical applications. We also investigated nine safety 

integrity properties within four major safety lifecycle phases to investigate the achievement level of T&V goals 

in IEC 61508-3. Results show that correctness, completeness, freedom from intrinsic faults, and fault tolerance 

have drawn most attention from the research community. However, little effort has been invested in achieving re- 

peatability, and no reviewed study focused on precisely defined testing configuration or defense against common 

cause failure. 
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. Introduction 

Cyber-Physical Systems (CPSs) are systems involving networks of

mbedded systems and strong human-machine interactions [1] . Safety-

ritical CPSs (SCCPSs) are a type of CPSs that highlights the severe non-

unctional constraints (e.g., safety and dependability). The failure of SC-

PSs could result in loss of life or significant damage (e.g., property and

nvironmental damage). Typical applications of SCCPSs are in nuclear

ystems, aircraft flight control systems, automotive systems, smart grids,

nd healthcare systems. 

In the last few years, advances in Neural Networks (NNs) have

oosted the development and deployment of SCCPSs. The NN is con-
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idered the most viable approach to meet the complexity requirements

f Safety-Critical Control Softwares (SCCSs) [2,3] . In this study, we re-

er to NN-based SCCS as SCCS that heavily use NNs (e.g., to implement

ontroller). For example, in the transportation industry, deep-learning-

ased NNs have been widely used to developing self-driving cars [4] and

ollision avoidance systems [5] . It is also worth noting that several safety

ncidents caused by autonomous vehicles have been presented in media,

.g., Uber car’s fatal incident [6] , Tesla’s fatal Autopilot crash [7] , and

oogle’s self-driving car crash [8] . In addition to the safety incidents

aused by failures of the autonomous system, security breaches of au-

onomous vehicles can potentially lead to safety issues, e.g., a demo

howed that autonomous vehicles can be remotely controlled and hi-

acked [9] . How can we ensure that an SCCS containing NN technology
ch 2020 
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ill behave correctly and consistently when system failures or malicious

ttacks occur? 

Increasing interest in the migration of Industrial Control Systems

ICSs) towards SCCPSs has encouraged research in the area of safety

nalysis of SCCPSs. Kriaa et al. [10] surveyed existing approaches for

n integrated safety and security analysis of ICSs. The approaches cover

oth the design stage and the operational stage of the system lifecycle.

ome approaches (such as [11,12] ) are aimed at combining safety and

ecurity techniques into a single methodology. Others (such as [13,14] )

re trying to align safety and security techniques. These approaches are

ither generic, which consider both safety and security at a very high

evel, or model-based, which build upon the formal or semi-formal rep-

esentation of the system’s functions. 

There are many studies that focus on the T&V of NNs in the past

ecade. Several review articles [15–18] on this topic have been pub-

ished. Studies [15,19] have reviewed methods focusing on verification

nd validation of NNs for aerospace systems. Studies [17,18] are limited

n automotive applications. None of these review articles have applied

he Systematic Literature Review (SLR) [20] approach. 

Recently there has been more concern about Artificial Intelligence

AI) safety. The state-of-the-art advancements in the T&V of NN-based

CCS are increasingly important; hence, there is a need to have a thor-

ugh understanding of present studies to incentivize further discussion.

his study aimed to summarize the current research on T&V methods

or NN-based control software in SCCPSs . We have systematically

dentified and reviewed 83 papers focusing on the T&V of NN-based

CCSs and synthesized the data extracted from those papers to answer

hree research questions. 

• RQ1 What are the profiles of the studies focusing on testing and

verifying NN-based SCCSs? 

• RQ2 What approaches and associated tools have been proposed to

test and verify NN-based SCCSs? 

• RQ3 What are the limitations of current studies with respect to test-

ing and verifying NN-based SCCSs? 

To our best knowledge, our study is the first SLR on testing and veri-

ying NN-based control software in SCCPSs. The results of these research

uestions can help researchers identify the research gaps in this area,

nd help industrial practitioners choose proper verification and certifi-

ation methods. 

The main contributions of this work are: 

• We made a classification of T&V approaches in both academia and

industry for NN-based SCCSs. 

• We identified and proposed challenges for advancing state-of-the-art

T&V for NN-based SCCSs. 

The remainder of this paper is organized as follows: In Section 2 , we

efine terminologies related to NN-based SCCPSs and summarize related

ork from academia and industry. Section 3 describes the SLR process

nd the review protocol. The results of the research questions are re-

orted in Section 4 . Section 5 discusses the industry practice of T&V of

N-based SCCSs, and the threats to validity of our study. Section 6 con-

ludes the study. 

. Background 

In this section, we first introduce terminology related to CPSs and

odern NNs and show how NN algorithms have been used in SCCPSs.

hen, we present the current state of practice of T&V of SCCSs. 

.1. Cyber-physical systems 

As defined in Rajkumar et al. [1] , “cyber-physical systems (CPSs) are

hysical and engineered systems whose operations are monitored, coordi-

ated, controlled and integrated by a computing and communication core. ”

everal other systems, such as Internet of Things (IoTs) and ICSs have
ery similar features compared to CPSs, since they are all systems used

o monitor and control the physical world with embedded sensor and ac-

uator networks. In general, CPSs are perceived as the new generation

f embedded control systems, which can involve IoTs and ICSs [21,22] .

In this SLR, we adopted the CPS conceptual model in Griffor et al.

23] as a high-level abstraction of CPSs to describe the different per-

pectives of CPSs and the potential interactions of devices and systems

n a system of systems (SoS) as shown in Fig. 1 . From the perspective

f unit level, a CPS at least includes one or several controllers, many

ctuators, and sensors. A CPS can also be a system consisting of one or

ore cyber-physical devices. From the SoS perspective, a CPS is com-

osed of multiple systems that include multiple devices. In general, a

PS must contain the decision flow (from controller to actuators), in-

ormation flow (from sensors to controller), and action flow (actuators

mpacting the physical state of the physical world). 

In the context of SCCPS, safety and performance are dependent on

he system (to be more specific, the controller of the system) making

he right decision according to the measurement of the sensors, and

perating the actuators to take the right action at the right time. Thus,

erification of the process of decision-making is vital for a SCCPS. 

.2. Modern neural networks 

The concept of “neural network ” was first proposed in 1943 by War-

en McCullough and Walter Pitts [24] , and Frank Rosenblatt in 1957

esigned the first trainable neural network called “the Perceptron ” [25] .

 perceptron is a simple binary classification algorithm with only one

ayer and output decision of “0 ” or “1. ” By the 1980s, neural nets with

ore than one layer were proposed to solve more complex problems,

.e., multilayer perceptron (MLP). In this SLR, we regard multilayer NNs

hat emerged after the 1980s as modern NNs. 

Artificial Neural Network (ANN) is the general name of computing

ystems designed to mimic how the human brain processes information

26] . An ANN is composed of a collection of interconnected computa-

ion nodes (namely “artificial neurons ”), which are organized in lay-

rs. Depending on the directions of the signal flow, an ANN can have

eed-forward or feedback architectures. Fig. 2 shows a simplified feed-

orward ANN architecture with multiple hidden layers. Each artificial

euron has weighted inputs, an activation function, and one output.

he weights of the interconnections are adjusted based on the learning

ules. There are three main models of learning rules, which are unsu-

ervised learning, supervised learning, and reinforcement learning. The

hoice of learning rules corresponds to the particular learning task. The

ommon activation functions contain sigmoid, hyperbolic tangent, ra-

ial bases function (RBF), and piece-wise linear transfer function, such

s Rectified Linear Unit (ReLU) [27] . In a word, an ANN can be defined

y three factors: the interconnection structure between different layers,

ctivation function type, and procedure for updating the weights. 

Multi-Layer Perceptron ( MLP [28] ) represents a class of feed-

orward ANN. An MLP consists of an input layer, one or several hidden

ayers, and an output layer. Each neuron of MLP in one layer is fully

onnected with every node in the following layer. An MLP employs a

ack-propagation technique (which belongs to supervised learning) for

raining. 

Convolutional Neural Network ( CNN [29] ) is a special type of

ulti-layer NN with one or more convolutional layers. A convolutional

ayer includes “several feature maps with different weight vectors. A se-

uential implementation of a feature map would scan the input image with

 single unit that has a local receptive field, and store the states of this

nit at corresponding locations in the feature map. This operation is equiv-

lent to a convolution, followed by an additive bias and squashing func-

ion, hence the name convolutional network ”[29] . CNNs are superior for

rocessing two-dimensional data (particular camera images) because of

he convolution operations, which are capable of detecting features in

mages. CNNs are now widely applied to develop partially-autonomous

nd fully-autonomous vehicles. 
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Fig. 1. CPS conceptual model. 

Fig. 2. A simplified feed-forward ANN architecture. 
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Deep Neural Networks ( DNNs [30] ) represent an ANN with mul-

iple hidden layers between the input and output layers. DNNs (e.g., a

LP with more than three layers or a CNN) differ from shallow NNs

e.g., a three-layer MLP) in the number of layers, the activation func-

ions that can be employed, and the arrangement of the hidden layer.

ompared to shallow NNs, DNNs can be trained more in-depth to find

atterns with high performance even for complex nonlinear relation-

hips. 

An NN could be trained offline or online. An NN trained offline

eans it only learns during development. After training, the weights

f the NN will be fixed and the NN will act deterministically. Therefore

tatic verification methods could be possible. In contrast, online training

ill allow the NN to keep learning and evolving during operation, which

equires run-time verification methods. In some applications, such as the

ntelligent Flight Control System developed by NASA [15] , both offline

nd online training strategies are employed to meet the system require-

ents. 

NNs are fundamentally different with algorithmic programs, but a

ormal development methodology can still be derived for an NN system.

evelopment process of an NN system can include six phases [31] : 

1. Formulation of requirements and goals; 

2. Selection of training and test data sets; 

3. Selection of the NN architecture; 

4. Training of the network; 

5. Testing of the network; and 

6. Acceptance and use by the customer. 

Like [31] , Falcini et al. introduced a similar development lifecycle

or DNNs in automotive software [32] and proposed a W-model inte-
rated data development with standard software development to high-

ight the importance of data-driven in DNN development. Falcini et al.

32] also summarized that the DNN’s functional behavior depends on

oth its architecture and its learning outcome through training. 

.3. The trends of using NN algorithm in SCCPSs 

From 1940s automated range finders (developed by Norbert Wiener

or anti-aircraft guns) [164] to today’s self-driving cars, AI, especially

N algorithms, is widely applied in both civilian (e.g., autonomous cars)

nd military domains (e.g., military drones). Boosted by the advances of

I, state-of-the-art CPSs can plan and execute more and more complex

perations with less human interaction. Here we present the applica-

ions of NNs in the following four representative SCCPSs. 

