FIND OUT WHERE AND HOW YOUR NEXT ACCIDENT MAY HAPPEN

WITH LEARNING FROM NORMAL WORK

Dr Marcin Nazaruk Psychology Applied

www.learningfromnormalwork.com

International Association of Oil & Gas Producers

WHAT IF YOU COULD:

- Find out which activities are likely to result in an accident.
- Get your workers to tell you what is REALLY going on.
- Find and address the causes of accidents before they happen.
- Make pro-active learning part of your culture.

MEET MARCIN

Awards for PRACTICAL implementation of HF / HP:

3

Society of Petroleum Engineers

International Association of Oil & Gas Producers

LEARNING FROM INCIDENTS: IMPORTANT BUT LIMITING

Few learning opportunities

Lagging indicators are not helpful

Focusing on unsafe behaviors is no longer sufficient to further reduce risk

Frustrating repeat accidents

LEARNING FROM NORMAL WORK

- Only a very small percentage of all activities result in an undesired event.
- Does it mean that all other work was executed flawlessly?
- If not, could we learn about the issues and challenges that could, but did not, result in an accident?

THINGS GO WRONG FOR THE VERY SAME **REASONS THAT THINGS GO RIGHT**

6

No Incident

WHAT IS (LEARNING FROM) NORMAL WORK?

'Normal work' is about how people adapt to changing conditions and challenges as part of their job.

For example, using a crane to lift a load. Every time an operator does it, there may be something different about the situation, for example:

- Less time available than planned
- Additional people in the area
- One person being off work
- Correct tools not available, e.g. lifting slings

Adapting to overcome the various challenges is part of what needs to be done. It's 'normal work'.

7

PHYSICAL SOURCES OF HARM SUCH AS:

Electricity (4)

Chemical Exposure

Hot Surfaces

👷 Hazardous Atmosphere

LOCAL CONSTRAINTS, E.G.

Incorrect procedure

Insufficient time available

Incorrect tools for the job

Confusing design

ાત્ર્ય

Insufficient spacing

Unfamiliar situations

ADAPTATIONS AND WORK AROUNDS TO THE CONSTRANTS, E.G.

Developed unique procedure because the official one was incorrect

Fabricated own tools in the workshop as the provided tools were not adequate

CONTROLS

Eliminate the hazard

Substitute for less hazardous

Engineering controls, e.g. guards, automated cut-offs

Context and dynamically changing operational situations that include people, teams and organizations cannot be fully controlled in the engineering sese) therefore corrective actions are optimizations, e.g.

Procedure is aligned with how the task is really done

Correct tools provided

More time provided

Training redesigned to meet the needs

Equipment re-designed to reduce errors

Administrative, e.g. procedures, training, signs

Personal Protective Equipment (PPE)

INDUSTRY EFFORTS

FLIGHT SAFETY FOUNDATION WHITE PAPER

Learning From All Operations: Expanding the Field of Vision to Improve Aviation Safety

JULY 2021

Strengthening synergies between Aviation and Marrin in the area of Human Factors towards achieving more efficient and resilient MODES of transportation.

Towards a Safety Learning Culture for the Shipping Industry

A White Paper

LEADERSHIP ENGAGEMENT FOR LEARNING

- What is getting in a way of completing this task safely and efficiently?
- What makes this job difficult?
- What do you need to be set up for success?
- What do you need to complete this work safely and efficiently?
- What is the advantage of doing it this way?
- Tell me about situations when you need to deviate from procedures / processes to complete the job.

