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Preface 
 
Artificial intelligence (AI) is being proposed as a force multiplier for the military. AI brings its 
own unique challenges, however, which must be balanced with effective human oversight, 
particularly in operations with high-consequence outcomes. AI therefore needs to work 
effectively as a part of a distributed team. This report addresses the state-of-the-art in human-AI 
teaming and establishes a framework for future research to meet the goal of effective use of AI 
for future defense operations.  
 
I wish to express my deep appreciation to the members of the committee for their diligent and 
dedicated contributions. The committee’s expertise and knowledge were indispensable 
throughout our deliberations and the writing of the report. Their efforts, which often required 
working nights and weekends, are particularly notable given the incredibly challenging year. I 
cannot thank them enough. On behalf of the entire committee, I also wish to thank the National 
Academies of Sciences, Engineering, and Medicine staff for their outstanding support and 
guidance. I am also deeply appreciative to Heather Kreidler for her writing and fact checking. 
The report benefited deeply from the editing skills of Susan Debad. Additionally, I want to 
express our sincere gratitude to everyone who contributed their time, expertise, and experiences 
to our committee, especially all the workshop presenters and attendees. The presentations, 
resources, and insights contributed immensely to our deliberations. Finally, I wish to thank the 
AFRL for their partnership and forthright participation throughout this process. I offer this report 
in the spirit of that partnership and believe that the research areas discussed in the report will be 
useful to the sponsor as they move forward.  
 

Mica Endsley, Chair 
Committee on Human-System Integration Research 

Topics for the 711th Human Performance Wing 
of the Air Force Research Laboratory 
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Summary 

The military is investing in artificial intelligence (AI) as a tool that can potentially play a critical role 
in supporting command and control for future multi-domain operations (MDO) by boosting the processing 
rate of a wide variety of data inputs, automating mission planning, and creating faster predictive targeting 
and systems maintenance. Achieving this goal requires that the AI system be both reliable and robust across 
a wide variety of potential future missions, and that it works well as a teammate with humans. This report 
examines the factors that are relevant to the design and implementation of AI systems with respect to human 
operations, and it recommends needed research for achieving successful performance across the human-AI 
team.  

Although AI has many potential benefits, it has also been shown to suffer from a number of challenges 
for successful performance in complex, real-world environments such as military operations, including 
brittleness, perceptual limitations, hidden biases, and lack of a model of causation important for 
understanding and predicting future events. These limitations mean that, for the foreseeable future, AI will 
remain inadequate for operating on its own in many complex and novel situations for the foreseeable future, 
and that humans will need to carefully manage AI systems to achieve their desired utility.  

Research over the past 30 years has demonstrated, however, that people are significantly challenged 
in performing as successful monitors of complex automation, including AI systems. People can suffer from 
poor understanding of what the systems are doing, high workload when trying to interact with AI systems, 
poor situation awareness and performance deficits when intervention is needed, biases in decision making 
based on system inputs, and degradation of manual skills. These numerous challenges will continue to 
create problems in terms of human performance, even with more capable AI-based automation.  

Therefore, effective human-AI teams capable of taking advantage of the unique abilities of both 
humans and AI, while overcoming the known challenges and limitations of each team member, need to be 
developed. An effective human-AI team ultimately augments human capabilities and raises performance 
beyond that of either entity. To this end, the committee has developed an interrelated set of research 
objectives that are presented to focus around the development of effective human-AI teams, based on 
improvements in models and metrics for human-AI teams (Chapter 2), team processes (Chapter 3), situation 
awareness (Chapter 4), AI transparency and explainability (Chapter 5), human-AI interaction approaches 
(Chapter 6), trust (Chapter 7), reduction of human and AI bias (Chapter 8), and training (Chapter 9), 
supported by a foundation of human-systems integration (HSI) processes (Chapter 10). The report ends 
with a concluding chapter summarizing human-AI teaming research objectives aligned along near-, mid-, 
and far-term objectives. Each chapter has a summary of research objectives that have been developed by 
the committee for the sponsor. 

HUMAN AI TEAM MODELS 

The committee finds that there is significant value in considering the human and AI as a team. This 
team construct fosters a recognition of the need to consider the interrelated roles of each team member, and 
it places emphasis on the value of team interactions, including communication and coordination, for 
boosting their combined performance. In such team arrangements, the committee believes that, in general, 
the human should have authority over the AI system, for both ethical and practical reasons. Improved 
computational models of human-AI teams are called for that consider the interrelated, dynamically 
evolving, distributed, and adaptive collaborative tasks and conditions that are also needed for networked 
command and control systems for MDO, and that are predictive within the design trade space. Improved 
metrics for human-AI teaming are needed that consider the team's ability to manage interdependencies and 
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dynamic role assignments, that reduce uncertainty, and that improve the ability of the AI system to deliver 
capabilities that are in line with expectations of warfighters.  

While it is assumed that human-AI teams will be more effective than either humans or AI systems 
operating alone, in the committee’s judgment this will not be the case unless humans can: (1) understand 
and predict the behaviors of the AI system (see Chapters 4 and 5); (2) develop appropriate trust relationships 
with an AI system (see Chapter 7); (3) make accurate decisions based on input from the AI system (see 
Chapter 8); and (4) exert control over the system in a timely and appropriate manner (see Chapter 6). 

HUMAN-AI TEAM PROCESSES 

Supporting humans and AI systems as teammates relies on a carefully designed system with the 
capability for both taskwork and teamwork. Along this line, research is needed to improve team 
effectiveness in long-term, distributed, and agile human-AI teams through improved team assembly, goal 
alignment, communication, coordination, social intelligence, and the development of a new human-AI 
language (see Chapter 3). This research can leverage the large body of existing work on human-human 
teaming, but the committee recognizes that new research is needed to better understand and support 
effective team processes between humans and AI systems. In addition, the committee believes that research 
should examine the potential for an AI system to boost team performance by serving as a team coordinator, 
orchestrator, or human-resource manager.  

SITUATION AWARENESS 

It is widely recognized that human situation awareness (SA) is critical for effective MDO performance, 
including for the oversight of AI systems. Methodologies for supporting individual and team SA in 
command and control operations need to be extended to MDO, and methods for using AI to support 
information integration, prioritization, and routing across the joint battle space are needed, as well as for 
improving resilience to adversarial attacks on SA. Methods for improving human SA of AI systems need 
to be developed that consider diverse types of applications, timescales of operations, and the changing 
capabilities associated with machine learning (ML)-based AI systems (see Chapter 4). In addition, research 
directed at creating shared SA within the human-AI team deserves attention. The degree to which AI 
systems need to have both self-awareness and awareness of their human teammates needs to be explored, 
to determine the benefit for overall team performance. Finally, future AI systems will need to possess 
integrated situation models to appropriately understand the current situation and to project future situations 
for decision making. AI models of the dynamic task environment will be needed that can work with humans 
to align or deconflict goals and to synchronize situation models, decisions, function allocations, task 
prioritizations, and plans to achieve coordinated and approved actions.  

AI TRANSPARENCY AND EXPLAINABILITY 

Improved AI system transparency and explainability (see Chapter 5) are key to achieving improved 
human SA, as well as trust. Real-time transparency is critical for supporting understanding and 
predictability of AI systems and has been found to significantly compensate for out-of-the-loop 
performance deficits. Research is needed to better define the information requirements and methods for 
achieving transparency of ML-based AI systems, as well as to define when such information should be 
provided to meet SA needs without overloading the human. Improved visualization of explanations from 
ML-based AI systems needs further exploration, as well as research on the value of machine personae. 
Further, the relationship between AI explainability and trust would benefit from further research, to inform 
improved, multi-factor models of how explanations can foster trust and trust-influenced decisions. Effective 
mechanisms to adapt explanations to receivers’ needs, prior knowledge and assumptions, and cognitive and 
emotional states need to be developed. The committee also suggests that research be directed at determining 
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whether explanations of human reasoning could likewise improve AI system and human-AI team 
performance.  

HUMAN-AI TEAM INTERACTION 

Interaction mechanisms and strategies within the human-AI team are critical to team effectiveness, 
including the ability to support flexible assignments of levels of automation (LOAs) across functions over 
time. Research is needed to determine improved methods for supporting collaboration between humans and 
AI systems in shared functions, to support human operators working with AI systems at multiple LOAs, 
and to determine methods for maintaining or regaining SA when working with AI systems at high LOAs 
(i.e., on-the-loop control). Research is also needed to determine new requirements to support dynamic 
functional assignments across human-AI teams, and to determine the best methods for supporting dynamic 
transitions in LOAs over time, including when such transitions should occur, who should activate them, 
and how they should occur, to maintain optimal human-AI team performance. The committee suggests that 
research also be conducted on Playbook control methodologies (defined in Chapter 6), extending it to MDO 
tasks and human-AI teaming applications. Finally, research directed at a better understanding and prediction 
of emergent human-AI interactions, and on a better understanding of the effects of interaction design 
decisions on skill retention, training requirements, job satisfaction, and overall human-AI team resilience 
would be beneficial. 

TRUST 

Trust in AI is recognized as a foundational factor associated with use of AI systems. It would benefit 
future research to better document the decision context and goals involved in the teaming environment 
(detailed in Chapter 7), to advance understanding of how broader sociotechnical factors affect trust in 
human-AI teams. Interaction structures that extend beyond supervisory control arrangements would also 
benefit from further study, particularly to understand the effect of AI directability on the trust relationship. 
The team lens is useful here for identifying novel interaction structures with AI teammates. Improved 
measures of trust are needed that draw on the importance of cooperation, and that separate the concept of 
distrust from trust. Finally, dynamic models of trust are needed that capture how trust evolves and affects 
performance outcomes in various human-AI team contexts. This research would do well to examine trust-
enabled outcomes that emerge from dyadic team interactions and extend that work into how trust evolves 
in larger teams and multi-echelon networks.  

BIAS 

The potential for bias in AI systems, often hidden, can be introduced through the development of its 
algorithms as well as through systemic biases in training sets, among other factors (see Chapter 8). Further, 
humans can suffer from several well-known decision biases. Of particular import, human decision making 
can be directly affected by the accuracy of the AI system, creating a human-AI team bias; therefore, humans 
cannot be viewed as independent adjudicators of AI recommendations. Research is needed to better 
understand the interdependencies between human and AI decision-making biases, how these evolve over 
time, and methods for detecting and preventing bias with ML-based AI. Research is also needed to detect 
and prevent potential adversarial attacks that may attempt to take advantage of these biases.  

TRAINING 

Training of the human-AI team will be needed to develop the appropriate team constructs and skills 
necessary for effective performance (see Chapter 9). Directed research is needed to determine what, when, 
why, and how to best train human-AI teams, taking into consideration various team compositions and sizes. 
Existing training methodologies can be explored to see if they can be adapted to human-AI teaming. In 
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addition, training may be needed to better calibrate human expectations of AI teammates and to foster 
appropriate levels of trust. Specific platforms will be necessary to develop and test human-AI teamwork 
procedures.  

HSI PROCESSES AND MEASURES 

Finally, achieving the successful development of an AI system that can function as a good teammate 
will require advances in HSI processes and measures (see Chapter 10). Good HSI practice will be key to 
the design, development, and testing of new AI systems, particularity with respect to system development 
based on agile or DevOps practices. New HSI design and testing methods for effective human-AI teams 
will also be needed, including an improved ability to determine requirements for human-AI teams, 
particularly those that involve ML (see Chapter 10). Improved approaches for multidisciplinary AI 
development teams are needed that include human factors engineers, sociotechnical researchers, systems 
engineers, and computer scientists. New teams, methods, and tools centered around AI lifecycle testing and 
auditability, as well as AI cyber vulnerability, will also be needed. Methods for testing and verification of 
evolving AI systems need to be developed to detect AI system blind spots and edge cases and to consider 
brittleness. New human-AI testbeds to support research and development activities by these new teams will 
also be important. Finally, improved metrics for human-AI teaming may be needed, specifically regarding 
matters of trust, mental models, and explanation quality.  

CONCLUSION 

In total, 57 research objectives are presented to address the many challenges for effective human-AI 
teaming. These research objectives are divided into near term (1–5 years), mid-term (6–10 years), and far 
term (10–15 years) priorities. This integrated set of research objectives will achieve significant advances in 
human-AI teaming competence. These objectives are fundamental prerequisites to the safe introduction of 
AI into critical operations such as MDO, and they create a framework for better understanding and 
supporting the effective use of AI systems. 
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1 

Introduction 

The military is moving toward multi-domain operations (MDO), which involve dynamic and 
distributed combinations of actions across the traditionally separate air, land, maritime, space, and 
cyberspace domains, as well as the information domain and the electromagnetic spectrum domain, to 
achieve synergistic and combined effects with improved mission outcomes. The goal of MDO command 
and control (MDC2), also called joint all-domain command and control (JADC2), is to achieve operational 
and informational advantages by “connecting distributed sensors, shooters, and data from all domains to 
joint forces, enabling coordinated exercise of authority to integrate planning and synchronize convergence 
in time, space, and purpose” (USAF, 2020, p. 6). MDO is representative of a wide body of research that 
considers not only the behaviors and performance of teams, but also interrelated teams of teams (or multi-
team systems) (Marks et al., 2005; Schraagen et al., 2021; Zaccaro and DeChurch, 2011). 

A key facet of MDO is the need to accelerate and increase the military’s ability to develop timely, 
decision-quality information, integrated across domains, which includes the ability to rapidly understand 
relationships between information from different domains. The development of rapid, cross-domain 
situation awareness (SA) is critical to effective planning and decision making, to optimize the use of 
available military resources. SA is also important for monitoring across operations (e.g., feedback on 
effects, synchronization, or tempo), which is needed for mission control and dynamic replanning (see 
NASEM 2018, 2021a, and 2021b for more information on MDC2). 

Artificial intelligence (AI) is seen as a tool that can potentially play a critical role in supporting the 
military's objectives for MDC2. AI can significantly boost the ability to process the massively increasing 
volume of intelligence, surveillance, and reconnaissance data generated each year (Cook, 2021), automate 
the mission-planning process, and create faster predictive targeting and systems maintenance (Hill, 2021). 
Achieving this goal, however, requires that the AI systems be highly reliable and robust within the broad 
range of missions and conditions in which they might be employed, and that these systems operate 
seamlessly within a much larger and more complex set of military systems and human operations (USAF, 
2015).  

The goal of this report is to examine the factors relevant to the design and implementation of AI 
systems with respect to their operations with humans, and to recommend necessary research for achieving 
successful performance across the joint human-AI team, particularly with regard to MDO, although many 
research objectives apply to human-AI teaming across various military and non-military contexts.  

STUDY BACKGROUND AND CHARGE TO THE COMMITTEE 

The Air Force Research Laboratory (AFRL), 711th Human Performance Wing, sought the assistance 
of the National Academies of Sciences, Engineering, and Medicine to examine the requirements for 
appropriate use of AI in future operations. The AFRL was particularly concerned about the state of the 
research base, to support the design of future systems by promoting effective human performance when AI 
is a part of the system. In considering the integration of AI into future operations, the AFRL takes a systems 
approach, which recognizes that people, technology, and operational systems such as policies, procedures, 
structures, and informational flows can affect each other and affect overall mission performance. Therefore, 
determining the methods and infrastructure that will allow humans to effectively and efficiently interact 
with AI is fundamental to the USAF’s goals. The committee’s overall task was to examine the state of 
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research on human-AI teaming and to determine gaps and future research priorities. The committee’s full 
statement of task is shown in Box 1.1.  

BOX 1.1 
Statement of Task 

The National Academies of Sciences, Engineering, and Medicine will convene an ad hoc 
committee to recommend promising research opportunities and design considerations to inform the 2021 
strategic research agenda of the 711th Human Performance Wing (711 HPW) of the Air Force Research 
Laboratory (AFRL). The committee will explore critical human-systems integration issues for designing 
autonomous agents having greater transparency and intelligibility to support effective joint human-
machine decision making and performance in multi-domain command and control operations. The 
committee will convene a public workshop as the primary source of information for its work. 

The workshop, developed with input related to current AFRL 711th Human Performance Wing 
research priority areas, will examine the understanding of effective team performance in human 
interaction with artificial intelligence (AI) in the context of warfighter-centered designs and systems.  

With attention to multi-domain command and control operations, the committee will: 

- Identify key human-systems integration design considerations, methods, approaches, and
associated research aimed at warfighter systems that incorporate human-AI teaming;

- Identify gaps in knowledge on effective human-machine teaming necessary to achieve future Air
Force mission capability; and

- Identify promising human-systems integration and human factors research opportunities that
would accelerate mission capability development.

With respect to the identification of research opportunities, the areas of human robot interaction
and manned-unmanned aircraft teaming will not be examined. Additionally, the committee’s primary 
focus will be the human effectiveness component of human-AI teaming rather than the computer science 
and software dimensions. 

To address this charge, an independent committee with a broad range of expertise was appointed, 
including individuals with backgrounds in human factors, cognitive engineering, human-computer 
interaction, industrial-organizational psychology, and AI, as well as experts in military operations related 
to human-AI teaming. Brief biographies of the 11 committee members are presented in Appendix A. 

COMMITTEE APPROACH 

The committee was to complete its work as a “fast-track” consensus committee, with a formal report 
of its findings provided within nine months of its inception in May of 2021. Its process was to: 

• Review the available research literature on human-automation integration, AI performance and
limitations, human teaming, and human-AI interaction to include models and approaches, AI
transparency and explainability, shared SA and mental models, trust and bias, communication and
collaboration, measures and metrics, and human-systems integration processes for addressing
human-AI teaming;

• Host a virtual workshop, Human-AI Teaming for Warfighter-Centered Design, July 28–29, 2021,
to gather data on relevant research efforts;

• Conduct a series of virtual online meetings to support committee deliberations and discussions;
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• Identify major findings, research gaps, and research needs, based on the workshop and research
literature; and

• Prioritize research needs for advancing the state of knowledge on human-AI teaming.

AUTOMATION AND AI 

The work of the committee was largely influenced by the extant research base on human-automation 
interaction developed over the past 40 years, in addition to research on human interaction with autonomous 
and semi-autonomous systems, as well as AI in its many forms.  

Automation, as used in this report, is defined as a technology that performs tasks independently, 
without continuous input from an operator (Groover, 2020). Automation can be fixed (mechanical) or 
programmable (based on defined rules and feedback loops), either via a static set of software commands or 
via flexible, rapid customization by a human operator. Tasks may be fully automated (autonomous) or semi-
automated, requiring human oversight and control for portions of the task. Automation is also defined as 
“the execution by a machine agent of a function that was previously carried out by a human. What is 
considered automation will, therefore, change with time” (Parasuraman and Riley, 1997, p. 231). 