.3.1. Autonomous cars 

For automobile, the Society of Automotive Engineers (SAE) pro-

osed six levels of autonomous driving [33] . A level 0 vehicle has no

utonomous capabilities, and the human driver is responsible for all

spects of the driving task. For level 5 vehicle, the driving tasks are

nly managed by the autonomous driving system. When developing

utonomous vehicles targeting a high level of autonomy, one indus-

ry trend is to use DNNs to implement vehicle control algorithms. The

eep-learning-based approach enables vehicles to learn meaningful road

eatures from raw input data automatically and then output driving ac-

ions. The so-called end-to-end learning approach can be applied to re-

olve complex real-world driving tasks. When using deep-learning-based

pproaches, the first step is to use a large number of training data sets

images or other sensor data) to train a DNN. Then a simulator is used to

valuate the performance of the trained network. After that, the DNN-

ased autonomous vehicle will be able to “execute recognition, predic-

ion, and planning ” driving tasks in diverse conditions [10] . Nowadays,

NNs are the most widely adopted deep-learning model for fully au-

onomous vehicles [5–8] . NVIDIA introduced an AI supercomputer for

utonomy [34] . The development flow using NVIDIA DRIVE PX includes

our stages: 1) data acquisition to train the DNN, 2) deployment of the

utput of a DNN in a car, 3) autonomous application development, and

) testing in-vehicle or with simulation. 

One essential characteristic of deep-learning-based autonomy is that

he decision-making part of the vehicle is almost a black box. This means

hat in most cases, we as human drivers must trust the decisions made

y the deep-learning algorithms without knowing exactly why and how

he decisions are made. 
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.3.2. Industrial control systems 

Industrial Control System (ICS) is the general term for control sys-

ems, also called Supervisory Control and Data Acquisition (SCADA)

ystems. ICSs make decisions based on the specific control law (such as

ookup table and non-linear mathematical model) formulated by human

esigners. In contrast to the classical design procedure of control law,

einforcement-learning-based approaches learn the control law simply

rom the interaction between the controller and the process, and then

ncrementally improving control behavior. Such approaches and NNs

ave been used in process control two decades ago [35] . Concerning

he recent progress in AI and the success of DNNs in making complex

ecisions, there are high expectations for the application of DNNs in

CSs. For instance, DNNs and reinforcement learning can be combined

o develop continuous control [36] . Spielberg et al. extended the work

n Lillicrap et al. [36] to design control policy for process control [37] .

ven though the proposed approach in Spielberg et al. [37] is only tested

n linear systems, it shows a practical solution for applying DNNs in

on-linear ICSs. 

.3.3. Smart grid systems 

The smart grid is designed as the next generation of electric power

ystem, dependent on information communications technology (ICT).

here is tremendous initiative of research activities in automated smart

rid applications, such as FLISR (which is a smart grid multi-agent

utomation architecture based on decentralized intelligent decision-

aking nodes) [38] . NNs have been considered for solving many pattern

ecognition and optimization problems, such as fault diagnosis [39] , and

ontrol and estimation of flux, speed [2] , and economical electricity dis-

ribution to consumers. MLP is one of the most commonly used topology

n power electronics and motor drives [2] . 

.3.4. Healthcare 

Medical devices is another emerging area where research and in-

ustry practitioners are seeking to integrate AI technologies to improve

ccuracy and automation. ANNs and other machine learning approaches

ave been proposed to improve the control algorithms for diabetes treat-

ent in recent decades [40,41] . In 2017, an AI-powered device for auto-

ated and continuous delivery of basal insulin (named MiniMed 670G

ystem [42] ) was approved by the U.S. Food and Drug Administration.

n the same year, it was reported that GE Healthcare had integrated

he NVIDIA AI platform into their computerized tomography scanner to

mprove speed and accuracy for the detection of liver and kidney le-

ions [43] . Using deep learning solutions, such as CNNs, in the medical

omputing field has proven to be effective since CNNs have excellent

erformance in object recognition and localization in medical images

44] . 

.4. Testing and verification of safety-critical control software 

IEC 61508 and ISO 26262 are two standards highly relevant to the

&V of SCCS. IEC 61508 is an international standard concerning Func-

ional safety of electrical/electronic/programmable electronic safety-related

ystems . It defines four safety integrity levels (SILs) for safety-critical

ystems [45] . The higher the SIL level a SCCPS requires, the more time

nd effort for verification are needed. In IEC 61508, formal methods

re highly recommended techniques for verifying high SIL systems. Be-

ause formal methods can be used to construct the specification and

rovide a mathematical proof that the system matches some formal re-

uirements, this is quite a strong commitment for the correctness of a

ystem. 

ISO 26262, titled Road vehicles – functional safety , is an international

tandard for the functional safety of electrical and/or electronic systems

n production automobiles [46] . Besides using classical safety analysis

ethods such as Fault Tree Analysis (FTA) and Failure Mode and Effects

nalysis (FMEA), ISO 26262 explicitly states that the production of a

afety case is mandated to assure system safety. It defines a safety case
s “an argument that the safety requirements for an item are complete

nd satisfied by evidence compiled from work products of the safety

ctivities during development ” [46] . 

The development of suitable approaches, which can verify the sys-

em behavior and misbehavior of a SCCPS is always challenging. Not

o mention that the architecture of NNs (especially DNNs) makes it

ven harder to decipher how the algorithmic decisions were made.

he current version of IEC 61508 is not applicable for the verifi-

ation of NN-based SCCSs because AI technologies are not recom-

ended there. The latest version of ISO 26262 and its extension,

SO/PAS 21448, which is also known as safety of the intended func-

ionality (SOTIF) [47] , will likely provide a way to handle the de-

elopment of autonomous vehicles. However, SOTIF will only pro-

ide guidelines associated with SAE Level 0–2 autonomous vehicles

48] , which are not ready for the verification of NN-based autonomous

ehicles. 

In practice, in order to reduce test and validation costs, high-fidelity

imulation is a commonly used approach in the automotive domain.

he purpose of using a simulator is to predict the behavior of an au-

onomous car in a mimicked environment. NVIDIA and Apollo dis-

ributed their high-fidelity simulation platforms for testing autonomous

ehicles. CARLA [49] and Udacity’s Self-Driving Car Simulator [50] are

wo popular open-source simulators for autonomous driving research

nd testing. 

. Research method 

We conducted our SLR by following the SLR guidelines in Kitchen-

am and Charters [20] as well as consulting other relevant guidelines

n Petersen et al. [51] and Shahin et al. [52] , Nguyen et al. [53] . Our

eview protocol consisted of four parts: 1) search strategy, 2) inclusion

nd exclusion criteria, 3) selection process, and 4) data extraction and

ynthesis. 

.1. Search strategy 

Based on guidelines provided in Kitchenham and Charters [20] , we

se the Population, Intervention, Outcome, Context (PIOC) criteria to

ormulate search terms. In this SLR, 

• The population should be an application area (e.g., general CPS) or

specific CPS (e.g., self-driving car). 

• The intervention is methodology, tools and technology that address

system/component testing or verification. 

• The outcome is the improved safety or functional safety of CPSs. 

• The context is the NN-based SCCPSs in which the T&V take place. 

Fig. 3 shows the search terms formulated based on the PIOC crite-

ia. We first used these search terms to run a series of trial searches

nd verify the relevance of the resulting papers. We then revised the

earch string to form the final search terms. The final search terms were

omposed of synonyms and related terms. 

We executed automated searches in six digital libraries, namely, Sco-

us, IEEE Xplore, Compendex EI, ACM Digital library, SpringerLink, and

eb of Science (ISI). 

.2. Inclusion and exclusion criteria 

Table 1 presents our inclusion and exclusion criteria. We set three

nclusion criteria to restrict the application domain, context, and out-

ome type. We excluded papers that were not peer-reviewed, such as

eynotes, books, and dissertations, and papers not written in English.

t should be clarified that, unlike most other SLR studies, we did not

irectly exclude short papers (less than six pages), work-in-progress pa-

ers, and pre-print papers. The reason is that this research area is far
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Fig. 3. Search terms. 

Table 1 

Inclusion and exclusion criteria. 

Inclusion criteria 

I1 The paper must have a context in SCCPSs, either in general or in a specific application domain 

I2 The paper must be aimed at testing/verification approaches for NN-based SCCSs 

I3 The paper must be aimed at modern neural networks 

Exclusion criteria 

E1 Papers not peer-reviewed 

E2 Not written in English 

E3 Full-text is not available 

E4 Not relevant to modern neural networks 

Fig. 4. Search process. 
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rom mature, so many initial thoughts or in-progress papers are still

aluable to review. 

.3. Selection process 

We used the inclusion and exclusion criteria to filter the papers in

he following steps. We covered papers from January 2011 to November

018. Fig. 4 shows the whole search and filtering process. 

Stage 1: Ran the search string on the six digital libraries and re-

rieved 1046 papers. After removing those duplicated papers, we had

50 papers. 

Stage 2: Excluded studies by reading title and keywords. If it was not

xcluded simply by reading titles and keywords, the paper was kept for

urther investigation. At the end of this stage, we selected 254 papers. 
Stage 3: Further filtered the papers by reading abstracts and found

05 potential papers with high relevance to the research goal of our

LR. 

Stage 4: Read the introduction and conclusion to decide on selec-

ion. We recorded the reasons for exclusion for each excluded paper. We

xcluded the papers that were irrelevant, or whose full texts were not

vailable. Furthermore, we critically examined the quality of primary

tudies to exclude those that lacked sufficient information. We ended

p with 27 papers. 

Stage 5: Read full text of the selected studies from the fourth stage,

pplied snowballing by scanning the reference of the selected papers.

he snowballing process can be implemented in two directions: back-

ards (which means scanning the references of a selected paper and

nd any other relevant papers published before the selected paper), and

orwards (which means checking if any other relevant paper was pub-

ished after the selected paper and cited the selected paper). In our SLR,

e adapted mainly backward snowballing to include additional papers.

o limit the scope of the snowballing, we covered only references pub-

ished between 2011 and 2018. From snowballing, we found 56 new

elevant papers. 

Finally, we selected 83 papers as primary studies for detailed analy-

is. We listed all of the selected studies in Appendix A. The first author

onducted the selection process with face-to-face discussions with the

econd author. The second author performed a cross-check of each step

nd read all the final selected papers to confirm the selection of the

apers. 

.4. Data extraction and synthesis 

Data Extraction: We extracted two kinds of information from the

elected papers. To answer RQ1, we extracted information for statistical

nalysis, e.g., publication year and research type. To answer RQ2 and

Q3, we collected information to identify key features (such as research

oal, technique and tools, major contribution and limitation) of T&V

pproaches. 

Synthesis: We used descriptive statistics to analyze the data for an-

wering RQ1. To answer RQ2 and RQ3, we analyzed the data using the

ualitative analysis method by following the five steps of thematic anal-

sis [54] : 1) extracting data, 2) coding data, 3) translating codes into

hemes, 4) creating a model of higher-order themes, and 5) assessing

he trustworthiness of the synthesis. 
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Fig. 5. Publication year and types of selected papers. 

Table 2 

Research type classification (T = True, F = False, ● = irrelevant 

or not applicable, R1–R6 refer to rules). 

R1 R2 R3 R4 R5 R6 

Conditions 

Used in practice T ● T F F F 

Novel solution ● T F ● F F 

Empirical evaluation T F F T F F 

Conceptual framework ● ● ● ● T F 

Opinion about something F F F F F T 

Authors’ experience ● ● T ● F F 

Decisions 

Evaluation research 
√

● ● ● ● ●
Solution proposal ●

√
● ● ● ●

Validation research ● ● ●
√

● ●
Philosophical papers ● ● ● ●

√
●

Opinion papers ● ● ● ● ●
√

Experience papers ● ●
√

● ● ●

Note: Reprinted from [51] ,Copyright 2015 by the Elsevier. 
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Table 3 

Distribution of application domains of the se- 

lected studies. 