WALK THROUGH TALK THROUGH - EXAMPLE

Preventive Maintenance Lathe Machine	Preventive maintenance to lathe machines has to be perfor for this pr		
Steps (According to the person doing the job)	What might go wrong? (According to the What error traps increase the likelihood of error? What person doing the job) Does this step match reality? Are there steps, which are done that are not included in the procedure?	What error traps increase the likelihood of error? What makes a mistake more likely? What makes the step more difficult to perform? (According to the person doing the job)	Photo
1. "Review Oil, Grease and Refrigerant Liquid Levels, in Hydraulic and Lubrication Unit of Spindle and Magazine, Benches and Table."	The operator may misread the levels, leading to the equipment overheating.	The display does not clearly show what the correct level of oil is. Procedure does not explain what the minimum oil level is.	
2. "Change the Air Filter of the Electrical Cabinet"	The Air Filter may not need to be changed. Potential waste of time as the life time for air filters is longer than one month. Increased cost due to higher number of filters used.	The procedure requires to change the filter. The real instruction should be "Change the filter <u>if you find X, Y, Z</u> <u>characteristics.</u> "	
3. "Check machine air pressure is 85 PSI"	Too much pressure may lead to equipment damage.	The pressure units on the machine (MP) are different to pressure units used in the procedure (PSI). This may confuse the operators.	
4. "Level oil lubrication guides. Use DTE24 oil or equivalent."	Equipment damage due to incorrect lubrication	The instruction is not clear. Specifically, what to check and how much lubricant is correct for the equipment. The container for the lubricant has white marks. However, it's not clear if these indicate the maximum or minimum level of lubricant required.	
5. "Check load of Waste of time if the operator tries to find this Instruction includes steps for old equipment. This component is hydraulic accumulator"	Waste of time if the operator tries to find this accumulator. If something is not obvious next time while performing another task, operator may presume that procedure is incorrect, and skip the step.	linstruction includes steps for old equipment. This component is no longer part of the equipment, and need to be updated.	
 Update the procedure Upgrade the oil and lu The maintenance pers are clear and up to do Standardize measure 	based on the specification for the new equipment bricant containers to indicate minimum / maximum levels sonnel to conduct a WTTT with the equipment operators and th ite ments system and displays to they can indicate the correct lev	e maintenance supervisor to ensure that he instructions vel of liquid and pressure.	

LEARNING TEAM - SIMPLE EXAMPLE

Work-as-Imagined	Works-as-Done	Organizational Factors	Corrective Action
Lifting a 7-ton spool with a standard 10-ton overhead crane	Wired crane control restricting operator visibility and requiring a spotter directing movement	Design of crane, crane controls and the lifting process	Installed a remote control, directional indicators and removed spotter from lift zone
Potential severity of the undesired outcome BEFORE learning team	Likelihood of the undesired outcome BEFORE learning team	Potential severity of the undesired outcome AFTER learning team	Likelihood of the undesired outcome AFTER learning team
Life changing injury	Medium	Potential for injury eliminated	

37% reduction in injuries

THE PROBLEM

Risk related to complex lifting

INTERDEPENDENT TEAMS

Operators, Supervisors, Engineers, Operations, Logistics

OVER 30 ERROR TRAPS IN 5 CATEGORIES

- Process and Communication, e.g. Moving requests plans not available
- Information availability and accessibility, e.g. Missing information about load
- Tools & housekeeping, e.g. The bay access are often blocked by equipment
- Information/ training, e.g. Limited training after introducing a new tool
- **Technical and procedures,** e.g. Discrepancy between new drawing/ project and old work instruction

SOLUTION

• Over 30 error traps and process gaps addressed

REDUCED RISK

	Incident Investigations	Lear	
Training Time	8-40h	2-8h	
Investigation time	20-100s hours	4-20 hours	
How the conversations feel	Tense. People may be afraid of being honest	Relaxed. Pe discuss how	
Typical findings	Failure of something, e.g., failed to follow procedure, etc.	Things that of work diffi is out of dat	
Planning	Unplanned	Planned	
Costs	Very expensive with many indirect and hidden costs. All combined costs of a life-changing injury in the O&G may reach 100s of thousands into millions of dollars.	Ultra cheap accidents a indirect cos activity that reach hund This is c. 0.	

ning From Normal Work

eople are keen to w to improve things

make the execution icult, e.g., the procedure te and not available

compared to the costs of nd investigation. No hidden, ts. The cost of reviewing an includes people's time may reds/thousands of dollars. .002% of the cost of an accident!

WHERE TO FOCUS?

1. Existing trends 2. Risk matrix 3. Project plan data 4. Critical Task Screening 5. Talk to people

WHAT DO YOU NEED?

HOW TO IMPLEMENT IT?

Integrate and scale up

- Leadership visits
- Risk

assessment

- BBS
- Procedure Reviews

WHAT'S INSIDE THE TRAINING?

1 Chapter 1 - Performance Variability

2 Chapter 2 - Why People Don't Follow the Rules and Use Workarounds

3 Chapter 3 - The Gap Between Plans and Reality and How Teams Depend on Each Other

4 Chapter 4 - Your Beliefs Determine What You See

5 Chapter 5 - Does Holding People Accountable Lead to More Incidents?

6 Chapter 6 - Do Your Questions Shut People Down?

7 Chapter 7 - Practical Tools

8 Chapter 8 - How to Apply and Scale it Up?

Online

FIND OUT WHERE AND HOW YOUR NEXT ACCIDENT MAY HAPPEN WITH A LEARNING FROM NORMAL WORK FRAMEWORK

Leverage modern safety science, digital technology & proven Human Performance tools to achieve a breakthrough in safety performance and safety culture.

www.learningfromnormalwork.com

www.learningfromnormalwork.com