Autonomous systems have a set of intelligence-based capabilities that can respond to situations that 
were not explicitly programmed or were not anticipated in the design (i.e., systems that can generate 
decision-based responses) (USAF, 2013). Autonomous systems have a certain amount of self-government 
and self-directed behavior, and they can serve as human proxies for decisions (USAF, 2015). Systems may 
be fully autonomous or partially autonomous. Partially autonomous systems require human actions or 
inputs for portions of the task.  

AI seeks to provide intellectual processes similar to those of humans, including the “ability to 
reason, discover meaning, generalize, or learn from past experience” (Copeland, 2021). AI systems may be 
applied to parts of a task (e.g., perception and categorization, natural language understanding, problem 
solving, reasoning, or system control), or to a combination of task-related actions. AI software approaches 
may involve symbolic approaches (e.g., rule-based  or case-based reasoning), often in the form of decision-
support systems; or AI software may apply other advanced algorithms, such as Bayesian belief-nets, fuzzy 
systems, and connectionist or machine learning (ML)-based approaches (e.g., logistic regression, neural 
networks, deep learning, or decision trees). AI software may also incorporate hybrid architectures that 
include more than one algorithmic approach.  

In the body of this report, the term AI is used to describe a form of highly capable automation directed 
at highly perceptual and cognitive tasks. AI potentially improves upon previous forms of automation in its 
ability to sense and interpret situations, adapt to changes in conditions and the environment, prioritize and 
optimize based on changes in goals, and refine its abilities through learning. These abilities of AI are often 
only aspirational, however, and today, many systems built with AI software fall short of these capabilities. 
Although many autonomous or semi-autonomous systems may employ AI, in other cases AI may merely 
enhance or facilitate operations that are conducted by humans. As such, many of the committee's findings 
are based on the research on human-automation interaction and human-autonomy interaction, with 
additional research objectives made where further extensions are needed to deal with unique aspects of AI 
systems (e.g., challenges associated with ML-based AI).  

It should be noted that AI is currently being used for many different types of functions—from object 
recognition to decision making to automated control loop execution—and may have different levels of 
reliability and capabilities over time. Further, in many cases, AI software may not be stand-alone, but may 
be embedded within a more complex system with which humans interact. While recognizing these 
differences, throughout this report the committee will refer to AI software or systems with respect to the 
features and factors that will be important for its successful integration with humans as part of a larger 
sociotechnical system. 

AI software is thought to be potentially beneficial for military operations due to AI’s ability to: (1) 
execute tasks very quickly, advantaging time-critical mission applications; (2) enhance precision-strike 
capabilities by automating the processing of intelligence, surveillance and reconnaissance data, target 
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recognition, tracking, selection, and engagement; (3) improve coordination of forces across a distributed 
network; (4) improve the ability to operate in anti-access/area denial areas where human control 
opportunities may be limited; (5) increase persistence of operations over time; (6) increase the speed and 
accuracy of SA and decision making, thus improving lethality and deterrence; and (7) provide enhanced 
endurance over time (Konaev et al., 2020). These gains will not be possible, however, unless the military 
pays careful attention to the creation of robust AI applications that emphasize safety and security and are 
well integrated with the warfighter (Konaev et al., 2020).  

LIMITS OF AI 

Although there is a tendency among many to view AI as highly capable in comparison to humans 
(National Security Commission on Artificial Intelligence, 2021), in reality, AI software is subject to a 
number of performance limitations. This list is not meant to be exhaustive, and likely will change over time, 
but it points out many of the larger challenges associated with current AI software approaches. 

• Brittleness: AI will only be capable of performing well in situations that are covered by its
programming or its training data (Woods, 2016). When new classes of situations are encountered
that require behaviors different from what the AI system has previously learned, it may perform
poorly by over-generalizing from previous training. Even if an AI system can learn in real time,
such training requires time and repeated experiences, as well as meaningful feedback on decision
results, potentially causing performance deficits during the learning cycle.

• Perceptual limitations: Though improvements have been made, many AI algorithms continue to
struggle with reliable and accurate object recognition in “noisy” environments, as well as with
natural language processing (Akhtar and Mian, 2018; Alcorn et al., 2019; Yadav, Patel, and Shah,
2021). The use of AI for higher-order cognitive processes can be undermined if information inputs
are not registered correctly.

• Hidden biases: AI software may incorporate many hidden biases that can result from being created
using a limited set of training data, or from biases within that data itself (Ferrer et al., 2021;
Howard and Borenstein, 2018). Because ML-based AI software is often opaque (i.e., the features
and logic used are not easily subject to human inspection), these biases may go undetected.

• No model of causation: ML-based AI is based on simple pattern recognition; the underlying system
has no causal mode (Pearl and Mackenzie, 2018). Because AI cannot use reason to understand
cause and effect, it cannot predict future events, simulate the effects of potential actions, reflect on
past actions, or learn when to generalize to new situations. Causality has been highlighted as a
major research challenge for AI systems (Littman et al., 2021).

In the committee’s judgment, although AI software is capable of rapidly processing large volumes of 
data for known types of events or situations, the limitations of this software mean that, for the foreseeable 
future, AI will remain inadequate for recognizing and operating in most novel situations. The performance 
of an AI system could be suboptimal due to unknown biases or limitations in its training data, or the 
presence of challenges for which no clear "correct response" is known (e.g., cyber operations in which the 
outcome of an action has not been previously observed). Use of AI in the military context also introduces 
the particular challenge posed by adversaries who might try to accentuate and exploit the vulnerabilities of 
AI. 

EFFECT OF AI ON HUMAN PERFORMANCE 

Automation is known to create challenges for people who must interact with or oversee its 
performance, and these challenges are also applicable to AI systems.  
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• Automation confusion: “Poor operator understanding of system functioning is a common problem
with automation, leading to inaccurate expectations of system behavior and inappropriate
interactions with the automation” (Endsley, 2019, p. 3; see also Sarter and Woods, 1994; Wiener
and Curry, 1980). “This is largely due to the fact that automation is inherently complex, and its
operations are often not fully understood even by [people] with extensive experience using it”
(Endsley, 2019, p. 3; see also Federal Aviation Administration Human Factors Team, 1996;
McClumpha and James, 1994). Developing a correct mental model of how an automation works
is a major challenge. Furthermore, as people transition from directly performing a task to
interacting with automation to accomplish that task, cognitive workload often increases (Hancock
and Verwey, 1997; Warm, Dember, and Hancock, 1996; Wiener, 1985).

• Irony of automation: When automation is working correctly, people can easily become bored or
occupied with other tasks and fail to attend well to automation performance. Periodically,
however, high workload spikes will occur, overstretching human performance (Bainbridge, 1983).

• Poor SA and out-of-the-loop performance degradation: People working with automation can
become out-of-the-loop, meaning slower to identify a problem with system performance and
slower to understand a detected problem (Moray, 1986; Wiener and Curry, 1980; Young, 1969).
The out-of-the-loop problem results from lower SA (both of the automation and of the state of the
system and environment) when people oversee automated systems compared to when they perform
tasks manually (Endsley and Kiris, 1995). The out-of-the-loop problem can result in catastrophic
consequences in novel or unexpected situations (Sebok and Wickens, 2017; Wickens, 1995).

• Human decision biasing: Research has shown that when the recommendations of an automated
decision-support system are correct, the automation can improve human performance; however
when an automated system’s recommendations are incorrect, people overseeing the system are
more likely to make the same error (Layton, Smith, and McCoy, 1994; Olson and Sarter, 1999;
Yeh, Wickens, and Seagull, 1999). That is, human decision making is not independent, but can be
biased by errors made by automation (Endsley and Jones, 2012).

• Degradation of manual skills: To effectively oversee automation, people need to remain highly
skilled at performing tasks manually, including understanding the cues important for decision
making. However, these skills can atrophy if they are not used when tasks become automated
(Casner et al., 2014; Young, Fanjoy, and Suckow, 2006). Further, people who are new to tasks
may be unable to form the necessary skill sets if they only oversee automation. This loss of skills
will be particularly detrimental if computer systems are compromised by a cyber attack (Ackerman
and Stavridis, 2021; Hallaq et al., 2017), or if a rapidly changing adversarial situation is
encountered for which the automation is not suited (Nelson, Biggio, and Laskov, 2011).

Because AI systems are incapable of adequate performance in novel situations, it will be necessary for 
substantial portions of certain tasks to be performed by humans, for the foreseeable future. However, the 
many challenges for human interactions with automated systems will continue, even with more capable 
automation based on AI. Therefore, in the committee’s judgment, the design and development of effective 
human-AI teams that can take advantage of the unique capabilities of both people and AI while overcoming 
the known challenges and limitations of both is an important future research focus.  

REPORT STRUCTURE AND SUMMARY 

In this report, the committee will examine the role of AI in military operations and MDC2 with respect 
to that of human decision makers. The report is divided into 11 interrelated chapters, as illustrated in Figure 
1-1. The current chapter provides an overview of the problem and the charge to the committee, as described 
in the statement of task (Box 1-1). Chapter 2 examines teaming strategies and roles for humans and AI, and 
the effects of these approaches for overall mission performance. Chapter 3 discusses the requirements and 
processes for effective human-AI teamwork. Chapter 4 focuses on supporting human SA and shared SA in 
human-AI teams, followed by Chapter 5, which discusses requirements for AI display transparency and 
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explainability. Chapter 6 addresses human-AI interaction design. Chapter 7 focuses on human trust in AI 
in team contexts. Chapter 8 examines the interactions between AI biases and inaccuracies and human 
decision biases, as well as methods for addressing them. Chapter 9 focuses on issues related to training 
human-AI teams. Chapter 10 addresses the overall human-systems integration development and testing 
process, including measures and metrics of human-AI collaboration. Chapter 11 provides a summary of the 
committee's conclusions and a prioritized list of research objectives. As illustrated in Figure 1-1, however, 
these topics are highly interrelated, and so the committee's research objectives are best viewed within that 
light.  

Appendix A contains the committee members’ biographies. The agendas and speakers from the data-
gathering workshops and open meetings held to fulfill the statement of task are presented in Appendix B. 
Appendix C provides definitions of the technical terms used in this report.  

FIGURE 1-1 Topics contributing to effective human-AI teaming.  
SOURCE: Based on the human-autonomy system oversight model, Endsley, 2017. 

Throughout the report, the discussion of human-AI teams is pertinent to not only single human-AI 
teams, but also to multi-team systems that may include AI in various places, at various times, and acting in 
a variety of roles. It should be noted that many of the research needs discussed in this report that are relevant 
to human-AI teaming apply to many contexts as well as MDO. Specific concerns for MDO are also 
discussed throughout the report. 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

11 
PREPUBLICATION COPY – Uncorrected Proofs 

2 

Human-AI Teaming Methods and Models 

There is a rich history of research on human-human teams and human-automation teams across 
military and civilian domains, including healthcare, manufacturing, process control, emergency response, 
engineering, and design. Across these and other domains, teams are recognized for the ability to coordinate 
and perform multiple roles beyond the skills or capabilities of a single individual (Salas, Cooke, and Rosen, 
2008; Tsifetakis and Kontogiannis, 2019). This chapter reviews the findings of team research, suggests 
implications for human-AI teaming, and addresses several associated challenges. Although there are also 
important ethical considerations around the development of AI systems (Defense Innovation Board, 2019; 
Flathmann, et al., 2021; Hagendorff, 2020; Montréal Responsible AI Declaration Steering Committee, 
2018), this report will primarily focus on the development of effective AI systems for supporting human 
control and interaction to achieve mission goals.  

TEAMS 

Field-based studies of the long-term dynamics of military teams and operations, as well as team 
development and training, have been performed since the 1950s and 1960s (Goodwin, Blacksmith, and 
Coats, 2018; McGrath, 1984; Morgan, Salas, and Glickman, 1993). Nuclear submarine crews, Antarctic 
research deployments, and undersea research facilities have also been studied (Driskell, Salas, and Driskell, 
2018; Gunderson, 1973; Radloff and Helmreich, 1968). Broader examinations of team processes and 
dynamics, such as McGrath (1984) and Sundstrom, DeMeuse, and Futrell (1990), describe military teams 
as a particular application of action/performance teams, with the distinguishing characteristics of skilled 
specialist roles, focused performance events, and improvisation due to the dynamics and unpredictable 
nature of tasks. In a review of team-studies literature, Salas, Bowers, and Cannon-Bowers (1995) define 
teams as including two or more individuals with common goals, role assignments, and interdependence. 
Additional team characteristics include decision making within a task context, specialized task-related 
knowledge and skills, and performance within the task-context constraints of time pressure, workload, and 
other conditions. The concept of mental models is an important element of task-related knowledge. Mental 
models refer to a team member's organized information and perception of current states, situational 
dynamics, and contextual cues. Individual mental models allow for anticipation and prediction of future 
task conditions. Mental models that are shared among team members allow team member's to anticipate 
and predict the needs and processes of other team members that are important for supporting mutual 
coordination (Goodwin, Blacksmith, and Coats, 2018). The shared mental models of team members often 
strongly affect performance in terms of understanding each other’s roles and predicted behaviors. The way 
team members are trained and aided to become effectively performing teams is of particular importance, 
and it is an area where AI has great potential (see Chapter 9).  

Teams are created to perform a variety of tasks that require the coordination of multiple interdependent 
individuals (Cooke et al., 2007), and this definition does not require all team members to be human (see 
Chapter 3). Further, the performance of a team is not decomposable to, or an aggregation of, individual 
performances. This description emphasizes the interdependence of team members (Salas, Bowers, and 
Cannon-Bowers, 1995; Tsifetakis and Kontogiannis, 2019). 
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Task demands and team composition often vary over time. Current and future human-AI teaming 
military tasks will similarly be characterized primarily by their dynamic nature. The specific types of tasks 
and activities that a team performs must be accompanied by the component elements of a team, such as 
interdependent roles and expectations, support from other team members, common understandings, 
effective interactions, and mutual trust in others’ capabilities and performance (Cooke, 2018). 

Relevant team characteristics include dimensions of team membership and team configurations (e.g., 
human-human, human-non-human, human-AI, or combinations thereof), sources of information and 
instruction, superordinate goals and priorities, and interdependence of teammate goals, as well as factors 
such as team cohesion, communication, and coordination (see Chapter 3). Further, teammates also perform 
their roles with a certain amount of operational independence or autonomy. When used in this sense, 
autonomy is not synonymous with AI; it refers to a dynamic functional state. The degree to which a human 
or AI system is autonomous is an operational question of independent function, addressing two 
performance-related queries: autonomy from whom, and autonomy to do what (Caldwell and Onken, 2011). 
In other words, a human who is ordered to perform an action only upon receiving an order to do so is acting 
with low autonomy for that action. A system that automatically goes into shutdown mode when detecting 
specific onboard conditions, such as a piece of space hardware going into “safe mode”, is demonstrating 
high autonomy to protect critical performance capability (see Chapter 5). 

HUMAN-AI TEAMING MODELS AND PERSPECTIVES 

The use of AI in future military systems requires that humans can effectively control any systems that 
could potentially have lethal outcomes. The Department of Defense (DOD) stipulates that lethal 
autonomous weapons systems be designed to “allow commanders and operators to exercise appropriate 
levels of human judgment over the use of force” (DOD, 2012, p. 2). This does not require real-time control, 
“but rather broader human involvement in decisions about how, when, where, and why the weapon will be 
employed” (CRS, 2020, p. 2). This stipulation also requires the human-AI interface be readily 
understandable to trained operators and that adequate training be provided. In the committee’s opinion, 
because the employment of force may follow from a wide variety of AI actions and recommendations in 
the multi-domain operations (MDO) context, this places considerable focus on the need for effective human 
understanding of and control over AI systems.  

A recent review of AI in military systems found that “failure to advance reliable, trustworthy, and 
resilient AI systems could adversely affect deterrence, military effectiveness, and interoperability” (Konaev 
et al., 2020, p. 6). In addition, the National Security Commission on Artificial Intelligence recently stated: 

to establish justified confidence, the government should focus on ensuring that its AI systems are 
robust and reliable, including through research and development (R&D) investments in AI security and 
advancing human-AI teaming through a sustained initiative led by the national research labs. It should 
also enhance DOD’s testing and evaluation capabilities as AI-enabled systems grow in number, scope, and 
complexity. Senior-level responsible AI leads should be appointed across the government to improve 
executive leadership and policy oversight (Schmidt et al., 2021, p. 11). 

These reviews have increased the focus on the importance of human-AI teaming for military 
operations. A human-AI team is defined as “one or more people and one or more AI systems requiring 
collaboration and coordination to achieve successful task completion” (Cuevas et al., 2007, p. 64). 
Similarly, McNeese et al. (2018) define a human-autonomy team as a team in which humans and 
autonomous agents function as coordinated units; this is also applicable to human-AI teams. The 
consideration of AI as a teammate to human operators goes back several decades (Taylor and Reising, 
1995). Recent work by the National Aeronautics and Space Administration posits three major tenets for 
human-autonomy teams: (1) bi-directional communication about mission goals and rationale; (2) 
transparency regarding what the automation is doing and why; and (3) operator-directed interfaces for 
dynamic function allocation (Brandt et al., 2017; Shively et al., 2017). In Forbus's (2016) discussion of the 
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need for AI to develop as a social organism to work effectively with humans, he states that AI must: (1) 
have autonomy, including needs and drives to improve, and have good relationships with humans; (2) be 
capable of having a "shared focus" with humans; (3) be capable of natural language understanding to build 
shared situation awareness and formulate joint plans with humans; (4) learn to build models of the intentions 
of others; and (5) interact with others, including by helping and teaching. Other researchers stress the 
importance of both team cognition and collective intelligence for human teaming with autonomous systems 
(Canonico, Flathmann, and McNeese, 2019). Johnson and Vera (2019) also highlight the importance of 
team intelligence, which they define as “knowledge, skills, and strategies with respect to managing 
interdependence” in teams (p. 18). (See O’Neill et al., 2020 for a literature review on human-autonomy 
teaming.)  

A North Atlantic Treaty Organization (NATO) working group focused on the importance of 
meaningful control over AI systems. “Meaningful human control can be described as the ability to make 
timely, informed choices to influence AI-based systems that enable the best possible operational outcomes” 
(Boardman and Butcher, 2019, p. 7-1). Meaningful human control includes both freedom of choice for the 
human and sufficient human understanding of the situation and system. Boardman and Butcher (2019) 
concluded that, to have meaningful control, the human must have: (1) freedom of choice; (2) the ability to 
impact the behavior of the system; (3) time to engage with the system and alter its behavior; (4) sufficient 
situation understanding; and (5) the ability to predict the behavior of the system and the effects of the 
environment. 