Application domain No. of studies 

General SCCPSs 59 

Automotive CPSs 13 

Autonomous aerial systems 5 

Robot system 5 

Health care 1 

a  

a  

p  

s  

a  

e  

t  

b  

r  

s  

u  

c  

l  

(  

p  

a  

o  

p  

w  

(

 

l  

t  

p  

e  

l  

a  

s  

p

4

t

 

c  

c  

p  

fi  

t  

c  

o  

t  

a

4

 

N  

T  

a  

o  

c

 

v  

i  

i  
. Result 

.1. RQ1. What are the profiles of the studies focusing on testing and 

erifying NN-based SCCSs? 

Studies distributions: Fig. 5 shows the distribution of selected pa-

ers based on publication year and the types of work. There has been

8 papers (81.9%) published since 2016, indicating that researchers are

aying more attention to the T&V of NN-based SCCSs. Conference was

he most popular publication type with 48 papers (57.8%), followed by

re-print (25 papers, 30.1%), workshop (6 papers, 7.2%), and journal

4 papers, 4.8%). 

We also investigated the geographic distribution of the reviewed

tudies. It allowed us to identify which countries are leading the research

n this domain. We considered a study to be conducted in one country

f the affiliation of at least one author is in that country. Moreover, the

nvolvement of industry would be an indicator of industry’s interest in

his domain. We classified the reviewed papers as industry if at least

ne author came from industry or the study used real-world industrial

ystems to test/verify the proposed approach. A paper would be cate-

orized as academia if all authors came from academia. It shows that

esearchers based in the USA have been involved in the most primary

tudies for testing or verification of NN-based SCCSs with 56 publica-

ions, followed by the researchers based in Germany and the UK with 10

nd 9 publications, respectively. It is worth noting that 47 of 83 (56.6%)

ublications have involvement from industry. 

Research types: We classified the selected papers based on the cri-

eria proposed by Kai et al. [51] (See Table 2 ). According to Table 2 , the

esearch type of the paper is governed by rules (i.e., R1-R6). Each rule is
 combination of several conditions. The six research types (i.e., evalu-

tion research, solution proposal, validation research, philosophical pa-

ers, opinion papers, and experience papers) correspond to R1-R6, re-

pectively. For example, both evaluation research (corresponding to R1)

nd validation research (corresponding to R4) must present empirical

valuation. The difference between evaluation and validation research is

hat validation is not used in practice (e.g., experimental or simulation-

ased approaches), whereas evaluation studies should be conducted in a

eal-world context. Solution proposal means that it has to propose a new

olution that may or may not be used in practice. We found that eval-

ation and validation research are the majority of the selected papers,

orresponding to 31.3% (26 papers) and 61.4% (51 papers) of the se-

ected papers, respectively. The low percentage of the solution proposal

6 papers) was not surprising because a majority of the reviewed papers

resented and demonstrated their T&V approaches through academic

nd industrial case studies, simulation, and controlled experiments. The

ther three types of research papers (i.e., philosophical papers, opinion

apers, and experience papers) do not exist in selected studies because

e only included papers that aimed at testing/verification approaches

refer to inclusion criteria I2). 

Application domains: We analyzed the application domain of se-

ected studies to provide useful information for researchers and prac-

itioners who are interested in the domain-specific aspects of the ap-

roaches. The results are shown in Table 3 . We found that considerable

ffort is now being put into using NN algorithms to accomplish control

ogic for general purpose (59 papers, 71.1%), automotive CPSs, such as

utonomous vehicles (13 papers, 15.7), and autonomous aerial systems,

uch as airborne collision avoidance systems for unmanned aircrafts (5

apers, 6%). 

.2. RQ2. What approaches and associated tools have been proposed to 

est and verify NN-based SCCSs? 

As 4 of the 83 papers focused mainly on high-level ideas and con-

epts without presenting detailed approaches or tools, we did not in-

lude them to answer RQ2. For the remaining 79 out of 83 (95.2%)

apers, we applied the thematic analysis approach [54] and identified

ve high-order themes and some sub-themes. Some papers contain more

han one themes. In order to balance the accuracy and the simplicity of

ategorization, we decided to assign each study only one category based

n its major contribution. Table 4 presents the themes, sub-themes, and

he corresponding papers. Fig. 6 compares the interests difference of

cademia and industry for the five identified themes. 

.2.1. CA1: Assuring robustness of NNs 

One high-order theme of the studies is to assure the robustness of

Ns. Robustness of an NN is its ability to cope with erroneous inputs.

he erroneous inputs can be an adversarial example (i.e., an input that

dds small perturbation intentionally to mislead classification of an NN),

r benign but wrong input data. Methods under this theme can be further

lassified into four sub-themes. 

Studies focusing on understanding the characteristics and impacts of ad-

ersarial examples Some studies tried to identify the characteristics and

mpacts of adversarial examples. The study [56] found the character-

stics, such as the linear nature, of adversarial examples. The study
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Table 4 

A classification of approaches to test and verify NN-based SCCSs. 

Themes Sub-themes Papers # 

Assuring robustness of 

NNs 

Understanding the characteristics and impacts of adversarial examples [55–61] 17 

Detect adversarial examples [62–67] 

Mitigate impact of adversarial examples [68,69] 

Improving robustness of NNs through using adversarial examples [70,71] 

Improving failure 

resilience of NNs 

[72–82] 11 

Measuring and 

ensuring test 

completeness 

[83–89] 7 

Assuring safety 

properties of NN-based 

CPSs 

[90–102] 13 

Improving 

interpretability of NNs 

Understand how a specific decision is made [103–121] 

Facilitate understanding of the internal logic of NNs [122–127] 31 

Visualizing internal layers of NNs to help identify errors in NNs [128–133] 

Fig. 6. Comparing the interests difference of academia and industry. 
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n  
58] measured the impact of adversarial examples by counting their

requencies and severities. Nguyen et al. [55] found that a CNN trained

n ImageNet [134] is vulnerable to adversarial examples generated

hrough Evolutionary Algorithms (EAs) or gradient ascent. 

A few other studies, such as [57,59–61] , tried to understand the char-

cteristics of robust NNs. Cisse et al. [59] introduced a particular form

f DNN, namely Parseval Networks, that is intrinsically robust to adver-

arial noise. Gu et al. [61] concluded that some training strategies, for

xample, training using adversarial examples or imposing contractive

enalty layer by layer, are robust to certain structures of adversarial ex-

mples (e.g., inputs corrupted by Gaussian additive noises or blurring).

igher-confidence adversarial examples (i.e., adversarial instances that

re extremely easy to classify into the wrong category) were used to

valuate the robustness of the state-of-the-art NN in Carlini and Wagner

60] and the robot-vision system in Melis et al. [57] . 

Studies focusing on methods to detect adversarial examples Detecting ad-

ersarial examples that are already inserted into training or testing data

et are the primary targets of [62,64–67] . Wicker et al. [62,66] for-

ulated the adversarial examples detection as a two-player stochas-

ic game and used the Monte Carlo Tree Search to identify adversarial

xamples. Reuben [64] applied density estimates, and Bayesian uncer-

ainty estimates to detect adversarial samples. Xu et al. [65] proposed

 feature squeezing framework to detect adversarial examples, which

re generated by seven state-of-the-art methods. According to [65] , an

dvantage of feature squeezing is that it did not change the underly-

ng model. Therefore, it can easily be integrated with other defenses

ethods. Metzen et al. [67] embedded DNNs with a subnetwork (called

detector ”) to detect adversarial perturbations. The Deepsafe presented

n Gopinath et al. [63] used clustering technology to find candidate-safe
egions first and then verified whether the candidates were safe using

ounter-examples as a proof. 

Studies focusing on methods to mitigate impact of adversarial examples

apemot et al. [68] adopted defensive distillation as a defense strat-

gy to train DNN-based classifiers against adversarial examples. How-

ver, several powerful attacks have been proposed to defeat defensive

istillation and have demonstrated that defensive distillation does not

ctually eliminate adversarial examples [60] . Papemot et al. [69] revis-

ted defensive distillation and proposed a more effective way to defend

gainst three recently discovered attack strategies, i.e., the Fast Gradi-

nt Method (FGM) [56] , the Jacobian Saliency Map Approach (JSMA)

135] , and the AdaDelta optimization strategy (AdaDelta) [60] . 

Studies focusing on increasing robustness of NNs through using adversar-

al examples. In studies [70,71] , the authors proposed methods to lever-

ge adversarial training (e.g., generating a large amount of adversarial

xamples and then training the NN not to be fooled by these adversarial

xamples) to increase the robustness of NNs. 

.2.2. CA2: Improving failure resilience of NNs 

Studies under this theme focused on improving the resilience of NNs,

o that the NN-based CPSs are more tolerant of possible hardware and

oftware failures. 

Studies [74,76,77] investigated error detection and mitigation mech-

nisms, while studies [75,79] focused on understanding error propaga-

ion in DNN accelerators. Vialatte et al. [74] demonstrated that faulty

omputations can be addressed by increasing the size of NNs. Santos

t al. [76] proposed an algorithm-based fault tolerance (ABFT) strategy

o detect and correct radiation-induced errors. In [77] , a binary clas-

ification algorithm based on temporal and stereo inconsistencies was

pplied to identify errors caused by single frame object detectors. Li

t al. [75] developed a general-purpose GPU (GPGPU) fault injection

ool [136] to investigate error propagation patterns in twelve GPGPU

pplications. Later, Li et al. revealed that the error resilience of DNN ac-

elerators depends on “the data types, values, data reuse, and the types of

ayers in the design [80] ”. Based on this finding, they devised guidelines

or designing resilient DNN systems and proposed two DNN protection

echniques, namely Symptom-based Error Detectors (SED) and Selective

atch Hardening (SLH) to mitigate soft errors that are typically caused

y high-energy particles in hardware systems [137] . 

Mhamdi et al. explored error propagation mechanism in an NN [78] ,

nd they theoretically and empirically proved that the key parame-

ers that can be used to estimate the robustness of an NN are: “Lip-

chitz coefficient of the activation function, distribution of large synaptic

eights, and depth of the network ”. The study [80] characterized the faults

ropagation through an open-source autonomous vehicle control soft-

are (i.e., openpilot) to assess the failure resilience of the system. The

ystems-Theoretic Process Analysis (STPA) [138] hazard analysis tech-

ique was used to guide fault injection. Existing work in Rubaiyat et al.
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a  
80] showed that STPA is suited for an in-depth identification of unsafe

cenarios, and thus, the fault injection space was reduced. 

Based on the diversified redundancy strategies, the study [81] de-

eloped diverse networks in the context of different training data sets,

ifferent network parameters, and different classification mechanisms

o strengthen the fault tolerance of the DNN architecture. 

