

Program

12.00-12:10	Welcome
12:10-12:40	Øystein Haga Skånland/Ministry of Transport and Communications — The National Transport Plan and Technological Advances in the Transport Sector
12:40-13.00	Q&A and coffee break
13:00-13:30	Missy Cummings/HAL – The human in the loop
13:30-14:00	@rnulf Rødseth/SINTEF Ocean - Safe human interaction with autonomous ships in Trondheimsfjorden
14:00-14:15	Coffee break
14:15-14:45	Edmund Førland Brekke/NTNU – World's first Autonomous Passenger and Bicycle ferry
14:45–15:15	Gunnar Jenssen/SINTEF Mobility and Safety – Why are self-driving vehicles getting involved in crashes and what can we do to reduce conflicts with other road users?
15:15-15:45	Coffee break
15:45-16:15	Thomas Porathe/NTNU – The problem is not automation, the problem is communication: autonomy, human factors and safety
16:15-16:45	Vegard Evjen Hovstein/Maritime Robotics
16:45-17:30	Coffee break, guided tour and demonstrations by Maritime Robotics

SAREPTA (2017-2020)

Safety, autonomy, remote control and operations of industrial transport systems

A. Risk identification and risk levels

Maritime Air

Rail Road

- B. Vulnerabilities and threats
- C. Technical, human and operational barriers
- D. Organizational and human factors, and regulatory measures for risk mitigation

() SINTEF

3

SAREPTA

Key objective:

provide necessary knowledge for the development of improved methods for risk assessments and mitigation in transport systems that are autonomous, remotely controlled and/or periodically unmanned.

<u>Goal</u>: contribute to systematizing and expanding the knowledge related to risk level, vulnerabilities, possible barriers and the need for novel, more integrated, regulatory approaches.

WP1: Risk identification and risk levels (Basis for WP2 to WP5)

- **Goal:** Describe safety and security challenges; key topics: accidents/incidents and successful recoveries.
- Results: Document level of accidents; Relevant cases (Literaturestudy, Interviews, workshops); Learning between the modes
- Challenges: Scope and focus

5

WP2: Infrastructure vulnerabilities and threats (Building on WP1 and giving input to WP3)

- Goal: Infrastructure vulnerability and threats, identify need for regulations, standards and central control instances. Organizational forms, the need for national/international standardization and regulation/cooperation, inspection by the authorities,
- Results: Current status, state of the art, Security framework
- Challenges: "Security" is kept secret poor documentation.
 Systematic empirical data, challenge of acceptance and risk mitigation

WP3: Technical, human and operational barriers to mitigate autonomous system risks (Based on WP1, WP2 giving input to WP4 and WP5)

- Goal: assure safety, security and resilience when operating autonomous systems in partly control
 through localized autonomy and central control centres. A theoretical platform will be established,
 supporting the assessment and development of barriers against hazards.
- Results: Methods to be used to assess mitigating technical, human and regulatory measures;
 Methods/framework to be used to guide the building of operational centres, and verify and validate solutions; Report analysing MTO barriers to mitigate autonomous system risks
- Challenges: Industry usability

7

WP4: Organisational and human factors, and regulatory measures for risk mitigation Based on WP1,2 and 3

- Goal: Develop measures for hazard mitigation in a remote control and monitoring centre, taking
 into account the role of the human factor.
- Results:
 - · Methods for assessment (verification and validation) of human factors in remote control and monitoring centers
 - Guidelines and processes for successful implementation of autonomous systems and intermodal perspective
- **Challenges:** Responsibilities when accidents happens the autonomous system or passengers/driver?

WP5 b: Verification and Validation

- **Goal:** Ensure that results are verified and validated. Activities related to: Safety case: (Observe/test: risks, hazards, Check barriers; measures Resilience?)
- Results:
- 1. Case verification on Hazards identification and risk levels
- 2. Case verification to Identify specific risk, threats and vulnerabilities
- 3. Case verification on Technical and operational barriers to mitigate hazards
- 4. Case verification Organizational and regulatory measures for hazard mitigation
- Challenges: Relevant Cases and data?