Wynne and Lyons (2018) noted the importance of understanding how humans perceive autonomous 
partners. They employ the term “autonomous agent teammate-likeness,” which they define as “the extent 
to which a human operator perceives and identifies an autonomous, intelligent agent partner as a highly 
altruistic, benevolent, interdependent, emotive, communicative and synchronized agentic teammate, rather 
than simply an instrumental tool” (p. 355). Factors such as perceived agency, the ability to communicate, 
the presence of shared mental models to direct information sharing, and shared intent contribute to the 
willingness of humans to consider an AI system as a teammate (Lyons et al., 2021). “Effective team 
processes can: (1) signal shared intent toward collective goals, (2) promote team cognition in support of the 
development and maintenance of shared mental models, and (3) promote aiding and performance 
monitoring via communication” (Lyons et al., 2021, p. 5). Lyons et al. (2021) conclude that “the challenges 
of human-autonomy teaming rest in developing (1) team-based affordances for fostering shared awareness 
and collective motivation, (2) an understanding of the types of tasks and interactions that stand to benefit 
from social cueing, and (3) developing techniques for using these cues to enhance [human-autonomy team] 
performance” (p. 5).  

There are multiple ways of combining humans and AI into teams, including humans supervising an 
AI system that is serving as an aide or helper, humans collaborating with an AI system as equal teammates, 
and an AI system acting as a limiter of human performance (Endsley, 2017). It should also be recognized 
that AI systems may play a variety of roles, ranging from decision-support tool to assistant, collaborator, 
coach, trainer, or mediator. Within the human-AI teaming literature, it is generally accepted that the human 
should be in charge of the team, for reasons that are both ethical and practical (Boardman and Butcher, 
2019; Bryson and Theodorou, 2019; Shneiderman, 2020; Taylor and Reising, 1995). Not only are humans 
legally and morally responsible and accountable for their actions, they also function more effectively when 
their level of engagement is high (Endsley and Jones, 2012). While it is assumed that human-AI teams will 
be more effective than either humans or AI systems operating alone, in the committee’s judgment this will 
not be the case unless humans can: (1) understand and predict the behaviors of the AI system (see Chapters 
4 and 5); (2) develop appropriate trust relationships with the AI system (see Chapter 7); (3) make accurate 
decisions based on input from the AI system (see Chapter 8); and (4) exert control over the AI system in a 
timely and appropriate manner (see Chapter 6).  
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SHOULD HUMANS TEAM WITH AI? 

As an alternative perspective, Shneiderman (2021) argues against using the “teaming” metaphor in the 
design of AI systems, stating “A perfect teammate, buddy, assistant, or sidekick sounds appealing, but can 
designers deliver on this image or will users be misled, deceived, and disappointed?”. He argues that 
alternative metaphors, such as supertools, tele-bots, or active appliances, are preferable because they more 
effectively communicate that the AI system is in the service of the human(s)’ goals, with the human(s) 
remaining in control. By leveraging such alternative metaphors, it is possible to convey the benefits of the 
teaming metaphor, such as helpfulness, while broadening the options for how that help could be provided 
and avoiding unrealistic expectations that may arise when an AI agent is referred to as a teammate. Similar 
points have been made by others (Groom and Nass, 2007; Klein, Feltovich, and Woods, 2005).  

While these arguments have merit, this committee strongly feels that there are important benefits to 
adopting the teaming metaphor for research and design, especially as AI systems grow in capability and 
autonomy. While current AI systems fall substantially short of the criteria for an effective teammate, there 
is value in highlighting what those criteria are and striving to build AI systems that can meet them. While 
Schneiderman (2021) argues against classifying a non-human as a teammate, the military already has a long 
history of humans working with birds and non-human mammals; thus, the committee rejects the notion that 
all members of a military team must be human. Instead, we focus on functional considerations of what 
individual actors (regardless of type) must do, need to know, and contribute to be considered effective team 
members. McGrath describes teams as co-acting agents with a shared mission and task-oriented goals, and 
distinguishes various typologies of teams, ranging from naturally occurring, long-duration standing crews 
to dynamic, problem-solving teams purposefully created for mission-specific functions (McGrath, 1984, 
1990). To adapt to changing environmental and task conditions, teams, according to McGrath’s definition, 
require the effective (and effectively integrated) performance of each team member. Thus, the use of the 
teaming metaphor is based on the coordination and interdependence that needs to occur in a dynamic 
setting. 

Landmark studies of military tactical teams during training provide a fundamental assessment of the 
behavior and performance attributes of successfully performing teams (Oser et al., 1989; Salas, Bowers, 
and Cannon-Bowers, 1995). The most successful teams demonstrated clear, effective, and assistance-based 
communications, as well as the ability to identify and begin additional tasks when needed. Team 
performance, then, represents not only interdependent performance, but temporal and functional 
performance alignment and communication to support that alignment. 

Further, AI is essentially different from other forms of technology with which humans interact. In 
multiple task settings, humans can develop synergistic interactions with tools that enhance their own task 
performance, but these interactions do not constitute a team. Salas et al. (1992) explicitly define a team as 
a group whose members are inherently interdependent in carrying out a common goal. Although an infantry 
soldier may rely heavily on a gun, helmet, or map for improved performance, these tools do not represent 
team members with interdependent capabilities or shared understandings. Likewise, an assemblage of 
humans, individually and independently providing information to a superior officer and receiving individual 
orders for next actions, also would not be characterized as a team. These types of exclusions imply some 
important considerations for future studies of human-AI team dynamics. For an AI system to be a part of a 
team, it must be capable of interdependence in its operations, as well as a degree of autonomy in its 
execution (Reyes, Dinh, and Salas, 2019).  

For this reason, the committee feels that there is considerable value in the team metaphor. First, it is 
possible for a human-AI unit to meet the definition of a team, with interdependent capabilities, 
contributions, and roles in the performance of a complex task beyond the capacity of a single agent. Second, 
by considering humans and AI as teammates, the value of team interactions in producing performance 
superior to that of independent individuals can be brought to bear, including an improved ability to adapt 
to changing demands and to provide each other with mutual support and back-up. Third, it has been noted 
that the need for team coordination increases as the capabilities of a technology or agent increase, as is the 
case with AI systems (Johnson, Vignatti, and Duran, 2020). Finally, the committee rejects the assumption 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

HUMAN-AI TEAMING METHODS AND MODELS 15 

PREPUBLICATION COPY – Uncorrected Proofs 

that defining a person and an AI system as a team implies that those agents are equivalent in their agency, 
functionality, capabilities, responsibilities, or authority. Additional discussion of the processes and 
capabilities associated with shared mental models is provided in Chapter 3.  

Frameworks to describe information and task coordination at higher levels of aggregation, such as 
Malone's collective intelligence (Malone, 2018; Malone and Crowston, 2001), or Miller's supranational 
systems level of living systems (Miller and Miller, 1991), further elaborate the need to allocate functions 
of cognitive processing, information flow, and task coordination beyond the scope or capability of 
individuals. As an example, the coordinated humanitarian aid and disaster response after the Surfside 
condominium collapse in Florida in 2021 included the interdependent roles of humans, from military and 
local law enforcement agencies, with trained search-and-rescue dogs and uninhabited flight vehicles 
requiring manual post-flight processing (Murphy, 2021). From an operational standpoint, these operations 
support a metaphor of human-AI teaming as the joint activity of multiple, heterogenous actors with 
coordination requirements. Murphy’s analysis underscores the importance of distinguishing team member 
functions from the attributes of specific actors. For example, for a dog or a drone to be seen as an important 
part of a disaster response team, it should not be assumed that the dog or drone must perform the search 
function exactly the same way a human would, using the same perceptual cues (Burke et al., 2004; Murphy, 
2021). Stipulating that AI teammates must function as though they were equivalently capable humans 
contradicts extant research on the performance of various types of groups and teams.  

Simplifying assumptions about the nature of effective human-human task coordination, including 
studies of military teams, often underestimate the teamwork functions necessary for mission-essential 
competencies and appropriate team performance outcomes (Alliger et al., 2007; Salas, Bowers, and 
Cannon-Bowers, 1995). Teamwork is defined as an interrelated set of knowledge, skills, and attitudes that 
enables teams to perform in a coordinated, adaptive manner. Teamwork includes an understanding of roles, 
responsibilities, interdependencies, interaction patterns, communications, and information flow (Cannon-
Bowers, Salas, and Converse, 1993). Teamwork is often contrasted with taskwork, which focuses on the 
activities, skills, and knowledge associated with performing the tasks required for a job (i.e., operating 
procedures, capabilities, and limitations of equipment and technology; task procedures, strategies, 
constraints; relationships between components; and likely contingencies and scenarios) (Cannon-Bowers, 
Salas, and Converse, 1993). The use of AI capabilities in these contexts extends the work of prior authors, 
such as Hutchins (1990), who emphasize the growing role of information technologies to support the 
communication and coordination of distributed expertise and to provide dynamic, current updates of a 
situation. 

Across much of teamwork research, coordination is defined as “managing dependencies between 
activities” (Malone and Crowston, 2001, p. 10), while the related concept of groupwork highlights not only 
member characteristics, but local situations, tasks, and organizational contexts (Olson and Olson, 2001) 
(see Chapter 3 and Marks, Mathieu, and Zaccaro, 2001 for a discussion of team processes). The process of 
coordinating between team members involves using distributed expertise and technologies to manage time 
constraints, resolve uncertainty, and support shared information needs (Cannon-Bowers, Salas, and 
Converse, 1993; Hutchins, 1990; Malone, 2018). Based on these considerations, in the committee’s opinion 
the dynamic, performance-based contexts, tasks, and time scales of MDO present a major challenge for 
defining and evaluating effective human-AI teaming configurations.  

The terms “human supervisory control” and “levels of automation” (Sheridan, 1988; Sheridan, 1992, 
2011; Sheridan and Verplank, 1978), originally used as general descriptions of human-automation 
interactions, have been inaccurately interpreted to imply a conflict between human and AI control (see 
Chapter 6). Roethlisberger and Dickson (1934) used the term supervisory control to describe differences in 
function allocation between human workers in a production team. In supervisory control, the human handles 
high-level tasks, decides on overall system goals, and monitors the system “to determine whether operations 
are normal and proceeding as desired, and to diagnose difficulties and intervene in the case of abnormality 
or undesirable outcomes” (Sheridan and Johannsen, 1976, p. v). Determination of appropriate task functions 
and evaluations of appropriate performance (both quantity and quality) are traditionally considered to be 
elements of human supervisory responsibility. Assignments of control and responsibility between humans 
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and automation include determinations of who should be assigned which tasks and where responsibility 
should lie in cases of performance breakdown. Equal participation or distinct independence of action or 
decision making by all team members is never assumed. 

IMPROVED MODELS FOR HUMAN-AI TEAMS 

The use of the term “model” here is deliberately ambiguous, as it can relate alternatively to 
computational descriptions of performance dynamics, theoretical constructs of required components and 
processes, or best practices demonstrated from operational experience. In the committee’s judgment, while 
there has been some work, particularly using descriptive models, to describe the elements and factors 
relevant to human-AI teaming, to date none of these efforts have progressed toward computational models 
or quantifications of the relative importance of team characteristics, processes, or other factors. Further, in 
the committee’s opinion, teaming models need to be informed by an understanding of the real-world 
demands and needs associated with military command and control operations.  

Studies conducted in the New Command and Control Concepts and Capabilities (NATO SAS-050) 
program examined the evolution from traditional command and control to network-enabled capability 
paradigms (Stanton, Baber, and Harris, 2008; Walker et al., 2009), reinforcing similar research conducted 
in the U.S. military context (Bolstad et al., 2002; Burns, Bryant, and Chalmers, 2005; Cooke et al., 2007; 
Graham et al., 2004; Kott, 2008; Moore et al., 2003; Riley et al., 2006). These studies, while not specifically 
focused on incorporating AI systems as functional team members, strongly emphasize that information 
distribution, patterns of interaction, and allocation of decision rights are crucial to coordinating the expertise 
of team members to achieve effective task execution. The results of these studies and others addressing 
network-enabled capability and mission-essential competencies in the military environment (Alliger et al., 
2007; Bennett et al., 2017), provide important insights and research priorities for the development of 
human-AI teams, as well as for both human warfighter training and the creation of simulations that could 
be used in human-AI development and performance testing (McDermott et al., 2018).  

As described above, teams exist as, and are trained to function as, integrated systems—not simply as 
aggregated components (Burke et al., 2004; Salas, Bowers, and Cannon-Bowers, 1995; Tsifetakis and 
Kontogiannis, 2019). Feedback-based mechanisms that allow team members to monitor and assess task 
performance, and opportunities to improve skills through ongoing practice, are important mechanisms to 
improve the performance of human team members (Salas et al., 1992; Sottilare et al., 2017; Swezey and 
Salas, 1992). Communication and support behaviors between team members represent feedback-based 
processes for developing shared experience on which mutual trust is based (Cuevas et al., 2007). Human-
AI interactions present an opportunity for humans (and AI systems) to develop and calibrate mutual 
understanding and expectations of how other team members will function, across a range of task scenarios 
and environmental constraints. 

In the committee’s opinion, another key challenge lies in the development of AI systems that can 
function in the challenging real-world complexity of MDO, which may be very different from laboratory 
scenarios, and the use of metrics to quantify system performance. For example, the explainability and 
transparency of AI systems performing tasks as a part of human-AI teams is one of the most important AI 
design challenges (see Chapter 5) and highlights the differences between sandbox-based research and real-
world applications (see Chapter 10). 

From a computer science perspective, the explainability and transparency of a machine learning (ML) 
algorithm is often based on its ability to be queried by a computer scientist in a post-hoc examination (Bhatt 
et al., 2020; Burkart and Huber, 2021). However, many ML-based AI systems are especially brittle in the 
face of unanticipated data in training sets, or when training sets do not apply to the real-world context of 
application. More importantly, post-hoc querying by a computer scientist to assess an AI system’s team 
performance is in no way equivalent to real-time understanding by human members of a human-AI team, 
who may be facing life-and-death decisions and experiencing significant uncertainty and time constraints. 
Therefore, the committee believes that measures of AI explainability derived in research environments may 
not generalize well to the levels of explainability necessary in real-world MDO.  
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Resolution of uncertainty and reduction of entropy are essential intelligence functions associated with 
any complex, dynamic, evolving task. The nature of these tasks often precludes training under relevant real-
world conditions. In the committee’s judgment it is therefore highly unlikely that future generations of AI 
systems will be able to address such unstructured challenges within mission-relevant time constraints. The 
higher the proposed or expected level of autonomous capability of AI systems, the greater the frustration 
and distrust of real-world users asked to rely on such systems, regardless of the results of testing in a 
constrained research context. Thus, the committee emphasizes the importance of computational and 
functional models of AI systems relevant to real-world challenges of MDO, as opposed to those developed 
using traditional assessments in research settings. 

KEY CHALLENGES AND RESEARCH GAPS 

The committee finds four key challenges in the development of effective models and measures for 
human-AI teams.  

• Existing human-AI research is severely limited in terms of the conceptualizations of functions,
metrics, and performance-process outcomes associated with dynamically evolving, distributed,
and adaptive collaborative tasks. Research programs that focus primarily on the independent
performance of AI systems generally fail to consider the functionality that AI must provide within
the context of dynamic, adaptive, and collaborative teams. Research should specifically consider
the dynamic process factors and timing constraints involved when human-AI team members
address uncertainties in task progress or the evolution of performance over work sessions, shifts,
task episodes, software updates, and longer time horizons (see Goodwin, Blacksmith, and Coats,
2018).

• Many measures of team performance do not address the real-world performance demands of
complex and dynamic MDO tasks, which often have high consequences and low tolerance for
either delay or information input classification errors. These challenges are multiplied when
researchers do not understand, value, or weight the cost of timely, high-confidence resolution of
crucial sources of uncertainty in the entropic fog of war.

• Currently, human-AI team performance evaluation does not adequately address the role of AI
systems in providing support and coordination as an effective and trusted teammate. These
performance evaluation considerations are needed for model-optimization criteria and/or as skill
assessments of AI performance in real-world tasks. One operational example illustrating the trust
that is needed in an AI system is whether the system performs as promised, with degradations in
trust occurring due to violations of promised functional capabilities (Bhatti et al., 2021; Demir et
al., 2021).

• Descriptive models of human-AI team performance need to be extended into computational
models that can predict the relative value of teaming compositions, processes, knowledge
structures, interface mechanisms, and other characteristics.

RESEARCH NEEDS 

The committee recommends addressing four major research objectives to improve human-AI teaming 
performance.  

Research Objective 2-1: Human-AI Team Effectiveness Metrics. Research is needed to define metrics 
describing how AI systems help to manage dependencies between themselves and other team members 
performing mutually supportive, dynamic, adaptive, and collaborative tasks, within relevant functions. It is 
advisable that this research consider the limits of how and when an AI system is fixed, meaning unable to 
recognize the functional roles required and how its capabilities might support those roles. Further, metrics 
associated with the flexibility of an AI system to adjust its role and contributions to team needs are needed, 
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similar to those metrics assessed in human-only, network-enabled capability teams (Stanton, Baber, and 
Harris, 2008; Walker et al., 2009). These metrics would best be considered components and figures of merit 
in the performance specifications and skill-evaluation scores associated with AI systems, similar to skills 
assessments for human warfighters. This research should specifically consider the different timing 
constraints on the team members as well as the evolution of performance over work sessions, shifts, 
software updates, and longer time horizons. 