Studies [72,73] tried to improve computation efficiency without

ompromising error resilience. Studies [72,73] also predicted the error

esilience of DNN accelerators to make reconfigurable NN accelerators.

he study [72] demonstrated a more accurate neuron resilience assign-

ent than the state-of-the-art techniques and provided the possibility

f moving parts of the neuron computations to unreliable hardware at

he given quality constraint. Zhang et al. [73] proposed a framework to

ncrease efficiency of computation by approximating the computation

f certain less critical neurons. Daftry et al. [82] provided an interesting

dea about “how to enable a robot to know when it does not know? ” The

dea of [82] is to utilize the resulting features of the controller, which

re learned from a CNN to predict the failure of the controller, and then

et the system self-evaluate and decide whether to execute or discard an

ction. 

.2.3. CA3: Measuring and ensuring test completeness 

The approaches and tools under this theme aim to ensure good cover-

ge when testing NNs. The testing approaches include black-box testing

i.e., focusing on whether the tests cover all possible usage scenarios),

hite-box testing (i.e., focusing on whether the tests cover every neuron

n the NN), and metamorphic testing, which focuses on both test case

eneration and result verification [139] . 

O’Kelly et al. [83] proposed methods to ensure good usage cover-

ge through first making a formal Scenario Description Language (SDL)

o create driving scenarios, and then translating the scenarios to a

pecification-guided automatic test generation tool named S-TALIRO to

enerate and run the tests. Raj et al. [86] proved the possibility of speed-

ng up the generation of new and interesting counterexamples by intro-

ucing fuzzing patterns obtained from an unrelated DNN on a different

mage database, although the proposed method provides no guarantee

f test completeness. 

DeepXplore [84] first introduced neuron coverage as a testing metric

or DNNs, and then used multiple different DNNs with similar function-

lity to identify erroneous corner cases. Compared to [84] , DeepTest

85] and DLFuzz [89] aimed at maximizing the neuron coverage with-

ut requiring multiple DNNs. The study [85] employed metamorphic

elations to identify erroneous behaviors. The study [89] proposed a

ifferential fuzzing testing framework to generate adversarial inputs.

owever, methods proposed in Pei et al. [84] , Tian et al. [85] , Guo et al.

89] cannot guarantee the generation of test cases that can precisely

eflect real-world cases (e.g., driving scenes in various weather condi-

ions when taking a DNN-based autonomous driving system). DeepRoad

88] employed Generative Adversarial Network (GAN) based techniques

nd metamorphic testing to synthesize diverse real driving scenes, and

o test inconsistent behaviors in DNN-based autonomous driving sys-

ems. In contrast to earlier works, DeepGauge [87] argued that the test-

ng criteria for traditional software are no longer applicable for DNNs.

a et al. [87] proposed neuron-level and layer-level coverage criteria

or testing DNNs and for measuring the testing quality. 

.2.4. CA4: Assuring safety property of NN-based SCCPSs 

Formal verification can provide a mathematical proof that a system

atisfies some desired safety properties (e.g., the system should always

tay within some allowed region, namely a safe region). Formal verifi-

ation usually presents NNs as models and then apply a model checker,

uch as Boolean satisfiability (SAT) solvers (e.g., Chaff [140] , SATO

141] , GRASP [142] ) to verify the safety property. Pulina et al. [92] de-

eloped NeVer ( “Ne ”ural networks “Ver ”ifier), which solves Boolean

ombinations of linear arithmetic constraints, to verify safe regions of

LPs. Through adopting an abstraction-refinement mechanism, NeVer
an verify real-world MLPs automatically. As an extended experiment

nalysis of results of [92] , Pulina and Tacchella [90] compared the per-

ormance (e.g., competition-style and scalability) of state-of-the-art Sat-

sfiability Modulo Theories (SMT) solvers [143] , and demonstrated that

calability and fine-grained abstractions remain challenges for realistic

ize networks. The studies [91,97] verified the “feed-forward NNs with

iece-wise linear activation functions ” by encoding verification problems

nto solving a linear approximation exploring network behavior in a

MT solver. 

The next generation of collision avoidance systems for unmanned air-

rafts (ACAS Xu) adopted DNNs to compress large score table [5] . Julian

t al. [95] explored the performance of ACAS Xu by measuring a set of

afety and performance metrics. A simulation in study [95] shows that

he system based on DNNs performed as correctly as the original large

core table but with better performance. Reluplex [97] had successfully

een used to verify the safety property of a DNN for the prototype of

CAS Xu. Although the outcomes of Reluplex [97] are limited to veri-

ying the correctness of NNs with specific type of activation functions

i.e., ReLUs and max-pooling layers), the study sheds a light on which

ypes of NN architectures are easier to verify, and thus paves the way

or verifying real-world DNN-based controllers. 

The method proposed in studies [99,100] verified that Binarized

eural Networks (BNNs) are efficient and scalable to moderate-sized

NNs. Study [99] represented BNNs as boolean formulas, and then ver-

fied the robustness of BNNs against adversarial perturbations. In study

100] , BNNs and their input-output specifications were transferred into

quivalence hardware circuits. The equivalence hardware circuits con-

ist of a BNN structure module and a BNN property module. The authors

f [100] then applied a SAT solver to verify the properties (e.g., “simul-

aneously classify an image as a priority road sign and as a stop sign

ith high confidence ”) of the BNN in order to identify the risk behavior

f the BNN. 

When verifying a SCCS, one of the fundamental concerns is to make

ure that the SCCS will never violate a safety property. An example of

 safety property is that the system should never reach an unsafe re-

ion. The main ideas of studies under this sub-theme are to calculate

he output reachable set of MLPs, such as in studies [94,96] , or DNNs

n study [93] , to verify if unsafe regions will be reached. Xiang et al.

96] proposed a layer-by-layer approach to compute the output reach-

ble set assisted by polyhedron computation tools. The safety verifica-

ion of a ReLU MLP is turned into checking if a non-empty intersection

xists between the output reachable set and the unsafe regions. In a

ater work of Xiang et al. [94] , they introduced maximum sensitivity to

erform a simulation-based reachable set estimation with few restric-

ions on the activation functions. By combining local search and linear

rogramming problems, Dutta et al. [93] developed an output bound

earching approach for DNNs with ReLU activation functions, which is

mplemented in a tool called SHERLOCK to check whether the unsafe

egion is reached. Study [98] focused on the safety verification of image

lassification decisions. In [98] , Huang et al. employed discretization to

nable a finite exhaustive search for adversarial misclassifications. If no

isclassifications are found in all layers after the exhaustive search, the

N is regarded as safe. 

The idea of [101] was to formulate the formal verification of tempo-

al logic properties of a CPS with Machine Learning (ML) components as

he falsification problem (finding a counterexample that does not satisfy

ystem specification). The study [101] adopted an ML analyzer to ab-

tract the feature space of ML components (which approximately repre-

ents the ML classifiers). The identified misclassifying features are then

sed to drive the process of falsification. The introduction of the ML

nalyzer narrowed down the searching space for counterexamples and

stablished a connection between the ML component and the rest of the

ystem. 

Another direction to make sure the system will not violate safety

roperties is to use run-time monitoring. The study [102] envisioned

n approach named WISEML, which combines reinforcement learning
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d  
nd run-time monitoring technique, to detect invariants violations. The

urpose of this work was to create a safety envelope around the NN-

ased SCCPSs. 

.2.5. CA5: Improving interpretability of NNs 

NNs have proved to be effective ways to generalize the relationship

etween inputs and outputs. As the models of NNs are learned from

raining data sets without human intervention, the relationship between

he inputs and outputs of NNs is like a black box. Due to the black-box

ature of NNs, it is difficult for people to understand and explain how an

N works. Studies under this theme focus on facilitating the understand-

ng on how NNs generate outputs from inputs. Studies in this theme can

e classified into the following three sub-themes, which can be over-

apped. However, this can be a way to capture the different motivations

or the interpretability of NNs. 

Studies focusing on understanding how a specific decision is made This

ine of work mainly focuses on providing explanations for individual pre-

ictions (also defined as local interpretability). One study is called Lo-

al Interpretable Model-agnostic Explanations (LIME) [129] . LIME can

pproximate the original NN model locally to provide an explanation

or a specific prediction of interest. The problem of LIME is that it as-

umes the local linearity of the classification boundary, which is not

rue for most complex NNs. The creators of LIME later extended their

ork by introducing high-precision rules (i.e., if-then rules), which they

alled anchors [104] . The study [130] developed an explanation sys-

em named LEMNA for security applications and Recurrent Neural Net-

orks (RNNs). LEMNA can locally approximate a non-linear classifica-

ion boundary and handle feature dependency problems and therefore

s able to provide a high fidelity explanation. 

In the case of an image classifier, it is also common to use gradient

easurements to estimate the importance value of each pixel for the

nal classification. DeepLIFT [115] , Integrated Gradients [105] , and

ore recently, SmoothGrad [120] fall into this category. The study

121] proposed a unified framework, SHapley Additive exPlanations

SHAP), by integrating six existing methods (LIME [122] , DeepLIFT

115] , Layer-Wise Relevance Propagation, Shapley regression values,

hapley sampling values, and Quantitative Input Influence) to measure

eature importance. 

Several approaches attempted to decompose the classification deci-

ion (output) into the contributions of individual components of an input

ased on specific local decomposition rules (i.e., Pixel-Wise decomposi-

ion [106,116] , and deep Taylor decomposition [108] ). 

Szegedy et al. [103] investigated the semantic meaning of individual

nits and the stability of DNNs while small perturbations were added to

he input. They pointed out that the individual neurons did not contain

he semantic information, while the entire space of activations does.

hey also experimentally proved that the same small perturbation of

nput can cause different DNN models (e.g., trained with different hy-

erparameters) to generate wrong predictions. 

There are several methods for improving local explanations for

N models compared to the above-mentioned approaches. The study

113] argued that explanation approaches for NN models should pro-

ide sound theoretical support. Ross et al. [118] presented their idea as

Right for the right reasons, ” which means that the output of NN models

hould be right with the right explanation. In Ross et al. [118] , incorrect

xplanations for particular inputs can be identified, and NN models can

e guided to learn alternate explanations. Both [113,117] made efforts

n real-time explanations since their approaches can generate accurate

xplanations quickly enough. 

Studies focusing on facilitating understanding of the internal logic of NNs.

tudies in this sub-theme are also known as global interpretability. To

elp interpret how NN models work, model distillation is used in Frosst

nd Hinton [122] , Che et al. [123] , Hinton et al. [124] , Tan et al. [126] .

he initial intention of distillation was to reduce the computational cost.

or example, Hinton et al. [124] distilled a collection of DNN models

nto a single model to facilitate deployment. The knowledge distilled
rom NN models has later been applied for interpretability. Some studies

ompressed information (e.g., decision rules) from deep learning models

nto transparent models such as decision trees [122,131] and gradient

oosting trees [123] to mimic the performance of models. Others tended

o explain the inner mechanisms of NN models through analyzing the

eature space. Study [126] distilled the relationship between input fea-

ures and model predictions (outputs of the model) as a feature shape

o evaluate the feature contribution to the model. 

Another attempt to produce global interpretability is to reveal the

eatures learned by each neuron. For example, in Nguyen et al. [127] ,

he authors leveraged deep generator networks to synthesized the input

i.e., image) that highly activates a neuron. Dong et al. [110] adopted an

ttentive encoder-decoder network to learn interpretable features, and

hen proposed an algorithm called prediction difference maximization to

nterpret the features learned by each neuron. 

