WHY ARE SELF-DRIVING VEHICLES GETTING INVOLVED IN CRASHES?

- WHAT CAN WE DO TO REDUCE CONFLICTS WITH OTHER ROAD USERS?

Gunnar Deinboll Jenssen, SINTEF Safety and Mobility
Sarepta Conference, Trondheim August 10th 2017

Outline

1. Potential Safety benefit?
2. Level of Automation (SAE)
3. CRASH INVESTIGATIONS
 - Tesla crashes (Level 2)
 - Uber (Level 4)
 - Google crashes (Level 4) California records
 - Singapore
4. How can we improve interaction?
Autonomous = Self sufficient

Automated vehicles (AV's)

- Driverless Vehicles
- Robotic vehicles

Technologies: Visual sensors –
Digital maps Radar, Lidar, GPS, etc.

Based on ADAS: ABS, ESP, ACC, Antikollisjon, Lane keeping etc.

Automated vehicles (AV's) can operate:

- **Remote controlled** – Surveilled and/or externally controlled
- **Autonomous** – Based only on own sensors and systems
- **Cooperative** – Based on own sensors and other road traffic information (V2X)
Expected benefits of self-driving vehicles

- Improved Traffic Safety
- Improved traffic flow
- Improved mobility for all
- Environmental impact

Automation of the Driving Task

- Human handles all tasks
- "Handover" Vehicle handles all tasks
- Computer handles all tasks

SAE Task level: 0, 1, 2, 3, 4, 5
Why do accidents with AV's happen?

- Development level is that it is not yet reliable and safe?
- Reaction time?
 - When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving
- Lack of trust
- To much trust
Sources

✓ Crash reports
✓ California regulators require self-driving car firms to report when humans have to take over from robot drivers for safety
 • The DMV rule defines disengagements as deactivations of the autonomous mode in two situations:
 1. "when a failure of the autonomous technology is detected," or
 2. "when the safe operation of the vehicle requires that the autonomous vehicle test driver disengage the autonomous mode and take immediate manual control of the vehicle." Technical failures
 • Note! Self reported: Google Uber, Nissan Mercedes etc is giving only select data

Autonomous Vehicle Disengagement Reports 2016

• BMW
• Bosch, LLC
• GM Cruise
• Delphi Automotive Systems, LLC
• Ford
• Google Auto, LLC/Waymo
• Honda
• Nissan North America, Inc
• Mercedes-Benz Research & Development North America, Inc
• Tesla Motors, Inc.
• Volkswagen Group of America, Inc.
Chrash investigations

Driver killed in Tesla crash
A diagram from the police report about the Tesla crash shows how the vehicle in self-driving mode (V02) struck a tractor-trailer (V01) as it was turning left. Florida Highway Patrol.
Accidents as a function of miles driven

• One hundred million. That’s the number of miles, on average, that it takes a human driver to kill someone in the United States.

• It’s also the number of miles Tesla’s semi-autonomous ‘Autopilot’ feature had driven by May 2016.

• Tesla claim their level 2 vehicles have 40% less collisions than non-equipped vehicles.
What do we know about accidents with higher level self-driving cars?

- Driven 2.3 million miles on closed and track and public roads

Dilemma Zone, Google patent 4. februar 2016:
Google self-driving car in broadside collision after other car jumps red light
September 2016

Google car speed 20mph
1Other car speed 30mph

Google says:

"Our light was green for at least six seconds before our car entered the intersection."

"Thousands of crashes happen everyday on US roads, and red-light running is the leading cause of urban crashes in the US. Human error plays a role in 94%"
• Google's cars have driven more than 1.3 million miles since 2009. They can recognize hand signals from traffic officers and "think" at speeds no human can match. As of January, 2016 they had been involved in 17 crashes, all caused by human error.

Driver in China Autopilot crash blames Tesla's 'self-driving' pitch
Model's driver escapes injury but blames automaker, report says
• Driverless car collides with lorry in one-north
 The NuTonomy test vehicle had been changing lanes when it collided with a lorry,
• There were no casualties.