Research Objective 2-2: AI Uncertainty Resolution. The capability of the AI to resolve temporal and 
operational uncertainty in situation, role, and plan needs to be quantified. This includes the time to resolve 
uncertainty (TRU) in situation assessments, in the required AI role in the current network-enabled 
capability/multi-domain operations configuration, and in the required AI role in updated plans for action. 
These TRU measures can be integrated with existing network-enabled capability studies of combat 
estimates or other high-fidelity simulations/synthetic environments (Goodwin, Blacksmith, and Coats, 
2018). Even if an AI system has high confidence assessments and good post-hoc explanability, its role in a 
dynamic human-AI team is extremely limited if the TRU is large, especially compared to the time available 
for decision making and performance (Caldwell and Wang, 2009). Thus, the committee suggests that 
modeling emphasize TRU rates and the ratio of TRU to time available as parameters to minimize, in a 
variety of dynamic contexts with varying situation and information entropy and uncertainty levels.1  

Research Objective 2-3: AI Over-Promise Rate. The ability of an AI system to appropriately calibrate 
and execute its expected functions needs to be quantified. The ability of the AI system to deliver as promised 
contributes to human trust of autonomous systems (Sheridan and Parasuraman, 2005). Trust of others, either 
human team members or AI systems, is an experiential, asymmetric process based on whether the actor 
meets/exceeds or falls short of performance demands compared to performance expectations. For example, 
an analog watch has a limited range of functions and performance capabilities compared to a modern 
software-enabled smartwatch; however, trust in the analog watch is not based on its performance of 
complex smartwatch operations, but on its ability to perform its required function of displaying time 
accurately. Therefore, a relevant performance (and model-optimizing) measure for an AI system might be 
its over-promise rate (OPR), defined as the number and variety of situations in which its level of automation, 
expertise, or support performance does not meet expectations, expressed as a fraction of the total number 
of relevant human-AI task situations in which the AI system is involved. Both a reduction in expectations 
and an increase in AI capability can reduce an OPR to an ideal minimum, close to zero. This 
conceptualization of OPR is in opposition to a marketing-based AI approach, in which proposed 
expectations for system performance are intentionally set high to increase the probability of research 
funding or product purchase. However, in the proposed area of multi-domain operations, an OPR rate based 
on well-calibrated expectations is far more likely to engender trust and effective overall human-AI team 
performance. 

Research Objective 2-4: Human-AI Team Models. Predictive models of human-AI performance are 
needed to provide quantitative predictions of operator performance and interaction in both routine and 
failure conditions (Kaber, 2018). These models would do well to build on existing modeling approaches to 
specifically address design decisions for the human-AI interaction (Kaber, 2018; Sebok and Wickens, 
2017). Computational models of human-AI team performance need to be developed to quantify expected 
performance outcomes along relevant metrics, and across relevant team compositions, characteristics, 
processes, and designs. These models would benefit from a consideration of both normal and unexpected 
events (outside of AI training sets), as well as issues of situation awareness, trust, and the potential for both 
human and AI biases.  

1The ratio parameter should have a maximum acceptable level much less than 1.0. 
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SUMMARY 

Teaming provides significant performance advantages that go beyond the aggregation of individual 
teammate performances. Given sufficient levels of team intelligence, including the processes, knowledge 
structures, and behaviors necessary to promote effective teamwork, humans can team with AI systems to 
achieve these benefits. Methods for promoting effective teaming between humans and AI systems need to 
be captured in both descriptive and computational models that can quantify the nature of human-AI team 
performance, its constituent components, and outcome metrics that capture team dynamics, uncertainty 
resolution, and the ability to meet performance expectations. 
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3 

Human-AI Teaming Processes and Effectiveness 

WHAT DOES IT MEAN FOR AI TO BE A TEAMMATE? 

A team is an interdependent group of members, each with their own roles and responsibilities, that 
come together to address a particular goal (Salas et al., 1992). An AI system can be a member of a team if 
it takes on roles and responsibilities and can function interdependently. In the committee’s opinion, the 
word teammate does not imply humanness; human-animal pairs make good teams. An AI team member 
does not necessarily need to replicate actions that humans can already do. AI is a very different sort of 
intelligence compared to humans, with different strengths and limitations. As discussed in Chapter 2, the 
human-animal team metaphor may be better suited than that of human-human teaming for this reason (see 
Forbus, 2016). AI ought to do what AI does best (e.g., high computational speed, expansive memory) or 
what humans would rather not do (e.g., work that is dull, dirty, and dangerous in the case of embodied AI) 
(Wojton et al., 2021). 

In the committee’s judgment, human-AI teaming is a step beyond human-AI interaction. The terms 
team and teammate express a system that is expanded from one-human-one-machine (e.g., a human-AI 
interaction or a human-robot interaction) to a team of more than two heterogeneous entities, each with their 
own roles and responsibilities (technically two members can form a team, however, the team literature tends 
to involve teams of three or more). Researchers can look to the human team literature, as well as to the 
human-animal team literature, to find novel methods to improve human-AI team effectiveness. In general, 
the teamwork and teammate concepts are useful for extending the science of teamwork into the field of 
human-centered AI. 

In the committee’s opinion, considering an AI system to be a teammate does not indicate that the AI 
system is a human, human-like, or on the same level as humans. Humans tend to anthropomorphize 
machines of all types (e.g., Roombas, cars, Alexa) and AI is no exception. However, in the committee’s 
judgment, given that AI differs from humans in many ways, it is misleading to encourage 
anthropomorphism by designing an AI system with human-like features (Salles, Evers, and Farisco, 2020). 
Additionally, an AI system as a teammate does not imply loss of human control. Control structure is 
independent of the team concept and the control that teammates exert over other teammates is dependent 
on the mission or specific task. Finally, designing an AI system to be an effective teammate does not imply 
that the AI system is not human-user centered. Designing an AI system to work well as a teammate increases 
human-centeredness, based on the results of more than three decades of teamwork literature providing 
extensive guidance for effective teaming (Wojton et al., 2021). Ultimately, an effective human-AI team 
augments human capabilities and raises performance beyond that of either entity. 

In the committee’s judgment, AI developers who are unfamiliar with the science of team effectiveness 
too often presume to know what good human-AI teaming is and what it means for AI to be a good teammate. 
The committee finds that the science of team effectiveness needs to be better translated to AI development. 
Also, research is needed on specific mechanisms for human-AI teaming that may or may not be similar to 
methods of human-human teaming or human-animal teaming. The remainder of this chapter explores the 
state-of-the art in the science of team effectiveness, the implications for human-AI teams, and research 
needed to fill the gaps in effective human-AI teaming. 
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PROCESSES AND CHARACTERISTICS OF EFFECTIVE HUMAN-AI TEAMS 

How can we achieve effective human-AI teaming by drawing on what we know about human teaming 
and human-animal teaming? Cuevas and colleagues (2007) developed a framework for understanding how 
the introduction of machine teammates can influence both individual and team cognition, implying that 
models of effective teaming need to be adapted to reflect the introduction of this new type of teammate.  

Within the broader discussion of social units and types of tasks, McGrath (1984) describes eight types 
of tasks, which could be used to guide the design of appropriate human-AI teams. Task type, however, is 
not the only important focus of team interactions; aspects of task coordination, information flow, and role 
support are also vital elements (Riley et al., 2006; Salas, Bowers, and Cannon-Bowers, 1995). These tasks, 
including planning and creative idea generation, persuasion and conflict negotiation, and competitions and 
physiological performances, require different types of team structures, functional roles, and allocations of 
tasks over the duration of team interactions. A team may also exist in consistent form for multiple cycles 
of performance or may reconstitute itself with different members for each distinct task cycle. Regardless of 
task performance demands, it can be assumed that interdependent management of activities, goals, 
knowledge, roles, and task constraints are critical components of team interactions. Beginning in the 1980s, 
studies of military teams have emphasized team performance outcomes, processes, and effectiveness of 
training protocols (i.e., methods for improving outcomes and processes) (Salas, Bowers, and Cannon-
Bowers, 1995; Sottilare et al., 2017). Less is known from the team literature about the types of long-term, 
distributed, and agile teams that will be needed to function in military multi-domain operations (MDO). 

Team Heterogeneity 

In the committee’s judgment heterogeneity coupled with the interdependence of teammates is the main 
feature that distinguishes teams from groups. Teammates each have their own roles and responsibilities, 
which can be at the taskwork or teamwork level. For instance, one teammate may be responsible for flying 
the plane and another responsible for navigation; this is taskwork heterogeneity. In addition, the pilot 
teammate may be in command and responsible for making final decisions (i.e., teamwork heterogeneity). 
In the committee’s opinion, this same heterogeneity is also advantageous in an AI teammate. In a good 
team design, the AI system will do what AI does best (e.g., tasks that require high computational speed or 
expansive memory) or what humans do not want to do, and humans will do what humans do best (e.g., key 
decision making, adaptive planning) (Nadeem, 2021). This differentiation implies that an AI system will 
not replicate human capabilities and limitations and will also specialize in narrow tasks, like the animal in 
a human-animal team. Exceptions may exist in rare cases of team training, in which synthetic teammates 
stand in for human counterparts (Myers et al., 2018) and potentially in social robotics, in which AI performs 
human care-taking roles (Lee et al., 2017). Centaur teams, in which the human and machine serve as perfect 
complements of each other, have the potential to operate at levels that exceed the capability of human or 
machine alone (Case, 2018).  

It is important to note that proper team composition goes beyond simple function allocation based on 
a men-are-better-at/machines-are-better-at approach (Roth et al., 2019). The interdependencies are also of 
critical importance. Heterogeneity is an element of team structure, but interdependencies reflect team 
process. Johnson and colleagues (2014) have developed a method of co-active team design that puts 
interdependencies at the forefront. Further, responsibilities, such as the control structure of a team, may 
depend on context. In the committee’s judgment, it is also important for long-term, distributed, and adaptive 
teams to have a degree of overlap in roles and responsibilities, so that teammates can back each other up or 
take over responsibilities when a teammate is absent. In the committee’s judgment, assembling long-term, 
distributed, agile teams that exhibit function allocation, interdependency management, and sufficient 
overlap of responsibilities is a challenge and represents a research gap. In addition, because of the increasing 
complexity of teams, AI may be useful in the role of team assembler (see Chapter 9). 
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Shared Cognition 

The study of internal processes of team members (i.e., mental models) to identify, refine, and improve 
both team performance and the relevant measures of processes and outcomes is a distinct area of research 
(Rouse, Cannon-Bowers, and Salas, 1992). Mental models are “mechanisms whereby humans are able to 
generate descriptions of system purpose and form, explanation of system functioning and observed system 
states, and predictions of future states” (Rouse and Morris, 1985, p. 7).  

One area of team research focuses on whether teammates hold a shared mental model. A shared mental 
model is a consistent understanding and representation, across teammates, of how systems work (i.e., the 
degree of agreement of one or more mental models). A shared mental model includes models of the 
technology and equipment, models of taskwork, models of teamwork, and models of teammates (i.e., 
teammates’ knowledge, skills, attitudes, and preferences) (Cannon-Bowers, Salas, and Converse, 1993). 
Relatedly, a team mental model is a mental model of one's teammate(s) that provides an understanding of 
teammates' capabilities, limitations, current goals and needs, and current and future performance (Cannon-
Bowers, Salas, and Converse, 1993). The similarity of team mental models and task mental models amongst 
team members, as well as their accuracy, directly contributes to effective team processes, which 
significantly affect overall team performance (Mathieu et al., 2000; DeChurch and Mesmer-Magnus, 2010). 
Shared mental models within teams also contribute to the development of shared situation awareness 
(Cooke, Kiekel, and Helm, 2001; Endsley and Jones, 2001; Endsley, 2020b) (see Chapter 4). In addition, it 
should be noted that knowledge in teams can be emergent, with dynamic experience (Grand et al., 2016). 

Thus, on a heterogeneous team, one should expect knowledge diversity (Cooke et al., 2013). Effective 
teammates need to have goals that are aligned; however, the true meaning of goal alignment is unclear. It 
is possible, especially in multi-team systems like those found in MDO, that goals are tied to tasks, roles, 
and responsibilities, and so may also diverge (Zaccaro, Marks, and DeChurch, 2012). Effective teammates 
understand the team’s overarching goal and have individual goals that may be disparate but do not conflict 
with those of their fellow teammates.  

Knowledge specialization is expected within many MDO teams due to high levels of heterogeneity. A 
teammate’s knowledge of the task or team is generally tied to his or her roles and responsibilities. Thus, on 
a heterogeneous team, one should expect knowledge diversity (Cooke et al., 2013). Knowledge sharing is 
required when team members each hold unique information that is critical for the task and team (i.e., unique 
situation awareness requirements) (Endsley and Jones, 2001). Transactive memory systems represent 
another form of shared cognition (Brandon and Hollingshead, 2004). Transactive memory systems stipulate 
that knowledge of the task and team is distributed among interdependent team members, which increases 
the need for coordination and communication. See Chapter 4 for a discussion of team processes, 
mechanisms, and devices used for information sharing in teams. 

Alignment of all types of information, including goals, is a form of coordination (Caldwell, Palmer, 
and Cuevas, 2008). In complex, long-term, distributed, agile teams, increasing complexity may result in an 
increased need for dynamic goal alignment, as well as teamwork and taskwork model alignment. MDO 
teams can be considered complex, long-term distributed teams that must be agile in their deployment and 
problem-solving abilities. In the committee’s opinion, research is needed on mechanisms of goal- and 
mental-model alignment in human-AI teams, and the potential role of AI in facilitating this alignment. The 
alignment of goals and mental models is one of many communication and coordination challenges covered 
in the next section (see Chapter 4).  

Communication and Coordination 

Communication and coordination are essential for teamwork, given teamwork’s interdependent nature. 
Team cognition can in fact be characterized as communication and coordination processes in addition to 
knowledge or shared models because team cognition involves more than just knowledge (Cooke et al., 
2013). Research on group communication extends back to the 1950s and includes Leavitt’s 1951 work 
describing circle, chain, and other configurations of people communicating with each other in a group. This 
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research not only addresses the flow of task procedures for specific circumstances, but also the stability and 
robustness of communication patterns in response to changes in situation, resolution of error, and updates 
in plan (Gorman et al, 2020).  

Communication can be verbal or nonverbal and can take place through various modalities, such as 
voice or text. Much progress has been made toward the creation of AI that understands natural human 
language; however, natural language processing remains a challenge for human-AI teaming. Moreover, 
natural language, with all its ambiguities, may not be the language of choice for effective teaming. For 
instance, humans and animals team effectively by signaling and by observing behavioral cues, without 
natural language communication. Similarly, in military contexts and aviation, various forms of signaling 
and brevity code are used (Achille, Gladwell Schulze, and Schimdt-Nielsen, 1995). In addition, it may be 
important to identify various communication modalities (e.g., visual, auditory, tactile) with the goal of 
balancing the load on each. Communication also needs to take place implicitly when direct communication 
is not possible. Research is needed on the language of effective human-AI teams, especially for those that 
are long-term, distributed, and agile. 

Communicating in a common language is just one requirement for effective teamwork. 
Communication also needs to be accurate and directed to the right team member at the right time or, in 
other words, coordinated. Effective teamwork requires “orchestrating the sequence and timing of 
interdependent actions” (Marks, Mathieu, and Zaccaro, 2001, p. 363). Recognizing “the right team 
member” and “the right time” can be subtle and may only be apparent with significant experience (Demir 
et al., 2018). In a study of three-agent remotely piloted aircraft control, a synthetic teammate succeeded in 
communicating with its human teammates in restricted natural language, but failed at coordination (Demir, 
McNeese, and Cooke, 2016; McNeese et al., 2018). Specifically, the synthetic teammate did not anticipate 
the information needs of human teammates (Entin and Serfaty, 1999), who consequently had to request 
necessary information, which delayed target processing. Interestingly, the human teammates entrained on 
the behavior of the synthetic teammate, and coordination ultimately broke down across the team. The level 
of coordination and teamwork needed for high-performing teams (e.g., players on a basketball team) 
requires that the AI system has a very deep model of its human teammates, including day-to-day variations 
in their status. This is likely an optimistic goal (Rasmussen, 1983). 

On the other hand, the same study found that a synthetic teammate could model good coordination 
behavior and subtly coach the team’s coordination. This coordination coaching was also effective at 
improving team process in mock code-blue resuscitation exercises (Hinski, 2017). Imbuing AI with 
coordination capabilities along with communication capabilities is essential for effective teaming. The need 
for effective coordination behaviors is even greater in long-term, distributed, agile teams, as Caldwell 
(2005) found for space-operations teams that had distributed expertise. In the committee’s judgment AI 
could also play a role in coordination coaching—guiding a team’s effective coordination. 

Social Intelligence 

Human teammates can make use of social intelligence for effective teaming. They can understand the 
beliefs, desires, and intentions of fellow teammates by developing a theory of mind (i.e., by observing their 
teammates’ behaviors and ascribing mental states to them) (Premack and Woodruff, 1978; Rabinowitz et 
al., 2018; Wimmer and Perner, 1983). Humans can rely on theory of mind to make sense of teammate 
behavior and to assist with teamwork as needed. Theory of mind is also important in understanding 
deception. It is less clear how important theory of mind is in effective teaming. Animals are not thought of 
as having a theory of mind, but rather a theory of behavior (Schünemann et al., 2021). That is, animals 
understand the behavior of their human partners in context and can draw on this information for 
understanding human intent. There have been recent efforts directed toward imbuing artificial intelligence 
with social intelligence (e.g., Dautenhahn, 2007), such as the Defense Advanced Research Project Agency’s 
ASIST program, for example, though this may resemble a theory of behavior more than a full theory of 
mind (Sandberg, 2021). Further, there is considerable overlap between theory of mind and team mental 
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models. In the committee’s opinion, there is a gap in the knowledge base in terms of understanding the 
limitations of teaming with AI systems that possesses a theory of behavior and not a theory of mind.  

Other Features of Effective Teams 

Interpersonal trust and trust in the team as a whole are important in human teams and human-animal 
teams. Literature pertaining to trust in machine teammates is covered in depth in Chapter 7. In addition, 
teams do not begin as effective teams the moment they come together; instead, teams need to train together 
on individual and team skills. The same is true for human-animal teams. This is covered in depth in Chapter 
9. 

KEY CHALLENGES AND RESEARCH GAPS 

The committee finds seven key gaps in the human-AI teamwork research base. 

• It is not clear whether the models of human teaming or human-animal teaming, and the methods
of making these teams more effective, are appropriate for human-AI teams.

• The teamwork literature has traditionally focused on teams that come together for short durations
(i.e., hours, not days or weeks), are most often co-located, and are rigid in their structures. Less is
known from the team literature about the types of long-term, distributed, and agile teams that will
be needed to function in military MDO.

• Very little is known about how to assemble long-term, distributed, and agile teams in terms of
function allocation, management of interdependencies, and assuring sufficient redundancy.

• There is limited knowledge of mechanisms of goal alignment for long-term, distributed, and agile
teams with high complexity.

• Little work has been done to develop a human-AI language to replace natural language.
• It is not clear how AI can learn to coordinate across complex teams, as this is also a difficulty for

human teams.
• There is a need to understand the limitations of teaming with AI systems that possess a theory of

behavior and not a theory of mind.