One interesting work [119] used an additional NN module that is

t for relational reasoning to reason the relations between the input

nd response of the NN models. There is also another promising line of

ork (e.g., [109,114] ) that combined local and global interpretability

o explain NN models. 

Studies focusing on visualizing internal layers of NNs to help identify

rrors in NNs In study [128] , activities, such as the operation of the clas-

ifier and the function of intermesdiate feature layers within the CNN

odel, were visualized by using a multi-layered deconvolutional net-

ork (named DeconvNet). These visualizations are useful to interpret

odel problems. Unlike [128] , which visually depicted neurons in a

onvolutional layer, the study [107] visualized neurons in a fully con-

ected layer. Zhou et al. [112] proposed Class Activation Mapping (CAM)

or CNNs to visualize the discriminative object parts on any given im-

ge. Fong and Vedaldi [111] highlighted the most responsible part of

n image for a decision by perturbing meaningful images. DarkSight

125] combined the ideas of model distillation and visualization to vi-

ualize the prediction of an NN model. Thiagarajan et al. [132] built a

reeView representation via feature-space partitioning to interpret the

rediction of an NN. Mahendran et al. [133] reconstructed semantic in-

ormation (images) in each layer of CNNs by using information from the

mage representation. 

.3. RQ3. What are the limitations of current research with respect to 

esting and verifying NN-based SCCSs? 

Analyzing failure modes and how the system reacts to failures are

rucial parts of the safety analysis, especially in safety-critical domains.

hen testing and verifying the safety of NN-based SCCPSs, we need to

ethink how to perform failure mode and effect analysis, how to analyze

nter-dependencies between sub-systems of SCCPSs, and how to analyze

he resilience of the system. We need to ensure that even if some of the

ystem’s hardware or software do not behave as expected, the system

an sense the risk, avoid the risk before the incident, and mitigate the

isk effectively when an incident happens. Looking into T&V activities

hrough software development, the ideal situation is that we would find

ppropriate T&V methods to verify whether the design and implemen-

ation are consistent with the requirements, construct complete test cri-

eria and test oracle, and generate test data and test any objects (such as

ode modules, data structures) that are necessary for the correct devel-

pment of software [144] . Unfortunately, the fact is that complete T&V

s hard to guarantee. In order to investigate the gap between industry

eeds for T&V of NN-based SCCPS and state-of-the-art T&V methods, we

erformed a mapping of identified approaches to the relevant standard.

.3.1. Mapping of reviewed approaches to the software safety lifecycles in 

EC 61508 

An increased interest in the application of NNs within safety-critical

omains has encouraged research in the area of T&V of NN-based SCCSs.

esearch institutions and industry T&V practitioners are working on

ifferent aspects of this problem. However, we have not found strong
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Table 5 

A mapping of reviewed approaches to IEC 61508 safety lifecycle. 

Phase Property Relevant primary studies Category Remaining challenges 

Software Completeness None N/A 

architecture design Correctness [95] CA4 Training process of NN-based algorithm is 

time-consuming. 

Freedom from intrinsic 

faults 

[56,58,59,61,65,67–71] CA1 ❶ Limited to specific model classes, or tasks (e.g., image 

classifier), or small size NNs [58] ; ❷ Not immune to 

adversarial adaptation [65] ; ❸ Lack of understanding on 

how system can be free from different kinds of attacks 

other than adversarial examples. 

Understand- ability [103–133] CA5 ❶ Limited to specific model classes, or tasks (e.g., image 

classifier), or small size NN models [122] ; ❷ Not able to 

provide real-time explanations; ❸ Lack of evaluation 

method for the explanation of NNs. 

Verifiable and testable 

design 

[83] CA3 ❶ Lack of integrated computer- aided toolchains to 

support the verification activities; ❷ Limited to specific 

models, tasks or NN size. 

[91] CA4 ❶ Limited to specific NN architectures (i.e., piece-wise 

linear activation functions), need better understanding of 

NN architectures; ❷ Trade-off between efficient 

verification and linear approximation of the NN behavior 

is not studied sufficiently. 

Fault tolerance [73,74,78,81,82] CA2 ❶ Decouple the fault tolerance from the classification 

performance [74] ; ❷ Lack of studies on unexpected 

environmental failures. 

Defense against common 

cause failure 

None N/A 

Software module testing 

and integration 

Completeness [60,71] CA1 Lack of comprehensive criteria to evaluate testing 

adequacy. 

[84–89] CA3 Low fidelity of testing cases compared with real-world 

cases [85] . 

Correctness [55,57,60,62–64,66] CA1 ❶ Vulnerable to the variation of adversarial examples; ❷

Limited to specific NN model classes or tasks. 

[77] CA2 Insufficient validation of input raw data. 

Repeatability [83–85] CA3 Testing cases generated by automated tools may be 

biased. 

Precisely defined testing 

configuration 

None N/A 

Programm- able 

electronics integration 

(hardware and software) 

Completeness None N/A 

Correctness [72,75,76,79] CA2 Insufficient testing of hardware accelerator. 

Repeatability None N/A 

Precisely defined testing 

configuration 

None N/A 

Software verification Completeness [94,96] CA4 ❶ Limited to specific NN models; ❷ Lack of scalability. 

Correctness [80] CA2 ❶ Automatic generation of complete testing scenarios 

sets. 

[90,92,93,97–101] CA4 ❶ Scalability and computational performance need to 

improve; ❷ SMT encoding for large-scale NN model; ❸

Lack of model-agnostic verification methods; ❹

Automatic generation of feature space abstractions [101] . 

Repeatability None N/A 

Precisely defined testing 

configuration 

None N/A 
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onnections between those potentially useful methods for T&V of NNs

nd relevant safety standards (such as IEC 61508 [45] and ISO 26262

46] ). 

We hereby adopt IEC 61508 [45] as a reference standard to exe-

ute the mapping analysis since ISO 26262 [46] is the adaptation of

EC 61508 [45] . We found that the major T&V activities listed in the

oftware safety lifecycles of IEC 61508-3 (including evaluation of soft-

are architecture design, software module testing and integration, pro-

rammable electronics integration, and software verification) are still

alid when conducting T&V for NN-based SCCSs. But for most of them,

ew techniques/measures for supporting the T&V of NN-based software

re demanded. Therefore, we decided to employ safety integrity prop-

rties (which are explained in IEC 61508-3 Annex C and Annex F of IEC

1508-7) as indicators to justify to what extent these desirable prop-

rties have been achieved by the state-of-the-art methods for T&V of

N-based SCCSs. The detailed mapping information can be found in

able 5 . 
g  
In Table 5 , we mapped existing T&V methods for NN-based SCCSs

column 3 and column 4) into relevant properties (column 2) of four

ajor T&V phases (column 1) in the software safety lifecycles of IEC

1508-3. For column 5 in Table 5 , we summarized the remaining chal-

enges in testing and verifying NN-based SCCSs based on reviewed pa-

ers. The overviews of these remaining challenges can potentially in-

pire researchers to look for a focus in the future. 

.3.2. Limitations and suggestions for testing and verifying NN-based 

CCSs 

In Table 5 , we show the limitations and gaps of state-of-the-art T&V

pproaches for NN-based SCCSs. In this section, we will take two T&V

hases (evaluation of software architecture design and software mod-

le testing and integration) as examples to provide detailed analysis

f identified limitations and corresponding suggestions on the basis of

equired safety integrity properties. For the other two T&V phases (pro-

rammable electronics integration and software verification), only sum-
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aries of limitations and suggestions will be presented to avoid dupli-

ation. 

.3.2.1. Evaluation of software architecture design. The top three prop-

rties that have been addressed are: simplicity and understandability (31

apers), freedom from intrinsic design faults (10 papers), and fault toler-

nce (5 papers). Correctness with respect to software safety requirements

pecification (1 paper) and verifiable and testable design have drawn little

ttention (2 papers) for reviewed studies. There are two properties, i.e.,

ompleteness with respect to software safety requirements specification and

efense against common cause failure from external events , which have not

een addressed in reviewed papers. 

4.3.2.1.1. Completeness with respect to software safety requirements

pecification. No study contributes to the achievement of completeness,

hich requires the architecture design to be able to address all the safety

eeds and constraints. The achievement of completeness depends on the

chievement of other properties, such as fully understanding the behav-

or of NN models. The design and deployment of NN-based SCCSs are in

ts infancy stage. When NN-based SCCS design becomes more practical,

ore studies may address this topic. 

4.3.2.1.2. Correctness with respect to software safety requirements spec-

fication. To achieve correctness, software architecture design needs

o respond to the specified software safety requirements appropriately.

tudy [95] reported their successful design of a DNN-based compres-

ion algorithm for aircraft collision avoidance systems. Even though

hey demonstrated that the DNN-based algorithm preserves the required

afety performance, the training process is still time-consuming. 

4.3.2.1.3. Freedom from intrinsic design faults. Intrinsic design faults

an be interpreted as failures derived from the design itself. State-of-the-

rt NNs have proved to be vulnerable to adversarial perturbations due

o some intriguing properties of NNs [56] . Most of the studies in this cat-

gory were aimed at understanding, detecting, and mitigating adversar-

al examples. Study [98] reported that their approach could generalize

ell on several state-of-the-art NNs to find adversarial examples suc-

essfully. However, the verification process of founded features is time-

onsuming, especially for larger images. In this sense, the scalability and

omputational performance of adversarial robustness are expected to be

ddressed in the future. In addition, adversarial robustness does not im-

ly that the NN model is truly free from intrinsic design faults. How to

ssure freedom from interferences (e.g., signal-noise ratio degradation)

ther than adversarial perturbations is a research gap that needs to be

lled. 

4.3.2.1.4. Understandability. This property can be interpreted as

he predictability of system behavior, even in erroneous and failure sit-

ations. In this category, studies focusing on providing explanations for

ndividual prediction (e.g., [103] ) and on visualizing internal layers of

N (e.g., [128–130] ) are not meaningful for safety assurance. Studies

ocusing on facilitating understanding of the internal logic of NNs (such

s presenting NNs as decision trees [122] ) could be a solution to im-

rove the understandability of NN-based architecture design. However,

his line of work is rare, and most methods are only applied to small-

cale DNNs with image input, or specific NN models. Besides, assuming

he explanation of NN is available, confirming the correctness of the ex-

lanation is still a challenge. Interpretability of NNs is undoubtedly a

rucial need in safety-critical applications. Methods in this line should

apable of explaining different types of sensor data (e.g., image, text,

nd point data) and both local and global decisions. 

