

Norwegian Forum for Autonomous Ships

- Established October 4th 2016
- Operated as a joint industry project at SINTEF Ocean.
- General Manager is Mr. Ørnulf Jan Rødseth.
- A board of governors overseeing operations. General assembly approves budgets and strategies.
- 42 Institutional Members
 - Including Industry, authorities, class, insurance research, universities, ports ...
 - 2 other institutions as personal members

http://nfas.autonomous-ship.org

Test area Trondheimsfjorden

- Seeden

 Normy

 Linke Branch Br
- Established September 30th 2016
 - Industry, university, research
 - Port of Trondheim
 - Norwegian Maritime Administration
 - Norwegian Coastal Administration
- Area covers Trondheimsfjorden
 - Permits
 - Instrumentation and communication
 - Exchange of experience

http://navtar.no/

Some ongoing projects

Yara Birkeland Operation

- Features
- 100-150 TEU, 70 m x 15 m
- Batteries Fully electrical
- Staged implementation
 - Manned after 1 year
 - Remote after 2 year
 - Autonomous after 3 year
- · Operational area
- Herøya-Brevik 7 nm
- Herøya-Larvik 30 nm
- Within Brevik VTS area

7

Autonomous Ship Transport at Trondheimsfjorden (ASTAT)

- Short voyages
- 12-50 TEU
- Inland, fjords/sheltered
- Low cost: Wait in port
- Legs 4-12 hours
- Port cranes
- Automated berthing
- Batteries

Why autonomous ships ?

Why unmanned and autonomous ships?

Less dangerous exposure for crew

Remove bad working conditions

Less damage related costs

Fewer large oil spills

Lower emissions

New ship types

Completely unmanned gives largest benefits!

No accommodation Less power More cargo

No crew No crew related costs

Enables completely new ship concepts

No safety equipment Other approaches to safety

Operational differences between cars and ships

Things move slower

More space, less obstacles

Things are bigger

Advanced technology already in place

What is "autonomous" for a ship?

With, e.g. six levels on each axes

Level	Operator independence	Automation	Complexity
0	Crew at bridge at all times	None: Direct control by human.	Few static obstacles.
1	Periodically unmanned bridge monitored by shore control that can muster crew on ship	Guidance to operator, no automatic control	Many static obstacles.
2	Unmanned ship, continuous shore monitoring and control	Human supervises, automatic and deterministic control using simple set-points	Some movements of obstacles, no restriction on ship manoeuvrability.
3	Periodically unmanned bridge with no shore monitoring, crew on ship mustered by system	Fully automatic and deterministic longer and more complicated control sequences	Some movements of obstacles, some restriction on manoeuvrability.
4	Unmanned with shore monitoring, shore takes control when needed	Constrained autonomy – several, but restricted options selected by ship control system	Many movements, some restrictions on manoeuvrability.
5	Unmanned, no shore monitoring or control	Fully autonomous – no restrictions on decisions by system.	Many movements, significant restrictions on manoeuvrability.

Ship autonomy types expected by NFAS

- 1. Direct control: Minimal automation and decision support
- ✓ 2. Decision support: Decision support and advice to crew on bridge. Crew decides.
- ✓ 3. Automatic bridge: Automated operation, but under continuous supervision by crew.
- **4. Periodically unmanned:** Supervised by shore. Muster crew if necessary.
- **5. Remote control**: Unmanned, continuously monitored and direct control from shore.
- **6. Automatic:** Unmanned under automatic control, supervised by shore.
- **7. Constrained autonomous:** Unmanned, partly autonomous, supervised by shore.
- **8. Fully autonomous:** Unmanned and without supervision.

Some human factor issues for unmanned ships

Conclusions

- Fully autonomous and unmanned ships can be disruptive to shipping.
- Several projects already under way, but still in design phase.
- Autonomous ships are not quite like autonomous cars: Somewhat different approach to autonomy.
- Human factor issues may have more overlap with other sectors, many different aspects.