RESEARCH NEEDS 

The committee recommends addressing two major research objectives for the development of effective 
teamwork processes for human-AI teams.  

Research Objective 3-1: Human-AI Teamwork Skills in Multi-Domain Operations. Research is 
needed on improving team effectiveness in long-term, distributed, and agile human-AI teams, in the areas 
of team assembly, goal alignment, communication, coordination, social intelligence, and a new human-AI 
language. Note that these areas also pose challenges for all-human teams, especially in complex 
environments. In human-AI team contexts, the ability of AI systems to exhibit important teamwork skills 
needs to be addressed, including: (1) providing support, which includes the ability of the AI system to 
proactively provide relevant, operation-related information, as well as to confirm and improve the 
confidence in other team members’ understandings and task selection; and (2) answering questions within 
the context of other team members’ expertise domains and operational constraints. Assessments of human-
AI team performance need to include assessments of AI contributions in the areas of “provide support” and 
“answer questions,” not only in interactions with other human team members, but also non-human team 
members such as dogs, sea mammals, or other AI systems in the same or different modalities (e.g., air, 
ground, space, water).  
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Research Objective 3-2: Support for Human-AI Teaming in Multi-Domain Operations. Based on 
some success in situations in which AI guided coordination of the team, the possibility for AI to serve multi-
domain systems by acting as a coordinator, orchestrator, or human resource manager would be useful to 
explore (Demir et al., 2018; Hinski, 2017). AI may be well-suited to manage human teams or human-AI 
teams by serving as team assembler, swapping team members in and out as needed. AI may also help to 
manage goal alignment and alert the team in cases of conflicting goals. AI might also serve as a 
communication and coordination hub, clarifying miscommunication, prioritizing messages, and connecting 
team members. Research is needed on this type of managerial role for AI. 

SUMMARY 

Designing an AI system to work well as a teammate is a means of increasing human-centeredness that 
draws on more than three decades of teamwork literature that provides extensive guidance on effective 
teaming. An effective human-AI team ultimately augments human capabilities and raises performance 
beyond that of the component entities. Another consideration is for AI to be used to aid teaming in multi-
domain systems by acting as a coordinator, orchestrator, or human resource manager (Demir et al., 2018). 
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Situation Awareness in Human-AI Teams 

Situation awareness (SA) is defined as “the perception of the elements in the environment within a 
volume of time and space [level 1 SA], the comprehension of their meaning [level 2 SA], and the projection 
of their status in the near future [level 3 SA]” (Endsley, 1988, p. 97). SA is critical to effective performance. 
For example, in a recent meta-analysis, Endsley (2021a) found 47 studies in a variety of domains in which 
SA was shown to be predictive of performance, including military operations (Cummings and Guerlain, 
2007; Salmon et al., 2009; Stanners and French, 2005) and military aviation (Endsley, 1990; Sulistyawati, 
Wickens, and Chui, 2011). It is widely recognized that human SA of AI systems (including current and 
projected performance, status, and the information known by the system) is critical for effective human 
interaction with and oversight of AI systems (Boardman and Butcher, 2019; USAF, 2015).  

Over the past 30 years, extensive research on human-automation interaction has generated a large 
database on the importance of the display interface, the automation-interaction paradigm, the mental model, 
and trust for developing high levels of SA in demanding and dynamic environments (Endsley, 2017). Each 
of these components will be important for the successful performance of human-AI teams in the future.  

SITUATION AWARENESS IN MULTI-DOMAIN OPERATIONS 

Based on extensive empirical research on SA, cognitive models of SA have been established (Adams, 
Tenney, and Pew, 1995; Endsley, 1995a, 1995b, 2015; Wickens, 2008, 2015), and user-centered design 
principles have improved system design to allow for high levels of SA, including in the design of 
automation and AI (Amershi et al., 2019; Endsley and Jones, 2012; McDermott et al., 2018). In the 
committee’s opinion, these principles are foundational for the design of effective system interfaces for 
human operators in multi-domain operations (MDO) and also for human interactions with the automation 
and AI that could be used in new systems developed for MDO.  

In the committee’s judgment, MDO poses significant challenges to SA due to the high volumes of 
information involved and the need to integrate data across multiple stove-piped systems. The high data load 
affects not only the SA of individuals, but also the formation of accurate SA across the team of human 
operators, who may come from very different operational backgrounds and specializations and may be 
performing different operational roles. Team SA is defined as “the degree to which every team member has 
the SA required for his or her responsibilities” (Endsley, 1995b, p. 39). This means that it is not sufficient 
for some members of the team to have information if the team member who needs it does not know it. This 
also means that people involved in MDO will have very different SA needs, in terms of information inputs 
and the transformations of information necessary to generate the appropriate comprehension and 
projections required by their roles (Bolstad et al., 2002). Related to team SA, shared SA is “the degree to 
which team members possess the same SA on shared SA requirements” (Endsley and Jones, 2001, p. 48). 
Systematic methods for determining the specific SA requirements at each level of SA (perception, 
comprehension, and projection) for any given operational role have been established and used extensively 
in many domains, including military aviation (Endsley, 1993) and command and control (Bolstad et al., 
2002). Overall team SA has been shown to be predictive of team performance in a number of settings 
(Cooke, Kiekel, and Helm, 2001; Crozier et al., 2015; Gardner, Kosemund, and Martinez, 2017; Parush, 
Hazan, and Shtekelmacher, 2017; Prince et al., 2007). 
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Shared SA has also been shown to predict team performance (Bonney, Davis-Sramek, and Cadotte, 
2016; Cooke, Kiekel, and Helm, 2001; Coolen, Draaisma, and Loeffen, 2019; Rosenman et al., 2018). As 
a key advantage, while it can be quite difficult to objectively measure concepts such as shared mental 
models, there is a well-developed research base on objective measures of SA that have been applied to 
assess team and shared SA (Endsley, 2021b). That is, for the subset of information common across shared 
goals, a consistent picture is required to support effective, coordinated actions.  

It is critical that information displays for MDO be tailored to the individual SA requirements of each 
role, to reduce overload (Bolstad and Endsley, 1999, 2000). In addition, to support team coordination and 
interaction, the displays need to explicitly support team SA by providing a window into the relevant SA of 
other team members (Endsley, 2008). For example, displays that allow one MDO position to quickly see 
not only what another position is looking at, but also how information is translated into specific 
comprehension and projections for other roles, can be useful. This might include understanding the impact 
of weather on flight patterns or operational delays for an air operations role, and the impact of weather on 
troop positions and supply vehicles for an army role. While a given individual may not want to see 
information relevant to other roles constantly, effective shared displays can be designed to provide the 
ability to turn filters on and off to show such information. Such displays are very useful for supporting 
integrated operations in which the performance and actions of one teammate effect those of other 
interrelated operations across the joint battlespace. System displays that support the rapid transformation 
of information, in terms of physical vantage points, terminology, and mission perspectives of other team 
members, are needed (Endsley and Jones, 2012). 

In many cases, MDO teams may form rapidly and uniquely, in an ad hoc manner, for short-term tasks 
and missions. Ad hoc teams create many challenges for SA that can negatively affect team cohesion, trust, 
and effectiveness. These challenges stem from the fact that team members: (1) are often not co-located and 
are heterogeneous with respect to knowledge bases, terminology, training, and information needs; (2) 
participate during different shifts and along different timelines, joining and leaving the team at different 
times, and often have multiple responsibilities, such that they require frequent and efficient updating; (3) 
may have goals that are not well defined, including unclear hierarchies and lines of communications; (4) 
may have different security clearances; and (5) frequently have not worked with the team enough to form 
a good understanding of the capabilities and perspectives of their teammates, and thus lack good team 
mental models (Strater et al., 2008). In the committee’s judgment, these SA challenges necessitate that 
information displays for MDO explicitly support both individual SA and SA of other team members, so 
that people can rapidly understand the implications of new information for both their own plans and actions 
as well as for activities supporting the mission of the entire team. Methods for supporting this goal have 
been developed and applied to army command and control operations under the Future Combat 
Systems/Brigade Combat Team program that would apply to MDO (Endsley and Jones, 2012; Endsley et 
al., 2008). 

Another significant challenge in future operations will be the actions of adversaries to attack the 
information network through cyber attacks or manipulation of information flows. These attacks may be 
obvious, such as denial of service or shutdown of trusted sensors and assets, or more subtle, such as an 
attack on the integrity of data flowing into the system (Stein, 1996). Such information attacks can have a 
significant negative impact on the accuracy of human SA and decision making (Endsley, 2018s; Paul and 
Matthews, 2016), or could lead to difficult-to-detect AI biases, such as data poisoning.  

Key Challenges and Research Gaps 

The committee finds three key gaps in the research around SA in MDO. 

• Work is needed to establish displays and information systems for managing overload and
providing team and shared SA across joint and distributed MDO.

• Methods to support information integration, prioritization, and routing across MDO need to be
investigated.
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• Methodologies for detecting and overcoming adversarial attacks on SA need to be developed.

Research Needs 

The committee recommends addressing two major research objectives to improve SA in multi-domain 
operations.  

Research Objective 4-1: Team Situation Awareness in Multi-Domain Operations. Methodologies for 
supporting individual and team situation awareness (SA) in command and control operations need to be 
extended to multi-domain operations (MDO) (Endsley and Jones, 2012). Research is needed to determine 
effective methods for managing information overload in MDO and for supporting SA across joint 
operations, to include high levels of situation understanding and projection of current and potential courses 
of action. Interface designs to support the unique needs of ad hoc teams in MDO are needed. Methods for 
using AI to support information integration, prioritization, and routing across the joint battle space are 
needed, as are methods for improving information visualization to support SA. Human-AI teaming 
methodologies are needed to achieve high levels of SA when operating on-the-loop, allowing effective 
oversight of AI operations that occur at fast frames or contain high volumes of data than cannot be managed 
manually. In on-the-loop situations, there is no expectation that people will be able to monitor or intervene 
in operations prior to automation errors occurring; however, it may be possible to take actions to turn off 
the automation or change automation behaviors in an outer control loop.  

Research Objective 4-2: Resilience of Situation Awareness to Information Attack. Methodologies are 
needed to improve the ability of humans to detect and deflect adversarial attacks on information integrity, 
accuracy, and confidence, which can affect the situation awareness of both humans and AI. These methods 
need to take human decision biases and potential AI biases into account (see Chapter 8).  

SHARED SA IN HUMAN-AI TEAMS 

With the move toward the expectation that AI will function as a teammate as opposed to simply a tool, 
a new emphasis on the importance of creating effective team SA and shared SA within the human-AI team 
arises (Shively et al., 2017; USAF, 2015). As AI becomes more capable as a teammate it will, in many 
cases, be expected to collaborate actively to support task achievement (including anticipating human needs 
and providing back-up when needed), ensure goal alignment, and share status on functional assignments 
and task progress. These expectations create new requirements for the development of shared SA between 
humans and AI systems (USAF, 2015). Both humans and AI systems will need to develop internal SA of 
the world, themselves, and others, which will need dynamic updating within the context of more static and 
general mental models (Figure 4-1). 

FIGURE 4-1 Mental models and situation models. 
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SOURCE: Committee generated. 

The situational models required for the development of shared SA between humans and AI systems 
include the following: 

• Situation: Just as the humans involved in MDO command and control need high levels of SA to
support their decision making, AI will need to form and maintain an accurate situational model of
the world for its own decision making (Burdick and Shively, 2000; Endsley, English, and
Sundararajan, 1997; Jones et al., 2011; Kokar and Endsley, 2012; SAE International, 2013;
Salerno, Hinman, and Boulware, 2005; USAF, 2015; Zacharias et al., 1996).

• Task environment: As future human-AI teaming is envisioned to involve dynamic function
allocation, in which responsibility for tasks may shift between human and AI teammates
dynamically over time based on current capabilities and needs (see Chapter 6), an up-to-date model
of the work to be performed, including current goals, functional assignments, plans, task status,
and the states and modes of human and automation involved in the work, is needed (Endsley, 2017;
USAF, 2015). Whereas this type of information may have been more static in the past (and
therefore part of a relatively stable mental model), systems in which roles and responsibilities may
shift dynamically between human and AI teammates necessitate active maintenance of this
information as a part of SA.

• Teammate awareness: Just as humans need to accurately understand the reliability of AI for a
given situation, AI may also need to maintain a model of the state of its human teammates to
perform its tasks (Barnes and Van Dyne, 2009; Carroll et al., 2019; Chakraborti et al., 2017a).

• Self-awareness: People need to maintain meta-awareness of their own capabilities for performing
their assigned tasks. For example, awareness of the effects of fatigue, excessive workload, or
insufficient training could trigger team members to shift tasks to optimize team performance
(Dierdorff, Fisher, and Rubin, 2019; Dorneich et al., 2017; NRC, 1993). Similarly, AI may need
to formulate a model of its own performance and limitations (i.e., AI self-awareness) (Chella et
al., 2020; Lewis et al., 2011; Reggia, 2013), to alert humans to step in when needed or to assign
accurate confidence levels to its outputs.1

In addition to the development of an accurate understanding of the situation, tasks, and teammates by 
both the humans and the AI system, it is important that these situation models be aligned to facilitate smooth 
team functioning. That is, to facilitate team performance, teammate dyads need to maintain consistent 
shared SA on the situational goals and responsibilities that are in common with those of each teammate 
(Endsley, 1995b), along with maintaining shared SA on the state of the task environment (Endsley and 
Jones, 2001; USAF, 2015). Similarly, to create effective teamwork, models of self and teammate may need 
to be aligned. Shared SA has also been referred to as "common ground" (Klein, Feltovich, and Woods, 
2005), a term borrowed from verbal discourse literature (Clark and Schaefer, 1989), however, some 
researchers have found common ground methodologies difficult to apply in practice and lacking in 
measures (Koschmann and LeBaron, 2003). The shared SA literature contributes well-developed measures 
and models that can be applied in the context of human-AI teams (Endsley, 2021b). 

The committee finds that research to date has developed models of human-human team SA that may 
be leveraged to understand the factors underlying effective human-AI team SA, which include a focus on: 
(1) team SA requirements, including methodologies for determining both individual and shared SA needs;
(2) team devices, such as shared displays, shared environments, and communications; (3) team mechanisms,
including shared mental models; and (4) team processes (Endsley, 2021b; Endsley and Jones, 2001). Other

1AI self-awareness in this sense means only its ability to track its own performance and capabilities and does not imply 
any form of consciousness. 
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models have focused on team processes involved in establishing team SA (Gorman, Cooke, and Winner, 
2006) (see Chapter 3).  

The opportunities for SA mismatches within human-AI teams are significant. People and AI systems 
have very different sensors and input sources for gathering information and will likely have quite different 
mental models for interpreting that information. Thus, in the committee’s judgment, significant emphasis 
is needed on the development of effective displays for aligning SA in human-AI teams (see Chapter 5), and 
on the creation of effective communications and team processes (see Chapter 3). Further, the development 
of human-AI interaction methods that reduce workload while maintaining engagement is important (see 
Chapter 6), as well as the creation of training and other processes for building team mental models (see 
Chapter 9). Establishing appropriate levels of trust within the human-AI team also has a direct effect on 
how people allocate their attention, and directly affects SA (see Chapter 7).  

Key Challenges and Research Gaps 

The committee finds five key research gaps that exist for SA in human-AI teams. These gaps exist in: 

• Methods for improving human SA of AI systems;
• Methods for improving shared SA of relevant information between human and AI teammates,

across diverse types of teams, tasks, and time scales;
• The ability of an AI system’s awareness of the human teammate to improve coordination and

collaboration, and best methods for implementation;
• The effectiveness of an AI system’s self-awareness for improving human-AI coordination; and
• The development of AI situation models to support robust decision making and human-AI

coordination.

Research Needs 

The committee recommends addressing five outstanding research objectives for developing effective 
SA and shared SA in human-AI teams.  

Research Objective 4-3: Human Situation Awareness of AI Systems. Methods for improving human 
situation awareness of AI systems are needed. This research would be well served to consider AI systems 
developed for distinct types of applications (e.g., imagery analysis, course-of-action recommendations, 
etc.), learning-enabled systems versus static AI systems, and operations at various time scales. It would be 
advantageous for research on situation awareness to include a consideration of AI status, assignments, 
goals, task status, underlying data validity, effective communication of system confidence levels, ability to 
perform tasking, and projected actions.  

Research Objective 4-4: Shared Situation Awareness in Human-AI Teams. Research to determine the 
amount of shared situation awareness (SA) needed when working with AI systems needs to consider various 
aspects of SA (e.g., SA of the environment, broader system and context, teammates’ tasks, teammates’ 
performance or state, etc.), and the effects of various types of tasks and concepts of operation on SA needs 
(e.g., flexible function allocation versus rigid functional assignments). It would also be beneficial for this 
research to consider the challenges of differing time scales of operation for humans and AI systems that 
may occur in various settings (e.g., cyber operations or imagery analysis), and the effects of team 
composition (e.g., multiple humans or multiple AI systems). Methods for improving shared SA between 
human and AI teammates need to be identified. Furthermore, it would be advantageous to study the 
evolution of beliefs about how much and what type of SA and shared SA is needed, as these beliefs will 
govern information-seeking behaviors in operational environments.  
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Research Objective 4-5: AI Awareness of Human Teammates. Does an AI system’s awareness of the 
state of the human operator improve its performance? What factors of human state, processes, or 
performance can be leveraged? How can an AI system’s awareness of the human teammate be best utilized 
to improve coordination and collaborative behaviors for a human-AI team? If used, what methods are best 
for helping the human to understand any changes that occur in AI system performance or actions, and for 
maintaining two-way communication regarding state assessments? Tradeoffs need to be considered as to 
whether to support adaptation to the individual, the role, or the notion of any human collaborator, as well 
as whether to support co-adaptation of human to AI system and vice versa (Gallina, Bellotto, and Di Luca, 
2015).  

Research Objective 4-6: AI Self-Awareness. Can AI self-awareness be employed to improve human-AI 
coordination? Can an AI system develop a self-awareness of its own limitations that can be actively 
employed to improve hand-offs to human teammates in certain environments and tasks? What types of AI 
self-awareness are needed?  

Research Objective 4-7: AI Situation and Task Models. To perform effectively in complex situations, 
AI systems need to form situation models that account for a variety of contextual information, so that these 
systems can appropriately understand the current situation and project future situations for decision making. 
Although current machine learning-based AI generally performs only simple subsets of tasks (e.g., 
categorization of images or datasets), more complex and capable AI systems will need combined situation 
models across multiple objects, environmental features, and states to create more robust situation 
understanding. These approaches to AI will require causal models to support situation projections, and will 
need to incorporate methods for handling uncertainty, prioritizing information, dealing with missing data, 
and switching goals dynamically. Further methods are needed to create AI models of the dynamic task 
environment that can work with humans to align or deconflict goals and to synchronize situation models, 
decisions, function allocations, task prioritizations, and plans, to achieve appropriate, coordinated actions.  