4.3.2.1.5. Verifiable and testable design. The evaluation metrics of

erifiable and testable design may be derived from modularity, sim-

licity, provability, and so on. We observed that existing verifiable and

estable designs are limited to specific NN architectures (e.g., [91] ) or

pecific tasks (e.g., [83] ). There is no standard procedure for determin-

ng which type of NNs will be easier to verify. Ehlers [91] argued that

Ns that adopt piece-wise linear activation functions are easier to ver-

fy, but their method still need to face the conflict between efficient

erification and accuracy of linear approximation for the NN behavior. 
4.3.2.1.6. Fault tolerance. Fault tolerance implies that the architec-

ure design can assure the safe behavior of the software whenever in-

ernal or external errors occur. To achieve fault tolerance, features like

ailure detection and failure impact mitigation of both internal and ex-

ernal errors should be included in the design. Existing methods showed

hat unexpected environmental failures are hard to detect and miti-

ate. Besides, many of the proposed approaches in this category have

ot yet been evaluated in the real-world. Some studies formulated ap-

roximated computational models to represent real-world systems (e.g.,

73] ). The study [82] did not use any test oracle when executing system

ight tests. Some studies used simulation models to verify the perfor-

ance of the original NN (e.g., [74] ). They are not able to prove the

delity of the model compared with the real-world system. 

4.3.2.1.7. Defense against common cause failure from external events.

oftware common cause failure is a type of concurrent failure of two

r more modules in the software, which is caused by software design

efects and triggered by external events such as time, unexpected in-

ut data, or hardware abnormalities [145] . Many safety critical systems

dopt redundant architectures (meaning two or more independent sub-

ystems have identical functions to back-up each other) to prevent a

ingle point of failure. However, redundant architectures are vulnerable

onsidering common cause failure. In the context of NN-based SCCSs, it

s common to employ multiple NNs with similar architectures in order

o improve the accuracy of prediction. If a common cause failure occurs

n this kind of software design, the prediction might be totally wrong,

nd thus the control software might make the wrong decision. DeepX-

lore, reported in Pei et al. [84] , used more than two different DNNs

ith the same functionality to automatically generate a test case. If all

he DNNs in DeepXplore are affected by common cause failure, such as

f a sensor failure causes all the DNNs to make the same misclassifica-

ion, then it will not be able to generate the corresponding test case.

o method is found in reviewed papers that can identify common cause

ailure modes and defend against such failures. In order to effectively

efend against common cause failure, designers need to inspect the com-

leteness and correctness of the safety requirements specification, trace

he implementation of the safety requirements specification, and make

 thorough T&V plan to reveal the common cause failure modes in the

arly stage. 

.3.2.2. Software module testing and integration. The top two properties

hat have been addressed are: completeness of testing and integration with

espect to the design specifications (9 papers) and correctness of testing and

ntegration with respect to the design specifications (8 papers). Repeatability

as drawn little attention (3 papers) from the reviewed studies. There is

ne property, precisely defined testing configuration , which has not been

ddressed in the reviewed papers. This property aims to evaluate the

recision of T&V procedures, which is not in the scope of our selected

apers. Therefore, we will not give more explanation on this property. 

4.3.2.2.1. Completeness of testing and integration with respect to the de-

ign specifications. We observed some efforts that tried to find a sys-

ematic way to generate testing cases (e.g., [85,88] ) to measure testing

uality (e.g., [87] ) or to connect different T&V stages in the develop-

ent of SCCSs (e.g., [146] ). As analyzed in Section 4.2 , we can infer that

n NN-based control software is instinctually different in design work-

ow and software development compared to the design of traditional

ontrol software. We suggest that the testing criteria should thoroughly

lign with the software design. To be more specific, the instinctive fea-

ures of NN-based softwares (e.g., NN model’s architectural details and

he working mechanism of NNs) should be carefully considered when

etting the testing criteria. That is testing criteria should be defined com-

rehensively and explicitly under the consideration of not only test case

overage but also the robustness of NN-based system performance (for

nstance, test how an NN will respond when input data change slightly)

nd the features of training data sets, such as the data density issue

entioned in Ashmore and Hill [147] . 
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4.3.2.2.2. Correctness of testing and integration with respect to the de-

ign specifications. Several studies (e.g., [55,62,63] ) reported that their

ethods are vulnerable to the variation of adversarial examples. An-

ther common limitation is that most methods are model-specific, mean-

ng that they can only apply to a single type or class of NN model. To

chieve correctness of testing and integration, the module testing task

hould be completed, which means the testing should cover both NN

odels and external input. However, few studies focused on the valida-

ion of input data. One study [77] identified that sufficient validation of

nput raw data remains a challenge. 

4.3.2.2.3. Repeatability. The complexity and un-interpretable fea-

ure of NNs make manual testing almost infeasible. In order to be able

o generate consistent results from testing repeatedly, some studies were

edicated to achieving automatic test execution or even automatic test

eneration. We found three papers (i.e., [83–85] ) addressing automatic

est generation. However, generating test cases automatically is still a

hallenge. For instance, studies [84,85] claimed that the test cases gen-

rated by an automated testing tool may not cover all real-world cases.

.3.2.3. Programmable electronics integration. The major limitation of

his line of work is insufficient testing for hardware accelerators. NN-

ased SCCPSs requires typically high-performance computing systems,

uch as Graphics Processing Units (GPUs). Some industry participants

ave provided specialized hardware accelerators to accelerate NN-based

omputations. For example, Google deployed a DNN accelerator (called

ensor Processing Unit) in its data centers for DNN applications [148] .

VIDIA introduced an automotive supercomputing platform named

RIVE PX 2 [34] , which now has been used by over 370 companies and

esearch institutions in the automotive industry [149] . However, little

esearch effort has been put into the T&V of the reliability of using hard-

are accelerators for NN applications. We found seven studies (i.e. [72–

7,79] ) addressing the evaluation of the error resilience of hardware

ccelerators. However, the testing is limited to specific type errors (e.g.,

adiation-induced soft errors, which are presented in Schorn et al. [72] ,

antos et al. [76] , Li et al. [79] ). The mitigation method proposed in San-

os et al. [76] (called ABFT: Algorithm-Based Fault Tolerance) can only

rotect portions of the accelerator (e.g., sgemm kernels, which is one

ind of matrix multiplication kernels). The study [77] identified errors

ade by single frame object detectors, but the result showed that the

ethod is not capable of detecting all mistakes. The studies [72,79] in-

estigated the propagation characteristic of soft errors in the DNN sys-

em, but they used a DNN simulator instead of a real DNN accelerator

or fault injection. 

.3.2.4. Software verification. In general, there is a lack of a comprehen-

ive and standardized framework for verifying the safety of NN-based

CCSs. Formal verification procedures are highly demanding. The com-

on limitation of formal verification approaches is the scalability issues.

ost proposed methods are limited to a specific NN structure and size

e.g., [91,92,97,99,100] ). The study [92] reported that their approaches

an only verify small-scale systems (i.e., the layer of NN is 3 and the

aximum amount of input neurons is 64). One approach reported in

arodytska et al. [99] can verify medium size NNs. The verification of

arge-scale NNs is still a challenge. Another limitation is that proposed

pproaches are not robust to NN variations. For example, verification

ethods in studies [91,97] are only adapted to specific network types

nd sizes. 

. Discussion 

In this section, we first discuss industry practices for T&V of NN-

ased SCCPSs. Then, we compare this SLR with related works. At the

nd of this section, we present the threats to the validity of our study. 
.1. Industry practice 

Our findings on the research questions (RQ1 to RQ3) mainly re-

ected the academic efforts addressing T&V of NN-based SCCPSs. NN-

ased applications have drawn a lot of attention from industry prac-

itioners. Taking the automotive industry as an example, several car

akers (e.g., GM, BMW, and Tesla) and some high technology compa-

ies (e.g., Waymo and Baidu) are leading the revolution in autonomous

riving safety. 

.1.1. Safety of the intended functionality 

At the beginning of this year, ISO/PAS 21448:2019 [47] was pub-

ished. It listed recommended methods for deriving verification and val-

dation activities (See ISO/PAS 21448:2019 Table 4 ). In Table 6 , we

ighlighted six of the recommended methods, which shared similar ver-

fication interests with existing academic efforts. 

.1.2. Safety reports 

In 2018, three companies (Waymo, General Motor, and Baidu

pollo) published their annual safety reports. As a pioneer in the de-

elopment of self-driving cars, Waymo proposed the “Safety by Design ”

150] approach, which entails the processes and techniques they used to

ace safety challenges of a level 4 autonomous car on the road. For the

ybersecurity consideration, Waymo adopted Google’s security frame-

ork [151] as the foundation. After that, General Motor (GM) released

heir safety report [152] for Cruise AV (also level 4). GM’s safety process

ombined conventional system validation (such as vehicle performance

ests, fault injection testing, intrusive testing, and simulation-based soft-

are validation) with SOTIF validation through iterative design. Baidu

dopted the Responsibility-Sensitive Safety model [153] proposed by

obileye [154] (an Intel company) to design the safety process for the

pollo Pilot for a passenger car (level 3). 

In addition, we noticed that Tesla started releasing quarterly safety

ata since October 2018 [155] . It seemed that Tesla has a completely

ifferent approach to self-driving cars than other companies. Accord-

ng to TESLA NEWS [156] , AutoPilot will rely for its self-driving func-

ion on cameras, not on LIDAR; the AutoPilot software is trained online

which means that the NN keeps learning and evolving during opera-

ion). The Autopilot’s safety features are continuously evolved and en-

anced through understanding real-world driving data from every Tesla.

Referring to these safety reports of existing autonomous cars, we

hould be aware that when testing DNN-based control software (the

ore part of autonomous vehicles), black-box system level testing (by

bserving inputs and its corresponding outputs, e.g., closed course test-

ng and real-world driving) is still the leading method. More systematic

&V criteria and approaches are needed for more complete and reliable

esting results. 

.2. Comparison with related work 

.2.1. Verification and validation of NNs 

Taylor et al. [15] conducted a survey on the Verification and Val-

dation (V&V) of NNs used in safety-critical domains in 2003. Study

15] is the closest work we found, although they did not adopt an SLR

pproach. Our study covered new studies from 2011 to 2018. The au-

hors of [15] also made a classification of methods for the V&V of NNs.

hey grouped the methods into five traditional V&V technique cate-

ories, namely, automated testing and testing data generation methods,

un-time monitoring, formal methods, cross validation, and visualiza-

ion. In contrast to [15] , our study adopted a thematic analysis approach

54] and identified five themes based on the research goals of the se-

ected studies. We thought it was better to classify the proposed T&V

ethods of NNs based on their aims rather than on the traditional tech-

ique categories since many traditional V&V techniques are no longer

ffective for verifying NNs in many cases. New methods and tools should

e explored and developed without being limited by the traditional V&V
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Table 6 

Shared verification interests of ISO/PAS 21448 and academic efforts. 

ISO/PAS 21448 Academic efforts 

Analysis of triggering events CA1: Assuring robustness of NNs 

Analysis of sensors design and their known potential limitations CA2: Improving failure resilience of NNs 

Analysis of environmental conditions and operational use cases CA3: Measuring and ensuring test completeness 

Analysis of boundary values CA4: Assuring safety property of NN-based SCCPSs 

Analysis of algorithms and their decision paths CA5: Improving interpretability of NNs 

Analysis of system architecture CA1–CA5 
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ategories. Another difference is our study specialized more in the T&V

f modern NNs, such as MLP and DNN, whereas the study [15] provided

ore in-depth analysis of V&V methodologies for NNs used in flight

ontrol system, such as Pre-Trained Neural Network (PTNN) and Online

earning Neural Network (OLNN). Our study and [15] have some com-

on findings. For example, one category, named Visualization in Taylor

t al. [15] , falls into our category CA5 Improving interpretability of NNs.