• Virginia Tech Transportation Institute found that the crash rate for self-driving cars is lower than the national crash rate.
Virginia Tech Transportation Institute study (2016)

- National crash rate of 4.2 accidents per million miles
- Crash rate for self-driving cars, is 3.2 accidents per million miles

- The data took into account the severity of crashes, and it adjusted for unreported incidents
- The study was commissioned by Google
- Mainly Google cars (2014-2016) in the study?
- Google cars driven 2 million miles on public roads Mountain view California

Insights based on data released from the California trials

- Reaction time
 - The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at **0.83 seconds** on average.
 - The number of accidents observed has a significantly high correlation with the autonomous miles travelled.
 - However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled.

- Lack of trust
 - Exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually.

- To much trust
 - With increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled
What are the effects of automation?

- Control issues
- Misuse
- Distrust, resentment, resistance
- Loss of manual skills
- Can make us passive

What do we know from theory and research?
Human in the loop?

Yerkes-Dodson curve – Driver performance/workload

What do we do when the driving task is automated?
What do we do when we trust the autopilot?

Passiv
- “Out of the loop”
- Not paying attention
- Confusion of system modus

Longer term
- Loss of manual control skills

Is the technology good enough?
Automated Emergency Braking System (AEB)

Key on-board technologies
- Satellite positioning
- Lidar
- Video cameras and other optical sensors
- Computer
- RADAR (front and back)
- Ultrasound sensors
Is it a question of technology?

Google

Tesla

Vehicle radar blocked by slush or snow
Radar and Camera system (RACam) inside the wind shield

- The RACam module on Volvo XC 90 has two fields of view: short range 40m ahead, 30 degrees either side of centre line and longer range up to 200m, 10 degrees either side of center line.
- The short range radar combined with the camera eliminates the need for a LIDAR sensor.

Ice and dew problem

- Ice and dew inside or outside the windshield may give malfunction in camera sensors placed behind the windshield.
A critical issue:

- Automated driving at current stage of its development is not yet reliable and safe
- AV’s do not yet have the technology and or AI to handle all road, weather conditions and traffic interactions
- We have as humans not yet learnt how to handle all SAE levels of Automation as drivers in the loop, as salesmenn, passengers, pedestrians, cyclists, bikers (MC)...nor as legislators, regulators

What can we do to reduce conflicts with other road users?
Some of the challenges

Autonomous Vehicle – Interaction with pedestrians/cyclists (VRU’s)

Autonomous Vehicle – Interaction with non-automated traffic

Mismatch of behaviours

• Normative versus formative

Michon 1985. Driver behavior model

Rasmussen 1983. Model of operator performance
Infrastructure

Making humans understand robot cars
Google patent

A new patent describes a system to react to pedestrians and
Challenge the Traditional (Office)

Chalmers study

with pedestrians. An investigation of pedestrian-driver communication and development of a
Semcon

Results Interviews & Focus group

- **Eye contact** is important (Low speed)
- **Expectations**
 - Expected WEpod to stop in all instances
 - Steward present? Majority di not know
- **Communication** - Should be Visual & auditory

Delft study

Velasco, Rodrigues Farah, hagmzeker (2016)
Take away points!

- AV's on market or in pilot testing are at different SAE levels
- Technology is imperfect
- Accidents will happen,- on public roads with or without your consent
- "Proof" - Accidents are already lowered by 40% (level 2)

Manufacturers/Salesmen must allow user to understand

1. What the system capabilities and limitations are
Take away points!

With driver in the loop (level 2-3)

• System must allow user to understand:
 1. *What the system does presently*
 2. *What it plans to do*
 3. *What it can not do*

Take away points!

• R&D is needed to improve interaction between:
 1. AV's and vulnerable road users
 2. AV's and non automated vehicles
Technology for a better society

gunnar.d.jenssen@sintef.no