SUMMARY 

A considerable amount of research has been conducted on supporting human SA in complex systems, 
including military operations. This research is directly applicable to MDO, and detailed design guidance 
on improving SA using automated systems and AI has been established. In addition, models and methods 
for supporting team and shared SA in human-human teams have been developed, which can be applied to 
human-AI teams. More research is needed to better understand the role of shared SA in human-AI teams 
for complex MDO settings, and to develop and validate effective methods for supporting shared SA.  
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5 

AI Transparency and Explainability 

The need for AI systems that are sufficiently transparent in their operations to support effective human 
interaction and oversight is widely recognized (Chen and Barnes, 2015; Endsley, 2017; Shively et al., 2017; 
USAF, 2015). Considerable attention has been paid to the idea of transparency of AI systems. Meanings 
associated with the term transparency include issues of organizational transparency, process transparency, 
data transparency, algorithmic (logic) transparency, and decision transparency (Ananny and Crawford, 
2016; Felzmann et al., 2020). These issues are relevant to traditional forms of automation and will continue 
to be important with future AI systems as well. Here, the focus is on the system transparency required by 
the human charged with overseeing and interacting with an AI system to achieve operational objectives. 
This transparency is defined as “the understandability and predictability of the system” (Endsley, Bolte, 
and Jones, 2003, p. 146), including the AI system’s “abilities to afford an operator’s comprehension about 
an intelligent agent’s intent, performance, future plans, and reasoning process” (Chen et al., 2014a, p. 2). It 
will be increasingly difficult to train people to maintain accurate mental models of how AI systems work, 
due to the ability of these systems to learn and change their functioning and capabilities over time (USAF, 
2015). Further, since AI systems may be applied in new contexts and situations they were not initially 
trained for (i.e., concept drift, Widmer and Kubat, 1996), it will be extremely important for AI systems to 
be transparent. AI system transparency involves two interrelated components (Figure 5-1):  

• Display transparency: Provides a real-time understanding of the actions of the AI system as a part
of situation awareness (SA).

• Explainability: Provides information in a backward-looking manner on the logic, process, factors,
or reasoning upon which the system’s actions or recommendations are based.

FIGURE 5-1 Effect of AI transparency and explainability on situation awareness and mental models. 
SOURCE: Committee generated. 

In the committee’s opinion, in the dynamic, time-constrained situations common to many military and 
operational environments, explanations will primarily contribute to the development of improved mental 
models that can improve SA in the future, and decision making will be primarily reliant on real-time display 
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transparency. In other situations that involve sufficient time for reviewing and processing explanations, 
both display transparency and explainability may be directly impactful on decision making. The reliance of 
AI systems on machine learning indicates that the ability of humans to maintain an accurate and up-to-date 
mental model will be considerably strained as the AI system learns and changes in its capabilities and the 
types of decisions and actions it will execute in any given situation. In addition, training time may be 
limited. Thus, the committee believes there will be an increased need for both transparent AI and 
explainable AI, which make clear the logic or rationale being used as the AI system changes over time, to 
compensate for inevitable mental model deficiencies. 

System functions that are important for system transparency are shown in Table 5-1. This table was 
generated through a literature review, in which the committee selected the key points from each reference, 
sorted by level of SA and type of information. Most transparency taxonomies include an understanding of 
the current state of the system, in terms of what is it doing and its mode (if applicable). Further, in the 
research, there is general agreement on the need for transparency in an AI system’s purpose or goals, plans 
(if applicable), and its progress or performance in achieving those goals. Endsley (2019, 2020a) and 
Wickens (Trapsilawati et al., 2017; Wickens et al., 2022) also highlight the value of conveying the aspects 
of the situation (i.e., raw data) that the system is including in its assessments, to allow human teammates to 
better understand system limits or biases. Lyons (2013) further discusses information about environmental 
constraints that may affect system performance.  

In addition to system status information, the behavior and recommendations of the system need to be 
understandable to the human teammate, to the degree that the system has an impact on human decision 
making. This understandability generally includes the availability of information about the system's 
reasons, logic, or factors driving its behavior, as well as an understanding of the system’s capabilities and 
limitations, its ability to handle the current situation, and how it might err. Further, the amount of confidence 
or uncertainty underlying system assessments is relevant. Confidence in the AI system outputs (or its 
inverse, uncertainty) is a significant part of SA. Endsley and Jones 2012 provide a model showing that this 
occurs at several levels relevant to human decision making: (1) level 1 SA – data uncertainty based on the 
presence of missing data, reliability or credibility of the sensors or sources of data, incongruent or 
conflicting data, the timeliness of data, and ambiguous or noisy data; (2) level 2 SA – comprehension 
uncertainty based on system algorithms for integrating and classifying or categorizing the data; (3) level 3 
SA– projection uncertainty, which includes projections of future events based on the current situation and 
models of system dynamics and future likelihoods; and (4) decision uncertainty, which is the likelihood 
that a selected course of action will result in desired outcomes. The amount of confidence a person has in 
an AI system’s outputs has both direct and independent links to the likelihood of acting on that information 
(Endsley, 2020b) and is an important SA need that should be supported by system transparency. 

The predictability of an AI system is also important for transparency. Predictability includes planned 
actions or behaviors, predicted outcomes or consequences associated with planned actions, the ability of 
the system to perform in upcoming situations, and uncertainty associated with future projections. Some 
research has indicated that knowledge of an AI system's history (Chen et al., 2014a; Lee and See, 2004) or 
general task reliability (Endsley, 2020b) should also be transparent. Finally, in moving toward consideration 
of a human-AI team, there will be an increased need for transparency related to team tasks (e.g., current 
goals, distribution of functions, plans, and the tasks of each teammate or shared tasks, which can change 
dynamically over time), as well as transparency regarding the relative states of the human and AI system 
for performing tasks, and the impact of ongoing tasks on the states of other team members (Chen et al., 
2018; Lyons, 2013; USAF, 2015).  

TABLE 5-1 Information Needed for System Transparency 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

AI TRANSPARENCY AND EXPLAINABILITY 35 

PREPUBLICATION COPY – Uncorrected Proofs 

Chen et al. 
(2014a, 2018) 

Endsley  (2017, 
2020b) 

Lee and See 
(2004) 

Lyons 
(2013) 

Sarter and 
Woods 
(1995) 

Wickens et al. 
(2022) 

U.S. Air Force 
(2015) 

Level 1 SA 
System 
Status 

Factors user is 
taking into 
account 

State of 
knowledge 

Raw data used 
by automation 

Current system 
state 

Key system 
states and mode 
transitions 

Current 
system state 

What 
automation is 
doing 

Current system 
state and 
modes 

Purpose (goals) Purpose Goals 

Intentions  Process Intentional 
(purpose and 
social intent) 

Plan of action Tasks 

Progress Progress 

Performance Performance 
effectiveness 

Performance Errors 

Environment
al constraints 

Level 2 SA 
Understand- 

ability 

Reasoning Understand-
ability of 
actions 
(drivers) 

Analytical - 
decision 
logic 

Reasons for 
current 
behavior 

How 
automation is 
doing it 

Explanation of 
reasoning 

Trade-offs 
 

Capabilities/ 
limits 

Ability to 
handle current 
situations 

Capabilities How 
automaton 
might err 

Confidence in 
assessments 

Degree of 
uncertainty 

Confidence  

Level 3 SA 
Predictability 

Planned actions Predictability of 
future actions 
(possible and 
predicted) 

Future 
behaviors 

Projected 
actions 

Predicted 
consequences 

Ability to 
handle 
upcoming 
situations 

Predicted 
outcomes 

 

Uncertainty 
Other History of 

performance 
System 
reliability 

History 

Team and 
Shared SA 

Teammate's 
roles and 
responsibilities, 
goals, 
projections and 
reasoning 

Teammate's 
current goals, 
priorities, 
function 
allocation, 
plans, and tasks 

Team - 
division of 
labor 

Teammate's 
current goals, 
function 
allocation, 
plans, and 
tasks  

Relative 
capabilities of 
human and 
autonomy 

Human state 
- workload,
performance,
stress

Relative 
capabilities of 
human and 
autonomy 

Contributions 
to shared tasks 

Impact of tasks 
on others 

Impact of 
tasks on others 

Projected 
strategies, 
actions, and 
plans 

Projected 
strategies, 
actions, and 
plans 

SOURCE: Committee generated. Data compiled from the sources at the top of each column. 
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DISPLAY TRANSPARENCY 

The goal of display transparency is “enabling the operator to maintain proper SA of the system in its 
tasking environment without becoming overloaded” (Mercado et al., 2016, p. 402). Display transparency 
has been shown to be valuable for: 

• Improving oversight of automation and performance (Bagheri and Jamieson, 2004; Bass,
Baumgart, and Shepley, 2013; Bean, Rice, and Keller, 2011; Beck, Dzindolet, and Pierce, 2007;
Dzindolet et al., 2002; Mercado et al., 2016; Oduor and Wiebe, 2008; Selkowitz, Lakhmani, and
Chen, 2017; Seppelt and Lee, 2007; Stowers et al., 2017);

• Improving SA (Boyce et al., 2015; Chen et al., 2014b; Schmitt et al., 2018; Selkowitz, Lakhmani,
and Chen, 2017); and

• Improving the calibration of trust (Dadashi, Stedmon, and Pridmore, 2013; Gao and Lee, 2006;
Hoff and Bashir, 2015; Lee and See, 2004; Mercado et al., 2016; Panganiban, Matthews, and Long,
2020; Selkowitz, Lakhmani, and Chen, 2017; Seong and Bisantz, 2008; Stowers et al., 2017;
Wang, Jamieson, and Hollands, 2009).

In reviewing 15 studies of automation transparency, Wickens et al. (2022) found significant support 
for the benefits of system transparency for addressing the negative effects of out-of-the-loop performance. 
Mercado et al. (2016) showed1 that performance increased along with increasing levels of transparency 
(i.e., from SA transparency level 1 alone; level 1 and level 2; to all 3 levels), as did subjective levels of 
trust. Misuse and disuse of automation also decreased at higher levels of transparency. Selkowitz and 
colleagues (2016, 2017) similarly found improved SA, performance, and trust with the addition of 
prediction (SA transparency level 3) information. The committee found that the types of information 
included in various transparency studies vary widely, however, and more knowledge is needed regarding 
which information is the most valuable to provide in real time. Further, more research may be needed to 
define additional system display characteristics important for human-AI teaming. For example, Panganiban, 
Matthews, and Long (2020) showed that displaying autonomous system intent (benevolence) improved 
trust and team collaboration.  

A review of research on trust showed that providing system reliability information helps to calibrate 
reliance on automation (Schaefer et al., 2016). Stowers et al. (2017), for example, found that adding 
information on system uncertainty to the other levels of transparency improved performance; and Kunze et 
al. (2019) showed that adding this information improved trust and the performance of human take-over 
from the system. However, not all research has found a corresponding improvement in trust with the 
provision of uncertainty information (Chen and Barnes, 2015; Selkowitz, Lakhmani, and Chen, 2017; 
Stowers et al., 2017). Selcon (1990) showed that, for AI systems presenting the uncertainty or confidence 
associated with various recommendations, decision time increased when confidence levels were high. 
Endsley and Kiris (1994) found that decision time was significantly affected by a variety of different 
methods of conveying AI system confidence levels. Further research is needed on how to best determine 
and present AI system reliability or confidence information. 

Although some research reports an increase in workload associated with increased transparency of 
uncertainty information (Kunze et al., 2019), other research reports that perceived workload does not 
increase with increased transparency (Chen et al., 2014a; Mercado et al., 2016; Selkowitz, Lakhmani, and 
Chen, 2017; Selkowitz et al., 2016; Stowers et al., 2017). Additional research showed that the type of 
transparency information provided could interact with certain operator personality types to affect the benefit 

1“The performance data indicated that participants’ correct rejection accuracy increased in relation to transparency level, 
whereas correct Intelligent Agent (IA) usage increased only from Level 1 to Level 1+2. The addition of reasoning information in 
Level 1+2 increased correct IA use by 11% and correct rejection rate by 12%. The addition of uncertainty information (Level 
1+2+3 compared with Level 1+2) improved correct IA use rate by a small amount (2%) and correct rejection rate by 14%” (p. 411). 
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of improved transparency, with too much information sometimes having a negative effect (Chen et al., 
2018; Wright et al., 2016). 

Key Challenges and Research Gaps 

Although the benefits of transparency are apparent, the committee finds that, to discover how to best 
support transparency for AI systems in multi-domain operations (MDO), more research is needed in the 
following four areas: 

• The value of various types of transparency information across task types, contexts, temporal
demands, and user types;

• Best methods for providing system transparency to system operators for different types of
transparency information;

• Appropriate times for providing AI system transparency information for different classes of
operations and temporal demands; and

• Additional transparency requirements and methodologies for AI systems used in military MDO.

Research Needs 

The committee recommends that four major research needs be addressed, to develop the levels of 
display transparency required for effective human-AI teams.  

Research Objective 5-1: Transparency Information Requirements. Further research is needed to 
determine the value of specific types of transparency information for supporting situation awareness, trust, 
and performance in the context of human-AI interactions. Current research demonstrates the value of 
improved system transparency, however, there is significant variability in the types of information 
considered. It would be helpful for research to focus on determining which aspects of AI knowledge and 
performance need to be made transparent for various types of tasks and human-AI teaming arrangements. 
Factors such as situation types, context, temporal demands, and user types would benefit from 
consideration.  

Research Objective 5-2: Transparency Display Methods. Research is needed to determine the best 
methods for providing system transparency to humans for the types of transparency information identified 
in Table 5-1, to improve performance, SA, and trust calibration without creating overload. Although 
integrated, simple, graphical displays are generally recommended, more research is needed to determine 
how to best present transparency information for AI systems performing realistic military tasks in multi-
domain operations. Methods for supporting real-time understandability and predictability of AI systems 
and effective communication of confidence or uncertainty need particular emphasis. Methods for 
supporting human understanding of when the AI system is brittle (i.e., at or near the limits of its 
performance envelope) and unable to perform effectively deserve particular attention, particularly in cases 
when the AI system does not have sufficient self-awareness to recognize these limits. It would be 
advantageous to develop design guidelines for supporting transparent interfaces for AI systems.  

Research Objective 5-3: Transparency Temporality. Some have argued that the introduction of AI 
systems that learn will create the need for increased emphasis on real-time display transparency. These 
arguments postulate that, when these systems are used, it is much more likely for mental models to be 
outdated or insufficient, and operators will be increasingly unable to accurately understand and project 
future AI actions and capabilities (Endsley, 2020a; USAF, 2015). Others believe that, in time-constrained 
and demanding military environments, human attention will be too overloaded to review and evaluate the 
performance of an AI system, and thus transparency requirements will need to be met either a priori (e.g., 
during training, planning, pre-mission briefings) or a posteriori (e.g., during debriefing, after-action 
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reviews) (Miller, 2021). The degree to which the presentation of various aspects of AI transparency are best 
supported in real time, in post-hoc reviews, or in prior planning and practice activities needs to be 
determined for specific classes of operations and temporal demands. Further, research is needed on whether 
transparency information of various types would best be provided continuously, sequentially, or on-demand 
(Sanders et al., 2014; Vered et al., 2020). 

Research Objective 5-4: Transparency of Machine Learning-Based AI in Multi-Domain Operations. 
Given that machine learning-based AI can change its capabilities, logic, and strategies in dynamic and 
perhaps unpredictable ways, and that learning systems can be opaque both in their reasoning processes and 
the effect of training inputs, research is needed to determine additional transparency requirements and 
methodologies for AI systems. The value of the transparency of the human teammate to the AI system for 
facilitating joint human-AI performance also needs to be determined. In addition, the effect of AI system 
transparency on trust and performance in distributed military operations, which include the potential for the 
military hierarchy and changing rules of engagement to effect decision making, needs to be explored. The 
effects of group dynamics, distributed responsibility, and locus of decision making in the context of human-
AI interaction remain largely unexplored and would benefit from further research.  

AI EXPLAINABILITY 

In keeping with the definitions above, explanations are information about the rationale underlying an 
explanation-giver’s actions or decisions, generally provided after2 a decision or action is taken and intended 
to improve the questioner’s understanding (or mental model) of the reasoning processes of the explanation-
giver3. As such, extensive explanations generally cannot be provided or absorbed in moments of high 
workload characteristic of much human-automation collaboration but must usually be relegated to periods 
during which more capacity is available (e.g., provided for a recommended course of action, before a 
decision is to be made) or after the action is taken (e.g., in an after-action review). AI explainability is, then, 
the ability to provide satisfactory, accurate, and efficient explanations of the results (e.g., recommendations, 
decisions, and/or actions) of an AI system.  

Explanations provided by automated systems, while varying widely in style, presentation, content, and 
context, have been shown to improve trust (Wang, Pynadath, and Hill, 2016), including in emergency 
situations (Nayyar et al., 2020). The embodiment of the explanation-giver and various social strategies (e.g., 
promises to repair errors) interact with such explanations to affect the resulting trust (Wang et al., 2018). 
Explanations perform this trust-related function at the risk of human over-reliance on the automation 
(Bussone, Stumpf, and O’Sullivan, 2015) even when those explanations do not provide meaningful new 
information to the receiver (Eiband et al., 2019; Nourani et al., 2019), (see discussion of trust in Chapter 
7). 

There are multiple mechanisms by which explanations affect trust and SA. Lee and See’s (2004) three-
tiered model of trust formation and calibration provides a framework for thinking about these mechanisms. 
In their model, calibration of affective trust relies on emotional reaction—in essence, things that make a 
person feel good, safe, and rewarded will tend to be trusted more. This illustrates the importance of social 
aspects of explanation: explanations can reinforce or undermine factors including power dynamics, 
friendship, and perceived confidence and expertise, by providing information about the persona of the 
explanation-giver and his or her relationship to the receiver. Calibration of analogic trust occurs by 

2An exception occurs when explanations are provided in anticipation of a receiver’s questions—that is, when the 
explanation-giver anticipates the receiver’s interest in and lack of understanding of the explanation-giver’s rationale. Providing 
explanations, especially anticipatory explanations, is also a politeness strategy that can be used to signal power differentials, social 
distance, and imposition (Brown and Levinson, 1987). These explanations are still “after” the making of a decision but may be 
provided concurrently with, or even before, the presentation of that decision or action.  