.2.2. Surveys of security, safety, and productivity for deep learning (DL) 

ystems development 

Hains et al. [16] surveyed existing work on “attacks against DL sys-

ems; testing, training, and monitoring DL systems for safety; and the verifi-

ation of DL systems. ” Our study and [16] shared a similar motivation.

he critical difference between our SLR and [16] are threefold: 1) We

onducted our literature review on 83 selected papers based on specific

LR guidelines, while they used an ad hoc literature review (ALR) ap-

roach and reviewed only 21 primary papers. 2) They only focused on

L systems, whereas our scope covered modern NN-based software sys-

ems, which embodies DL-based software systems. 3) They inferred that

ormal methods and automation verification are the two promising re-

earch directions based on the reviewed works. In contrast, we focused

ore on safety issues, and found more categories to be addressed for

afety purposes. 

.2.3. Surveys of certification of AI technologies in automotive 

Falcini et al. [17,18] reviewed the existing standards in the auto-

otive industry and pointed out the related applicability issues of au-

omotive software development standards to deep learning. Although

ur SLR takes the automotive industry as an example, we are concerned

ith SCCPSs in general. This concern is reflected in the distribution of

he selected papers (only 13 of the 83 selected papers are oriented to

utomotive CPSs). 

.2.4. SLR of explainable artificial intelligence (XAI) 

There are two very recent SLRs, Adadi and Berrada [157] and

ohman et al. [158] , on the interpretation of artificial intelligence.

oth [157,158] employed similar commonly accepted guidelines to con-

uct their SLRs. The fundamental difference between our study and

157,158] is the scope. Adadi and Berrada [157] reviewed 381 papers on

xisting XAI approaches from interdisciplinary perspectives. As reported

n Hohman et al. [158] , the scope of their SLR is visualization and vi-

ual analytics for deep learning. The study [158] focused on studies that

dopted visual analytics to explain NN decisions. Our study has a more

omprehensive coverage of T&V approaches that were employed to not

nly interpret NN behaviors but also to assure the robustness of NNs, to

mprove the failure resilience of NNs, to ensure test completeness, and to

ssure the safety property of NN-based SCCPSs. In a summary, our SLR

ried to provide an overview of key aspects related to T&V activities for

N-based SCCSs. 

.3. Threats to validity 

In this section, we discuss some threats to the validity of our study. 
.3.1. Search strategy 

The most possible threat in this step is missing or excluding relevant

apers. To mitigate this threat, we used six of the most relevant digital

ibraries to retrieve papers. Additionally, we employed two strategies to

itigate potential limitations in the search terms: 1) adopted an PIOC

riteria to ensure the coverage of search terms; and 2) improved search

erms iteratively. Further, we conducted an extensive snowballing pro-

ess on references of the selected papers to identify related papers. The

earch keywords were cross-checked and agreed on by both authors. 

.3.2. Study selection 

Researchers’ subjective judgment could be a threat to the study se-

ection. We strictly followed the pre-defined review protocol to mitigate

his threat. For example, we started recording the inclusion and exclu-

ion reasons from the 3rd stage. We validated the inclusion and exclu-

ion criteria with two authors on the basis of the pilot search. Further-

ore, the second author performed a cross-check of all selected papers.

ny paper that raised doubts about its inclusion or exclusion decision

as discussed between the first and second authors. For example, the

smart grid ” is included in the search term, but no relevant papers were

ound after the 3rd stage. Then, we conducted a snowballing search to

dentify papers that presented how to use NNs in smart grids. We found

ut that AI is mainly used to solve the economically relevant problems

159] of the smart grid system (e.g., prediction of energy usage and

fficient use of resources). AI is not involved in the safety-critical appli-

ations (e.g., decision making on optimal provision of power) of smart

rids. Therefore, there were no relevant papers addressing safety anal-

sis or testing/verification (refer to Inclusion criteria I2). 

.3.3. Data extraction 

The first author was responsible for designing the data extraction

orm and conducting the data extraction from selected papers. In order

o avoid the first author’s bias in data extraction, the two authors con-

inuously discussed the data extraction issues. The extracted data were

erified by the second author. 

.3.4. Data synthesis 

Data analysis outcomes could vary with different researchers. To re-

uce the subjective impact on data synthesis, besides strictly following

he thematic synthesis steps [54] , the data synthesis was first agreed

n by both authors. We disseminated our preliminary findings to two

nternal research groups at our university (i.e., the autonomous vehi-

le lab and autonomous ships lab) and presented at a Ph.D. seminar on

oT, Machine Learning, Security, and Privacy for comments and feed-

ack. In summary, the audiences agreed with our research design and

esults, and they thought that the mapping of reviewed approaches to

he IEC61508 is a valuable attempt. Several researchers working in for-

al verification and safety verification thought that safety cases would

e a promising direction to address the challenges of T&V of NN-based

CCSs. One suggestion is adding information about self-driving car sim-

lators. Based on these comments and feedback, we revised our paper

ccordingly. 
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. Conclusion and future work 

In this paper, we have presented the results of a Systematic Litera-

ure Review (SLR) of existing approaches and practices on T&V meth-

ds for neural-network-based safety critical control software (NN-based

CCS). The motivation of this study was to provide an overview of the

tate-of-the-art T&V of safety-critical NN-based SCCSs and to shed some

ight on potential research directions. Based on pre-defined inclusion

nd exclusion criteria, we selected 83 papers that were published be-

ween 2011 and 2018. A systematic analysis and synthesis of the data

xtracted from the papers and comprehensive reviews of industry prac-

ices (e.g., technical reports, standards, and white papers) related to our

Qs were performed. Results of the study show that: 

1. The research on T&V of NN-based SCCSs is gaining interest and at-

tention from both software engineering and safety engineering re-

searchers/practitioners according to the impressive upward trend in

the number of papers on T&V of NN-based SCCSs (See Fig. 5 ). Most

of the reviewed papers (68/83, 81.9%) have been published in the

last three years. 

2. The approaches and tools reported for the T&V of NN-based con-

trol software have been applied to a wide variety of safety-critical

domains, among which “automotive CPSs ” has received the most at-

tention. 

3. The approaches can be classified into five high-order themes,

namely, assuring robustness of NNs, improving failure resilience

of NNs, measuring and ensuring test completeness, assuring safety

properties of NN-based SCCPSs, and improving interpretability of

NNs. 

4. The activities listed in the software safety lifecycles of IEC 61508-

3 are still valid when conducting safety verification for NN-based

control software. However, most of the activities need new tech-

niques/measures to deal with the new characteristics of NNs. 

5. Four safety integrity properties within the four major safety lifecy-

cle phases, namely, correctness, completeness, freedom from intrin-

sic faults, and fault tolerance, have drawn the most attention from

the research community. Little effort has been put on achieving re-
peatability. No reviewed study focused on precisely defined testing

configuration and defense against common cause failure, which are

extremely crucial for assuring the safety of a production-ready NN-

based SCCS [160] . 

6. It is common to combine standard testing techniques with formal

verification when testing and verifying large-scale, complex safety-

critical software [15,144] . As explained in Section 4.3 , we found

that an increasing concern of the reviewed works is the integration

of different T&V techniques in a systematic manner to gain assurance

for the whole lifecycle of the NN-based control software. 

This SLR is just a starting point in our studies to test and verify

N-based SCCPSs. In the future, we will focus on improving the inter-

retability of NNs. To be more specific, we plan to develop a method

or explaining why an NN model is more (or less) robust than other

odels. It can guide software designers to design an NN model with

n appropriate robustness level, which will greatly support safety by

esign. 
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S_ID Author(s) Year Title Publication venue 

[92] Pulina, L. and A. Tacchella 2011 NeVer: a tool for artificial neural networks 

verification 

Annals of Mathematics and Artificial Intelligence 

[90] Pulina, L. and A. Tacchella 2012 Challenging SMT solvers to verify neural networks AI Communications 

[107] Simonyan, K., A. Vedaldi and A. 

Zisserman 

2013 Deep inside convolutional networks: Visualising 

image classification models and saliency maps 

arXiv preprint 

[103] Szegedy, C., W. Zaremba, I. Sutskever, 

J. Bruna, D. Erhan, I. Goodfellow and 

R. Fergus 

2013 Intriguing properties of neural networks arXiv preprint 

[56] Goodfellow, I. J., J. Shlens and C. 

Szegedy 

2014 Explaining and Harnessing Adversarial Examples International Conference on Learning 

Representations (ICLR) 

[61] Gu, S. and L. Rigazio 2014 Towards deep neural network architectures robust 

to adversarial examples 

International Conference on Learning 

Representations (ICLR) 

[128] Zeiler, M. D. and R. Fergus 2014 Visualizing and understanding convolutional 

networks 

European conference on computer vision 

[73] Zhang, Q., T. Wang, Y. Tian, F. Yuan 

and Q. Xu 

2015 ApproxANN: an approximate computing 

framework for artificial neural network 

Design, Automation & Test in Europe Conference 

& Exhibition 

[123] Che, Z., S. Purushotham, R. Khemani 

and Y. Liu 

2015 Distilling knowledge from deep networks with 

applications to healthcare domain 

arXiv preprint 

[124] Hinton, G., O. Vinyals and J. Dean 2015 Distilling the knowledge in a neural network arXiv preprint 

[55] Nguyen, A., J. Yosinski and J. Clune 2015 Deep neural networks are easily fooled: High 

confidence predictions for unrecognizable images 

IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) 

[116] Bach, S., A. Binder, G. Montavon, F. 

Klauschen, K.-R. Müller and W. Samek 

2015 On pixel-wise explanations for non-linear 

classifier decisions by layer-wise relevance 

propagation 

PloS one 

[161] Scheibler, K., L. Winterer, R. Wimmer 

and B. Becker 

2015 Towards Verification of Artificial Neural Networks Workshop on Methods and Description Languages 

for Modeling and Verification of Circuits and 

Systems (MBMV) 

[71] Shaham, U., Y. Yamada and S. 

Negahban 

2015 Understanding adversarial training: Increasing 

local stability of neural nets through robust 

optimization 

arXiv preprint 

[133] Mahendran, A. and A. Vedaldi 2015 Understanding deep image representations by 

inverting them 

IEEE conference on computer vision and pattern 

recognition 

[106] Bach, S., A. Binder, K.-R. Müller and 

W. Samek 

2016 Controlling explanatory heatmap resolution and 

semantics via decomposition depth 

IEEE International Conference on Image 

Processing (ICIP) 

[68] Papernot, N., P. McDaniel, X. Wu, S. 

Jha and A. Swami 

2016 Distillation as a defense to adversarial 

perturbations against deep neural networks 

IEEE Symposium on Security & Privacy 

[70] Zheng, S., Y. Song, T. Leung and I. 

Goodfellow 

2016 Improving the robustness of deep neural 

networks via stability training 

IEEE conference on computer vision and pattern 

recognition 

[82] Daftry, S., S. Zeng, J. A. Bagnell and M. 

Hebert 

2016 Introspective perception: Learning to predict 

failures in vision systems 

IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS) 

( continued on next page ) 
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S_ID Author(s) Year Title Publication venue 

[112] Zhou, B., A. Khosla, A. Lapedriza, A. 