3An exception occurs when explanations are requested to interrogate or check up on reasoning processes of the 
explanation-giver—as a teacher will do to a student.  
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reference to known patterns of behavior or reasoning—for example, behaving and talking “like a pilot” is 
a mechanism by which pilot-level trust can be awarded, independently of the content of the explanation 
itself. An explanation that uses terms, language, formats, and concepts appropriate to the given domain will 
lend credibility, while unfamiliar (e.g., intensely mathematical) data presentations may decrease analogic 
trust. Finally, analytic trust calibration stems from understanding the underlying reasoning by which the 
conclusion is derived. Explanations that reveal aspects of this reasoning will improve the receiver’s 
understanding of the explanation-giver and his or her mental model, but such explanations are both time-
consuming and may place unrealistic demands on human understanding, especially when the AI system’s 
reasoning is beyond the comprehension of the typical user.  

Explanation has been a holy grail for AI systems for almost as long as AI has been a concept. Early 
AI systems such as MYCIN4 (Buchanan and Shortliffe, 1984) used the rule structures of expert systems to 
provide explanations as, essentially, a trace of its chain of reasoning. These rule structures proved helpful 
at improving both trust and human insight into the system’s reasoning, but were unsatisfactory because, as 
Miller argued (2018), such explanations were based on a comparatively limited and myopic view of what 
constitutes a good explanation for humans. In the extreme viewpoint, AI explanations have tended toward 
what Chakraborti and colleagues (2017b) call soliloquies—long disquisitions representing the entire 
thought process by which the AI system arrived at its conclusions. At best, these explanations provide more 
information than the human receiver is interested in obtaining and, at worst, they present information based 
on reasoning models that the human does not understand.  

More challenging still, recent improvements in AI systems (particularly those based on deep learning), 
have largely stemmed from the use of black-box computational techniques (Guidotti et al., 2018), which 
are inherently difficult for humans to understand and explain, and similarly difficult for machines to inspect 
and explain—akin to understanding and explaining how to ride a bike (Kuang, 2017). Improvement in AI 
performance through black-box systems, combined with the increasingly apparent lack of human trust (or 
ability to successfully intervene) in such systems, has generated attempts to provide interpretability to such 
learning systems (Carvalho, Pereira, and Cardoso, 2019; Molnar, 2020) and/or to understand the trade-off 
between black-box and more transparent and understandable white-box approaches, which provide 
interpretable models that include influencing variables and explanations for predictions (Rudin, 2019).  

Key Challenges and Research Gaps 

The committee finds five key challenges that remain in the area of explainability in human-AI teams. 

• There is a need for multi-factor models to explain dimensions of decisions involving trust and
reliance, based on predictions of the trust-related impact of explanations across differing contexts.

• Effective mechanisms to adapt explanations to receivers’ needs, prior knowledge and assumptions,
and cognitive and emotional states are needed.

• Human-centered approaches for providing improved explainability of AI systems are needed,
including an understanding of the factors influencing human comprehension quality and speed
when such systems are used.

• The effects of anthropomorphism and message features of AI explanation on effective, calibrated
trust are not well understood.

• The benefits of the human’s explanations of his or her goals, intentions, or behaviors for informing
and guiding an AI teammate’s future behaviors have not yet been established.

4One of several well-known programs that embodies some intelligence and provides data on the extent to which 
intelligent behavior can be programmed. 
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Research Needs 

In addition to ongoing core improvements in the algorithmic mechanisms required to characterize and 
present explanatory information about AI reasoning, the committee recommends that five research 
objectives be addressed to improve AI explainability.  

Research Objective 5-5: Explainability and Trust. The offering of an explanation can have significant 
impacts on trust in the explanation-giver, either positive or negative, via multiple channels, as described 
above. Yet substantial work remains around the impact of explanations on trust, across multiple contexts. 
For example, how does explanation interact with the sociocultural forces within an organization to affect 
trust (e.g., Ho et al., 2017)? When is the offering of an explanation worthwhile in terms of enhanced trust 
or comprehension versus the time and attention needed to understand the explanation? How does 
temporality (i.e., when an explanation is offered and how long before, after, or during a decision or action 
the explanation is offered) contribute to the effect of an explanation on trust? It is apparent from the research 
cited above that explanations can sometimes affect trust in undesirable ways (e.g., by enhancing trust when 
it is not deserved or earned), so how can it be ensured that explanations are employed effectively? New 
research would be useful for the provision of improved, multi-factor models to describe the effects of 
various dimensions of explanation on trust and reliance decisions.  

Research Objective 5-6: Adaptive (and Adaptable) Explainability. Writers from Aristotle (in his 
Rhetoric5) to Stephen Toulmin (1958) to Chakraborti (2017b) have pointed out that effective explanations 
must be adapted to the needs, beliefs, and interests of the receiver. The uses of explanation in the formation 
of mental models and trust reviewed above suggest some ways that explanations could be adapted. 
Mechanisms to adapt explanations to receivers’ needs, prior knowledge and assumptions, and cognitive and 
emotional states need to be developed, evaluated, and their implications understood. A core question is 
whether (or more likely, when) automated, adaptive modification of an explanation to a receiver’s 
perceived needs is more effective than user-initiated, adaptable modification. Since human-human 
explanations are frequently interactive—with both parties navigating toward a mutually satisfactory 
explanation—AI systems likely need to use similar techniques if they are to prove satisfactory and efficient 
for human receivers. This may require that AI systems maintain of a model of the human receiver, in which 
case efficient techniques for incorporating such a model will need to be refined as well. Concurrently, 
techniques to allow a receiver to rapidly hone in on the portion of the AI system’s reasoning that is most 
salient or relevant to that receiver need to be developed and validated.  
Other ways of adapting the presentation of explanations are also important. Explanation content needs to 
be adapted to the time and the modalities available for presentation. The interactivity necessary for the 
adaptive or adaptable explanations described above implies a degree of verbal flexibility in information 
presentation that will require further advances in natural language use and understanding by AI systems. 
Some users are known to prefer and/or benefit from either visual or verbal presentation of content (Childers, 
Houston, and Heckler, 1985). Persuasion effects of various forms of presentation and content are worth 
considering (e.g., the framing effect described by Tversky and Kahneman (1987), whereby positive 
presentations of material are more likely to be accepted than negative ones), though they may raise ethical 
considerations. Finally, in military applications, the problem of classified information and need-to-know 
also needs to be considered when adapting explanations. Sometimes, the explanation for a decision may 
not be fully sharable with the receiver due to the need to obscure aspects of the rationale. The impacts of 
such necessary information withholding by an AI system on human users are not currently known and 
would benefit from more research. 

5More information at: http://classics.mit.edu/Aristotle/rhetoric.1.i.html 
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Research Objective 5-7: Explainability of Learned Information and Change. Perhaps the biggest 
comparatively new challenge in explanability for AI systems is prompted by the rise of deep-learning 
approaches that may operate in ways that are neither amenable to explanation nor readily comprehensible 
by humans. Explaining the functioning of such systems on a deep, causal level may not be possible. The 
field of explainable AI (Arrieta et al., 2020) is largely focused on pursuing answers to this question. Even 
though some progress is being made (particularly, as described by Hohman et al. (2019) in the use of visual 
analytics to convey the significance of features contributing to a learned decision system), this problem 
may ultimately be one of determining when the use of deep learning and unexplainable black-box AI is 
warranted and when it is not, while improving the performance of explainable AI approaches as much as 
possible (Arrieta et al., 2020; Lipton, 2017; Rudin, 2019). Although work in the field of explainable AI has 
exploded recently across a number of disciplines, including medicine, financial investment, and the 
military, much of this work is centered in computer science. Human-centered disciplines such as human 
factors would do well to provide inputs to such work, including improved visualizations and definitions of 
the parameters (e.g., training, skillsets, and individual cognitive traits) that limit or influence human 
comprehension quality and the speed of such systems. 

Change awareness is a related topic that pertains to change explanations (Rensink, O’Regan, and 
Clark, 1997; Smallman and St. John, 2003). Learning systems afford new AI automation with a remarkable 
flexibility and the ability to change in response to changing environments, performance, and enemy 
capabilities and behaviors. Even more traditional AI and automation systems can be updated, often 
remotely, with little notification to the human operator. But this raises the problem of human awareness 
and ability to predict (and trust) what may well be ever-changing machine behavior. Research would benefit 
from an exploration of ways to rapidly convey how and when AI behavior and underlying reasoning has 
changed, perhaps using prior understanding as a benchmark. Techniques for reasoning about model drift 
may be useful here (Sreedharan, Chakraborti, and Kambhampati, 2021).  

Research Objective 5-8: Machine Personae and Explanations. The offering of an explanation, especially 
by an autonomous and intelligent system, is likely to promote an anthropomorphism response in the receiver 
(Hayes and Miller, 2010; Moon and Nass, 1996; Wynne and Lyons, 2018), precisely because it accesses 
human-human social protocols (Brown and Levinson, 1987) This anthropomorphism response can happen 
regardless of whether it was intended by the designer. Furthermore, the more responsive and reactive an 
explanation-giver is (particularly if it is embodied in a personified “I”, a voice, or a human-like form), the 
stronger the anthropomorphism response is likely to be. This response can be positive or negative, 
depending on context, and can impact trust and reliance decisions (Nourani et al., 2019; Wang et al., 2018). 
It is also likely that an anthropomorphism response can serve to rapidly convey otherwise-difficult concepts, 
such as expertise, confidence, and aggressiveness, as well as the source and provenance of actions or 
recommendations—again, regardless of whether these attributions are specifically intended by the 
designers. Research is needed to establish the magnitude of such effects and to develop methods to either 
encourage or discourage such anthropomorphism to support effective, calibrated trust.  

Research Objective 5-9: Machine Benefits from Human Explanations. An understudied approach that 
may improve human-AI teaming is the ability for humans to offer explanations of their own goals, 
intentions, or behaviors to inform and guide an AI teammate’s future behaviors. If such explanations could 
be provided in natural language or a human-AI language (see Chapter 3), they would be comparatively easy 
and natural for humans to offer, with the acknowledged limitations of human inspectability and willingness 
to articulate accurate rationales. These explanations could offer another, potentially superior channel for 
human tasking and interacting with AI teammates6 and would augment and complete the interaction cycle 
begun in Research Objective 5-6. Such an approach has roots in programming by example (e.g., Lieberman, 
2001) but could allow more interactive, language-centered declarations of intent. The theoretical functions 

6“Slider bar” input channels for adjusting AI algorithmic weights are currently fairly ubiquitous. 
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of a teammate imply that these approaches will be useful in at least some circumstances, but whether such 
approaches are feasible or widely useful still remains to be determined. 

SUMMARY 

System transparency and explainability are key mechanisms for improving SA, trust, and performance 
in human-AI teams. Methods for supporting transparency and explainability in future human-AI teams need 
to consider the appropriate types of information, methods for displaying that information, and timeliness of 
information presentation, particularly as these factors relate to dynamically changing AI systems. Methods 
for tailoring and adapting transparency and explainability information would benefit from further 
exploration, as would the advantages of bi-directional explanation in human-AI teams.  
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6 

Human-AI Team Interaction 
The interaction paradigms used to combine the human and AI system can have a significant effect 

on the joint performance of the team. These paradigms include level of automation (LOA) (i.e., the amount 
of control or authority granted to the AI system for a given task or function), when that control is given, the 
granularity of control needed, and how authority is distributed between the human and AI system (see 
Chapter 2). These interaction characteristics of the human-AI team are dynamic—the level of automation 
of the AI system can, in principle, change over time for any function of the system (Figure 6-1). 

FIGURE 6-1 Automation design considerations.  
SOURCE: Endsley, 1996, (p. 6). Reprinted with permission from Taylor and Francis Group, LLC. 

LEVEL OF AUTOMATION 

The LOA, also called the degree of automation, is defined in terms of the ways portions of any given 
task can be allocated between the human and the automation or AI system (Endsley and Kaber, 1999; 
Kaber, 2018; Parasuraman, Sheridan, and Wickens, 2000; Sheridan and Verplank, 1978). Research on 
LOAs has primarily focused on reducing the risks associated with out-of-the-loop (OOTL) performance 
problems brought on by low situation awareness (SA) of the humans who monitor automation (Endsley and 
Kiris, 1995). OOTL performance problems can occur when humans have low SA while working with 
automation, due to: (1) problems with monitoring, vigilance, and trust; (2) poor information feedback and 
low transparency of automated systems; and (3) lowered human engagement under higher LOAs (Endsley, 
2017; Endsley and Kiris, 1995; Wickens, 2018). In addition, research has focused on understanding the 
effects of automation decisions on workload (Evans and Fendley, 2017; Harris et al., 1995; Kaber and 
Endsley, 2004), and understanding LOA effects on complacency and trust (Parasuraman and Manzey, 
2010).  

Some authors have criticized LOA taxonomies as not scientifically grounded or useful, focused on 
fixed function allocation, and as treating humans and automation as functionally substitutable (Bradshaw 
et al., 2013; Defense Science Board, 2012; Dekker and Woods, 2002). These claims are refuted by Kaber 
(2018) and Endsley (2018b), however, who make the case that LOA taxonomies: (1) formalize the meaning 
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of "semi-autonomous", showing the various ways control can be shared across the team for a given function; 
(2) provide a systematic means of determining the effects of automation on human SA, workload, and
performance, linked to cognitive theory; (3) can and do change dynamically over time and are not
necessarily fixed or static; and (4) are central to decisions around implementation of automation that must
be addressed in system design.

Considerable work has been done describing the effects of LOA on the human workload, SA, and 
performance of human users, showing that the aspect of task performance being automated can impact 
human performance. In this research, the roles and responsibilities of the automation were varied 
systematically according the LOA taxonomy, and the automation performed a variety of simulated tasks in 
which it was interdependent with the human for achieving overall common goals; thus, this research met 
the conditions for investigating human-automation team performance. The stages of task performance that 
were variously assigned as the responsibility of the human or automation included SA, decision making, 
and action implementation, as detailed in Table 6-1 (Endsley, 2017; Endsley, 2018b). The results of these 
studies showed that the effects of automation depend strongly on how it is applied and integrated with 
human tasks (see Onnasch, Wickens, and Manzey (2014) and Endsley (2017) for a detailed review of these 
findings).  

Several general findings from this body of work may be relevant to human-AI teaming, including: 

• Ironies of automation: The more advanced the automation, the more crucial the contribution of the
human, the less likely the human is to have the manual skills necessary to do the work, and the
more likely that workload will be high and advanced cognitive skills will be needed when humans
take over task performance (Bainbridge, 1983).

• Lumberjack effect: “More automation yields better human-system performance when all is well
but induces increased dependence, which may produce more problematic performance when
things fail” (Onnasch et al., 2014, p. 477). Although increased levels of automation may improve
workload under normal conditions, the tendency for lower SA increases the likelihood of failed
manual recovery.

• Automation conundrum: “The more automation is added to a system, and the more reliable and
robust that automation is, the less likely that human operators overseeing the automation will be
aware of critical information and able to take over manual control when needed. More automation
refers to automation use for more functions, longer durations, higher levels of automation, and
automation that encompasses longer task sequences” (Endsley, 2017, p. 8).

• Multitasking effect: As the purpose of automation is often to allow people to perform other tasks,
automation both enables and encourages the redirection of human attention, making it more likely
that people will be disengaged from oversight over automation or understanding of automation
when competing tasks are present (Kaber and Endsley, 2004; Moray and Inagaki, 2000;
Parasuraman and Manzey, 2010; Parasuraman, Molloy, and Singh, 1993).

The committee notes that a number of major recommendations have come from this research. AI 
efforts directed at improving human SA and understanding of events, particularly integrations from large, 
heterogeneous data sets, will be most useful and least likely to suffer from negative OOTL effects. AI 
efforts for improving decision making may be useful if combined with information presentations that allow 
people to easily understand the basis for those recommendations, although this may be subject to the 
challenges of decision biasing (see Chapter 8). AI efforts that focus on completing an entire function, from 
data gathering and integration to conducting actions, will put people the most OOTL and make them the 
most likely to suffer from the consequences of being wrong (i.e., the lumberjack effect). AI that executes 
tasks to human specifications will reduce some human workload but may either demand additional 
monitoring to ensure reliable performance or may produce OOTL effects when not performing reliably. 
Although intermediate LOAs were shown to provide improved SA compared to fully automated systems, 
this effect is generally insufficient for overcoming OOTL deficiencies.  
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TABLE 6-1 Summary of Research on Effects of LOA on Human SA, Workload and Performance. 
Effect of Autonomy Applied to Stage of Task Performance 

Taxonomy Situation Awareness Decision Action 
Kaber and Endsley 
(1997) 

Monitoring Information Option 
Generation 

Action 
Selection 

Implementation 

Parasuraman, 
Sheridan, and 
Wickens (2000) 

Information 
Filtering 

Information 
Integration 

Action Selection Action 
Implementation 

General Findings Significant benefit to SA, 
workload, and 
performance from 
systems that present 
needed information 
(Level 1 SA) 

Significant benefits 
when system is correct 

Decreases performance 
when system is incorrect 
due to decision biasing 

Significant benefits to 
performance for 
routine, repetitive 
manual labor if 
reliable 

Significant benefit to SA, 
workload, and 
performance from 
systems that integrate 
information needed for 
comprehension (Level 2 
SA) and projection (level 
3 SA) 

Slower performance due 
to need to compare 
recommendations to 
system information and 
to other options 

Manual workload may 
be lower overall 

Increases in cognitive 
workload at peak 
times  

Better SA and little 
OOTL problem compared 
to decision automation 

Lowers SA and 
increases OOTL 
performance problems 

Increases in workload 
for systems with high 
false alarm rates and 
low reliability 

Task-specific findings Information cueing 
systems create good 
performance when correct 
but poor performance 
when incorrect, similar to 
decision-biasing effects.  

Information filtering 
systems can limit level 3 
SA (projection), 
negatively impacting 
performance 

Automation of selection 
between alternatives less 
of a problem for 
performance than 
automation that 
generates options that 
affect engagement.  

Decision support based 
on critiquing systems or 
what-if reasoning and 
contingency planning do 
not create decision 
biasing problem due to 
higher engagement 

Lower SA and 
significant OOTL 
problems for 
automation that 
employs advanced 
queuing of tasks. 