Oliva and A. Torralba 

2016 Learning deep features for discriminative 

localization 

IEEE conference on computer vision and pattern 

recognition 

[58] Bastani, O., Y. Ioannou, L. 

Lampropoulos, D. Vytiniotis, A. Nori 

and A. Criminisi 

2016 Measuring neural net robustness with constraints Advances in neural information processing 

systems 

[115] Shrikumar, A., P. Greenside, A. 

Shcherbina and A. Kundaje 

2016 Not just a black box: Interpretable deep learning 

by propagating activation differences 

arXiv Preprint 

[95] Julian, K. D., J. Lopez, J. S. Brush, M. P. 

Owen and M. J. Kochenderfer 

2016 Policy compression for aircraft collision avoidance 

systems 

IEEE/AIAA international conference on Digital 

Avionics Systems Conference (DASC) 

[127] Nguyen, A., A. Dosovitskiy, J. Yosinski, 

T. Brox and J. Clune 

2016 Synthesizing the preferred inputs for neurons in 

neural networks via deep generator networks 

Advances in Neural Information Processing 

Systems 

[132] Thiagarajan, J. J., B. Kailkhura, P. 

Sattigeri and K. N. Ramamurthy 

2016 TreeView: Peeking into deep neural networks via 

feature-space partitioning 

arXiv preprint 

[75] Li, G., K. Pattabiraman, C.-Y. Cher and 

P. Bose 

2016 Understanding error propagation in GPGPU 

applications 

International Conference on High Performance 

Computing, Networking, Storage and Analysis 

[129] Ribeiro, M. T., S. Singh and C. Guestrin 2016 Why should i trust you?: Explaining the 

predictions of any classifier 

ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining 

[105] Sundararajan, M., A. Taly and Q. Yan 2017 Axiomatic attribution for deep networks International Conference on Machine Learning 

[83] O’Kelly, M., H. Abbas and R. 

Mangharam 

2017 Computer-aided design for safe autonomous 

vehicles 

Resilience Week (RWS) 

[101] Tommaso DreossiAlexandre DonzSanjit 

A. Seshia 

2017 Compositional Falsification of Cyber-Physical 

Systems with Machine Learning Components 

NASA Formal Methods 

[85] Tian, Y., K. Pei, S. Jana and B. Ray 2017 DeepTest: Automated testing of 

deep-neural-network-driven autonomous cars 

arXiv preprint 

[64] Reuben, F., R. R. Curtin, S. Saurabh and 

A. B. Gardner 

2017 Detecting Adversarial Samples from Artifacts arXiv preprint 

[122] Frosst, N. and G. Hinton 2017 Distilling a Neural Network Into a Soft Decision 

Tree 

arXiv preprint 

[84] Pei, K., Y. Cao, J. Yang and S. Jana 2017 DeepXplore: Automated Whitebox Testing of Deep 

Learning Systems 

ACM Symposium on Operating Systems Principles 

(SOSP) 

[63] Gopinath, D., G. Katz, C. S. Pasareanu 

and C. Barrett 

2017 Deepsafe: A data-driven approach for checking 

adversarial robustness in neural networks 

arXiv preprint 

[108] Montavon, G., S. Lapuschkin, A. Binder, 

W. Samek and K.-R. Müller 

2017 Explaining nonlinear classification decisions with 

deep Taylor decomposition 

Pattern Recognition 

[76] Santos, F. F. d., L. Draghetti, L. Weigel, 

L. Carro, P. Navaux and P. Rech 

2017 Evaluation and Mitigation of Soft-Errors in Neural 

Network-Based Object Detection in Three GPU 

Architectures 

IEEE/IFIP International Conference on Dependable 

Systems and Networks Workshops (DSN-W) 

( continued on next page ) 
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[69] Papernot, N. and P. McDaniel 2017 Extending defensive distillation arXiv preprint 

[91] Ehlers, R. 2017 Formal verification of piece-wise linear 

feed-forward neural networks 

International Symposium on Automated 

Technology for Verification and Analysis 

[77] Manikandasriram, S. R., C. Anderson, 

R. Vasudevan and M. 

Johnson-Roberson 

2017 Failing to learn: autonomously identifying 

perception failures for self-driving cars 

arXiv preprint 

[65] Xu, W., D. Evans and Y. Qi 2017 Feature squeezing: Detecting adversarial 

examples in deep neural networks 

Network and Distributed Systems Security 

Symposium (NDSS) 

[110] Dong, Y., H. Su, J. Zhu and B. Zhang 2017 Improving interpretability of deep neural 

networks with semantic information 

IEEE Conference on Computer Vision and Pattern 

Recognition 

[131] Bastani, O., C. Kim and H. Bastani 2017 Interpretability via model extraction arXiv preprint 

[111] Fong, R. C. and A. Vedaldi 2017 Interpretable explanations of black boxes by 

meaningful perturbation 

IEEE International Conference on Computer Vision 

[57] Melis, M., A. Demontis, B. Biggio, G. 

Brown, G. Fumera and F. Roli 

2017 Is Deep Learning Safe for Robot Vision? 

Adversarial Examples Against the iCub Humanoid 

IEEE International Conference on Computer Vision 

Workshops (ICCVW) 

[146] Vishnukumar, H. J., B. Butting, C. 

Muller and E. Sax 

2017 Machine learning and deep neural network - 

artificial intelligence core for lab and real-world 

test and validation for ADAS and autonomous 

vehicles: AI for efficient and quality test and 

validation 

Intelligent Systems Conference (IntelliSys) 

[78] Mhamdi, E. M. E., R. Guerraoui and S. 

Rouault 

2017 On the Robustness of a Neural Network IEEE Symposium on Reliable Distributed Systems 

(SRDS) 

[67] Metzen, J. H., T. Genewein, V. Fischer 

and B. Bischoff

2017 On detecting adversarial perturbations International Conference on Learning 

Representations (ICLR) 

[93] Dutta, S., S. Jha, S. Sanakaranarayanan 

and A. Tiwari 

2017 Output range analysis for deep neural networks arXiv preprint 

[59] Cisse, M., P. Bojanowski, E. Grave, Y. 

Dauphin and N. Usunier 

2017 Parseval networks: Improving robustness to 

adversarial examples 

arXiv preprint 

[96] Xiang, W., H.-D. Tran and T. T. Johnson 2017 Reachable set computation and safety verification 

for neural networks with ReLU activations 

arXiv preprint 

[97] Katz, G., C. Barrett, D. L. Dill, K. Julian 

and M. J. Kochenderfer 

2017 Reluplex: An efficient SMT solver for verifying 

deep neural networks 

International Conference on Computer Aided 

Verification (CAV) 

[117] Dabkowski, P. and Y. Gal 2017 Real time image saliency for black box classifiers Advances in Neural Information Processing 

Systems (NIPS) 

[118] Ross, A. S., M. C. Hughes and F. 

Doshi-Velez 

2017 Right for the right reasons: Training differentiable 

models by constraining their explanations 

arXiv preprint 

[74] Vialatte, J.-C. and F. Leduc-Primeau 2017 A Study of Deep Learning Robustness Against 

Computation Failures 

arXiv preprint 

[119] Santoro, A., D. Raposo, D. G. Barrett, 

M. Malinowski, R. Pascanu, P. Battaglia 

and T. Lillicrap 

2017 A simple neural network module for relational 

reasoning 

Advances in Neural Information Processing 

Systems (NIPS) 

[98] Huang, X. W., M. Kwiatkowska, S. 

Wang and M. Wu 

2017 Safety Verification of Deep Neural Networks International Conference on Computer Aided 

Verification 

[120] Smilkov, Daniel and Thorat, Nikhil and 

Kim, Been and Viégas, Fernanda and 

Wattenberg, Martin 

2017 Smoothgrad: removing noise by adding noise arXiv preprint 

[60] Carlini, N. and D. Wagner 2017 Towards Evaluating the Robustness of Neural 

Networks 

IEEE Symposium on Security and Privacy (SP) 

[162] Katz, G., C. Barrett, D. L. Dill, K. Julian 

and M. J. Kochenderfer 

2017 Towards proving the adversarial robustness of 

deep neural networks 

arXiv Preprint 

[79] Li, G., S. K. S. Hari, M. Sullivan, T. Tsai, 

K. Pattabiraman, J. Emer and S. W. 

Keckler 

2017 Understanding error propagation in deep learning 

neural network (DNN) accelerators and 

applications 

International Conference for High Performance 

Computing, Networking, Storage and Analysis 
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[121] Lundberg, S. M. and S.-I. Lee 2017 A unified approach to interpreting model 

predictions 

Advances in Neural Information Processing 

Systems (NIPS) 

[99] Narodytska, N., S. P. Kasiviswanathan, 

L. Ryzhyk, M. Sagiv and T. Walsh 

2017 Verifying properties of binarized deep neural 

networks 

arXiv preprint 

[86] Raj, S., S. K. Jha, A. Ramanathan and L. 

L. Pullum 

2017 Work-in-progress: testing autonomous 

cyber-physical systems using fuzzing features 

from convolutional neural networks 

International Conference on Embedded Software 

(EMSOFT) 

[72] Schorn, C., A. Guntoro and G. Ascheid 2018 Accurate neuron resilience prediction for a 

flexible reliability management in neural network 

accelerators 

Design, Automation & Test in Europe Conference 

& Exhibition (DATE) 

[104] Ribeiro, M. T., S. Singh and C. Guestrin 2018 Anchors: High-precision model-agnostic 

explanations 

AAAI Conference on Artificial Intelligence 

[87] Ma, L., F. Juefei-Xu, F. Zhang, J. Sun, M. 

Xue, B. Li, C. Chen, T. Su, L. Li and Y. 

Liu 

2018 DeepGauge: multi-granularity testing criteria for 

deep learning systems 

ACM/IEEE International Conference on Automated 

Software Engineering 

[88] Zhang, M., Y. Zhang, L. Zhang, C. Liu 

and S. Khurshid 

2018 DeepRoad: GAN-based metamorphic testing and 

input validation framework for autonomous 

driving systems. 

ACM/IEEE International Conference on Automated 

Software Engineering 

[89] Guo, J., Y. Jiang, Y. Zhao, Q. Chen and 

J. Sun 

2018 DLFuzz: differential fuzzing testing of deep 

learning systems 

ACM Joint Meeting on European Software 

Engineering Conference and Symposium on the 

Foundations of Software Engineering 

[80] Rubaiyat, A. H. M., Q. Yongming and 

H. Alemzadeh 

2018 Experimental Resilience Assessment of An 

Open-Source Driving Agent 

arXiv preprint 

[81] Rhazali, K., B. Lussier, W. Schön and S. 

Geronimi 

2018 Fault Tolerant Deep Neural Networks for 

Detection of Unrecognizable Situations 

IFAC-PapersOnLine 

[66] Wicker, M., X. Huang and M. 

Kwiatkowska 

2018 Feature-guided black-box safety testing of deep 

neural networks 

International Conference on Tools and Algorithms 

for the Construction and Analysis of Systems 

(TACAS) 

[109] Linsley, D., D. Scheibler, S. Eberhardt 

and T. Serre 

2018 Global-and-local attention networks for visual 

recognition 
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