Lower SA and 
significant OOTL 
problems for 
automation of 
continuous-control 
tasks 

NOTE: SA – situation awareness; OOTL – out of the loop. 
SOURCE: Endsley, 2017, (p. 13). Reprinted with permission from Sage Publications. 

AI that takes over all aspects of a function for any length of time (high LOAs) significantly increases 
the likelihood of low SA for the human, and new methods for rapidly regaining SA in the face of AI 
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deficiencies are needed. This is particularly the case for unexpected or “black swan” events (Wickens, 
2009). In some cases, it may be necessary for an AI system to take over action execution due to time 
limitations (e.g., cybersecurity). In these situations, it will be particularly important to focus on improving 
the transparency of the AI system for humans involved in on-the-loop operations.  

Key Challenges and Research Gaps 

Although the effects of LOA on human workload, SA, and performance have been addressed by 
existing research (Endsley, 2018b), the committee finds three primary research gaps in the following areas: 

• Methods for supporting collaboration between humans and AI on shared functions;
• Methods for maintaining or regaining SA during on-the-loop operations when working with AI at

high LOAs; and
• Methods for managing multiple AI systems, each of which may be operating at a different LOA.

Research Needs 

The committee recommends addressing three major research objectives for improving human-AI 
interaction across LOAs.  

Research Objective 6-1: Human-AI Team Task Sharing. Research is needed to determine improved 
methods for supporting collaboration between humans and AI systems in shared functions, at intermediate 
levels of automation. It would be beneficial for this research to focus on a more detailed understanding of 
the ways that people and AI systems can share tasks (Miller, 2018), and to explore various methods for 
combining humans and AI systems, to improve cognitive performance and resilience to errors and 
unforeseen conditions (Cummings et al., 2011; Smith, 2017, 2018). 

Research Objective 6-2: On-the-Loop Control. Methods are needed for maintaining or regaining 
situation awareness when working with AI systems at high levels of automation. It is expected that human 
situation awareness will be low and attention will be directed elsewhere during normal operations, but high 
situation awareness and attention will be needed to deal with off-nominal and unusual events. People are 
most likely to miss events that are rare, unexpected, not salient, and outside of foveal vision (Wickens, 
2009). Although improved automation transparency has been called for (Endsley, 2017; Wickens, 2018), 
greater transparency will only help once human attention is directed to the AI system. Given that human 
monitoring of AI systems will be poor and attention to competing tasks likely, methods are needed for 
supporting the detection of unusual events and situations the AI system is not trained to handle, and for 
rapidly building human understanding of the situation and the actions of the AI system (Endsley, 2017). 

Research Objective 6-3: Multiple-Level-of-Automation Systems. Given that future multi-domain 
operations may involve multiple AI systems potentially operating at different levels of automation, research 
is needed to determine the effects of multiple systems on operator performance, to develop effective 
methods for managing multiple AI systems (Lee, 2018). It would be advantageous for this research to 
consider the potential for interdependencies among multiple AI systems and the resulting emergent 
behaviors, as well as to consider the cognitive overhead needed for tracking and managing multiple AI 
systems.  

AI DYNAMICS AND TEMPORALITY 

Another body of research has examined the impact of interjecting periods of manual performance into 
automated tasks, to improve human engagement and retain skills through adaptive automation (AA) (Rouse, 
1988). AA can be triggered based on set time periods, the occurrence of critical events, drops in human 
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performance, physiological measures, or human models (Scerbo, 1996). This temporal mixing of human 
and automated control has been demonstrated to reduce workload (de Visser and Parasuraman, 2011; 
Hilburn, 2017; Hilburn et al., 1997; Kaber and Endsley, 2004; Kaber and Riley, 1999), improve operator 
engagement during periods of manual control (Bailey et al., 2003; Prinzel et al., 2003), improve human-
system performance (Parasuraman, Molloy, and Singh, 1993; Wilson and Russell, 2007), and improve skill 
retention (Volz et al., 2016). 

As an example, the USAF has implemented AA in fighter aircraft via the Automatic Ground Collision 
Avoidance System, which takes over flight control when imminent terrain collision is detected. This system 
has been credited for saving multiple lives, but it may increase the risk of complacency (Lyons et al., 2017). 

While much research has focused on the AA paradigm alone, the committee recommends that both 
AA and LOA be considered in conjunction. Examining the two together, Kaber and Endsley (2004) found 
that, while LOA primarily affects human SA, the amount of time spent in automated versus manual control 
primarily affects workload and associated propensity for risk taking. It is important to consider that different 
LOAs can be in effect at different periods of time, which constitutes a major design decision (Feigh and 
Pritchett, 2014; Kaber and Endsley, 2004). Most tasks can theoretically be performed manually or at 
varying LOAs at various times or under different conditions. Whereas decisions about LOAs are often part 
of system design, the flexible-autonomy approach stipulates that LOAs can shift over time, either at human 
discretion or based on criteria built into the automation (USAF, 2015). When flexible autonomy is 
employed, methods for achieving effective transitions between humans and automation are needed.  

In the committee’s judgment, the ways that automation levels change over time is also in need of 
further research. Oppermann (1994) and Miller et al. (2005) differentiate between adaptive automation, in 
which the system assigns the automation level, and adaptable automation, in which the human operator 
assigns the automation level. Adaptable automation, which keeps the human in the decision loop in terms 
of the appropriate LOA, is believed to be advantageous because it allows the human to anticipate and 
prepare for changes in LOA (van Dongen and van Maanen, 2005). Adaptable automation can avoid some 
of the pitfalls of AA and can result in higher levels of trust, SA, and user acceptance (Parasuraman and 
Wickens, 2008). As a downside, in certain circumstances operators may become too busy to make LOA 
changes themselves (Kaber and Riley, 1999), and adaptable automation can involve a higher manual 
workload (Kirlik, 1993). 

In her review of the adaptable and adaptive approaches to flexible automation, Calhoun (2021) 
reported that studies comparing these two approaches have generally found that adaptable automation is 
beneficial in terms of improved workload, task performance, and subjective preference; however, she noted 
that the research base is limited. Miller et al. (2005) recommend that a mix of both adaptable and adaptive 
approaches to flexible automation may be warranted, with considerations of workload, competency, and 
automation predictability serving as critical mediators. In the committee’s judgment, more research is 
needed on the relative costs and benefits of human- versus automation-based changes in LOA over time.  

Key Challenges and Research Gaps 

The committee finds two main research gaps that exist with respect to flexible automation, in the areas 
of: 

• Best methods for supporting dynamic transitions between LOAs over time to maintain optimal
human-AI team performance, with a consideration of both adaptable and adaptive automation
approaches; and

• Requirements and methods for supporting SA, collaboration, and other teaming behaviors
generated by dynamic functional assignments across the human-AI team.
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Research Needs 

The committee recommends addressing two major research objectives for improving human-AI 
teaming using a flexible automation approach.  

Research Objective 6-4: Flexible Autonomy Transition Support. Research is needed to determine the 
best methods for supporting dynamic transitions in levels of automation over time to maintain optimal 
human-AI team performance, including when such transitions should occur, who should activate them, and 
how they should occur (USAF, 2015). It would be useful for this research to identify the task factors or 
contexts important for making temporal transition decisions in multi-domain operations, and mechanisms 
needed for those transitions. Methods for managing workload spikes and avoiding untimely interruptions 
need to be addressed (Feigh and Pritchett, 2014). 

Research Objective 6-5: Support for Flexible Autonomy. Research is needed to determine the new 
requirements generated by dynamic functional assignments across the human-AI team, including new 
situation-awareness needs, collaboration requirements, and other necessary teaming behaviors. Shared 
situation-awareness needs for supporting temporal shifts in functional assignments across the human-AI 
team need to be determined, and research on how to best provide the necessary information for making 
such shifts is also needed.  

GRANULARITY OF CONTROL 

A third major factor relevant to human-AI interaction is the control granularity, which is the degree of 
specificity of control input required to interact with the AI system (USAF, 2015). Granularity of control 
(GOC) can be manual or programmable, with programmable GOC necessitating the programming of task 
specifications and parameters. GOC can also involve Playbook control, in which operators choose from a 
“Playbook” of adaptable, preset behaviors (Miller, 2000; Miller and Parasuraman, 2007); or it can involve 
goal-based control, in which only high-level goals must be provided to the AI system (USAF, 2015).  

Programmable control, common for many automation systems, involves significant workload because 
the human must set up and control the automation under different conditions at various times. Systems with 
lower GOC, such as Playbook approaches, may reduce the amount of work needed to interact with the AI 
system.  

Plays and Playbook-style delegation architectures have been studied and shown to have promise for 
military applications (Miller and Parasuraman, 2007). AI will likely operate at much lower levels of 
granularity, avoiding this problem. Plays, in this tradition, are templates of behavior known to be effective 
for accomplishing specific goals. Within a play, a method is a kind of task decomposition that is constrained 
yet offers flexibility, either for the supervisor to further restrict or specify during delegation, or for the 
subordinate to select during execution. Playbook delegation has been shown to be effective in reducing 
workload (Fern and Shively, 2009), even in unpredictable (Parasuraman et al., 2005) or non-optimal play 
environments—those that do not conform to the conditions for which the plays were designed (Miller et 
al., 2011). Playbooks have been found to be easy for users to understand while allowing for a wide range 
of autonomous behavior. Recent work has shown that play-based architectures are effective in multiple-
actor, multiple-unmanned-aerial-vehicle control (Beymer et al., 2017; Draper et al., 2017). Potential 
benefits of play-based approaches include a vocabulary that allows shared expectations for human-human 
or human-automation communication about task performance, and streamlined communication about 
behaviors and outcomes, through a framework or contract against which performance can be reported and 
evaluated (Miller, 2014). More advanced AI, particularly based on deep-learning approaches, has not yet 
been integrated with play-based approaches.  
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Key Challenges and Research Gaps 

The committee finds two major research gaps related to GOC, in the following areas: 

• Effects of Playbook control on SA and OOTL; and
• Applicability of Playbook control to new applications relevant to multi-domain operations.

Research Needs 

The committee recommends addressing two major research objectives related to the use of GOC as a 
method for integrating human-AI teams. 

Research Objective 6-6: Granularity of Control (GOC) and AI Transparency. Although systems with 
low GOC, such those using Playbook control or goal-based control, promise to lower workload, the 
transparency of these systems and their effects on operator situation awareness need to be further 
researched. Because systems with low GOC involve increased queuing of tasks, situation awareness may 
decrease and the human may be less likely to detect the need for interventions in non-normal conditions 
(Endsley, 2017). Methods for improving situation awareness within low-GOC systems are needed.  

Research Objective 6-7: Playbook Extensions for Human-AI Teaming. It would be useful for the utility 
of plays and Playbooks for human-AI teaming to be studied on several novel fronts, including: (1) the utility 
of a play-based framework in communication and mental model formation before and after mission 
execution activities (e.g., training, debriefing, change awareness); (2) the utility of plays (and hierarchical 
task frameworks) in organizing, constraining, and framing change awareness of learning results against 
prior, functional baselines; and (3) the utility of communication based on play (and hierarchical task 
decomposition) frameworks for intent-centered communications between human and AI team members and 
how such communications need to be constructed.  

OTHER HUMAN-AI TEAM INTERACTION ISSUES 

The committee finds that a number of additional human-AI interaction issues remain largely 
unexplored and need further research. There is a paucity of design and engineering methods to support a 
fine-grained analysis of the interactions between human and machine agents that are necessary for optimal 
joint performance (Roth and Pritchett, 2018; Roth et al., 2019; Smith, 2018). Roth and colleagues (2019) 
argue that methods are needed to support: (1) “analyzing operational demands and work requirements” (i.e., 
context of use); (2) “exploring alternative distribution of work” across human and AI agents; (3) “examining 
interdependencies” among human and AI agents required for effective “performance under both routine 
and off-nominal (unexpected) conditions”; and (4) “exploring the trade-space of alternative” human-AI 
team options (p. 200).  

Several promising efforts have begun to address these needs. Matt Johnson and colleagues (Johnson, 
Bradshaw, and Feltovich, 2017; Johnson, Vignati, and Duran, 2020) have developed detailed 
representations and modeling techniques for analyzing alternative methods of distributing work across 
humans and AI systems, and they described the implications of these techniques for detailed human-AI 
interaction, including a consideration of how different human and machine agents could support each other. 
Several promising approaches exist. For example, Naikar and colleagues (2021) are developing methods to 
analyze how work can be shared and/or shifted fluidly between agents, and IJtsma et al. (2019) are 
developing computational methods for “determining the allocation of work and interaction modes for 
human-robot teams” (p. 221). Calhoun (2021) and Roth and colleagues (Roth et al., 2017, 2018) are 
developing frameworks to inform detailed human-machine teaming interaction design. McDermott et al. 
(2017, 2018) have produced human-machine teaming systems engineering guidance to inform military 
system acquisition. 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

50 HUMAN-AI TEAMING: STATE-OF-THE-ART AND RESEARCH NEEDS 

PREPUBLICATION COPY – Uncorrected Proofs 

Key Challenges and Research Gaps 

The committee finds three key research gaps in the area of human-AI team interaction, including: 

• Prediction of emergent behaviors in human-AI team interaction;
• Effects of human-AI team interaction design on skill retention, training requirements, job

satisfaction, and resilience; and
• Predictive models of human-AI team performance in both routine and failure conditions.

Research Needs 

The committee recommends addressing two research objectives for improving human-AI interaction. 

Research Objective 6-8: Human-AI Team Emergent Behaviors. People often change their behaviors in 
unpredictable ways in response to automation (Woods and Hollnagel, 2006). Research is needed to better 
predict how human behaviors will change with the introduction of AI systems, and the potential interactions 
of human behaviors with AI system behavioral changes, as one influences the other. It would be beneficial 
for this research to explore how various forms of interaction will influence cognitive performance (Smith, 
2018).  

Research Objective 6-9: Human-AI Team Interaction Design. Research is needed to better understand 
the effects of interaction design decisions on skill retention, training requirements, job satisfaction, and 
overall human-AI team resilience (Roth et al., 2019). In addition, methods for managing the inherent 
tradeoffs in human-AI team design are needed (Hoffman and Woods, 2011; Roth et al., 2019).  

SUMMARY 

There are a number of factors associated with combining humans and AI systems into teams, and the 
ways tasks are temporally and functionally distributed between team members, that have a significant effect 
on the performance of the human-AI team. The LOA and the ways that LOA assignments can change over 
time present a key design decision for human-AI teams. Research is needed to better support flexible 
automation, to support low-workload GOC approaches such as Playbook control, and to explore additional 
features of human-AI interaction in team settings. Models of human-AI interaction need to be developed to 
predict the outcomes of design decisions in routine and failure conditions, as well as potential emergent 
behaviors. 
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7 

Trusting AI Teammates 

Trust can be defined as “the attitude that an agent will help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability” (Lee and See, 2004, p. 2). Trust can mediate the degree to 
which people rely on each other or on a technology such as AI. Studies of trust in technology (e.g., 
automation, computers, robots, and AI) have emerged in many work domains, including automotive, retail, 
healthcare, education, military, and cybersecurity (Chiou and Lee, 2021; Siau and Wang, 2018). Although 
myriad studies have investigated the antecedents of human trust in technology, such as personality types 
and characteristics of the technology, many studies concerned with system performance focus on trust 
defined or operationalized as reliance on or compliance with another agent (Kaplan et al., 2021).  

Although this work remains useful, the committee notes two critical issues that impede future progress 
in understanding the role that trust plays in human-AI teaming. These issues are: (1) the lack of research on 
understanding how organizational and social factors surrounding AI-enabled systems—including how 
goals are adapted, negotiated, or aligned— inform the interdependent process of trusting; and (2) the strict 
definition of trust that limits its study to factors affecting reliance or compliance behaviors in the context 
of risk, rather than as a process that develops across multiple interactions and decision situations and affects 
broader sociotechnical and societal outcomes, such as cooperation (Coovert, Miller, and Bennett, 2017; Lee 
and Moray, 1994; Riley, 1994). One of the myriad factors affecting the organizational and social contexts 
of a team, albeit a novel one, will be the presence of one or more AI team members, and thus, trust in a 
team will include and be impacted by the perceived and projected decisions, actions, and impacts that the 
AI team member will have. 

TRUST FRAMEWORKS PAST AND PRESENT 

An early integration of the trust literature (Lee and See, 2004) showed that trust is one of many factors 
that affect reliance and compliance behaviors with automation. This framework of trust shows that self-
confidence and other attitudes combine with trust to guide intention; and multiple factors, including 
workload and task demands, combine with intention to guide a person’s action. Fishbein and Azjen's (Ajzen 
and Fishbein, 1980; Fishbein and Ajzen, 1975) theory of reasoned action provides a framework that links 
belief, attitude, intention, and behavior in a model that has been broadly applied, including to computer 
system acceptance (Davis, Bagozzi, and Warshaw, 1989). More recent reviews of trust in automation 
present evidence that, although there are similarities between people’s social responses to technology and 
to other people (Nass and Moon, 2000), trust in technology may differ from trust in other people (Madhavan 
and Wiegmann, 2007). Others advance a deeper description of trust development, in terms of a framework 
containing three layers of trust: dispositional, situational, and learned (Hoff and Bashir, 2015). Three 
categories of factors have been found to influence trust: human, technology, and environmental (Hancock 
et al., 2011; Kaplan et al., 2021). In the committee’s judgment, consistent outcomes of these analyses since 
2004 include: (1) trust involves analytic and affective processes; (2) trust affects decisions to rely on or 
comply with technology; and (3) trust is influenced by the qualities of a person, the technology, and the 
environment.  

Another consistent finding from Lee and See (2004) through Kaplan et al. (2021) and the broader trust 
literature is that trust influences and is influenced by other humans who might use the automation. This 
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idea has led to concepts like distributed dynamic team trust (Huang et al., 2021), which stems from research 
showing that trust in technology affects both active users and passive users (i.e., people whose interactions 
may be mediated or interrupted by technology) (Montague, Xu, and Chiou, 2014). Domeyer et al. (2019) 
reported that trust can reflect differently among incidental or indirect users (i.e., people who are not the 
direct customers or beneficiaries of that specific technology) when AI is deployed in systems that are more 
open. In the committee’s judgment, trust depends on social interactions such as reputation and the formal 
or informal communication that contributes to that reputation, such as gossip. The committee believes this 
social dimension of trust, distinct from the cognitive dimensions of trust, may become more prominent in 
human-AI teaming situations in which an AI system is capable of more autonomy in specific roles, or when 
human-AI teams are completing certain tasks or operations (Chiou and Lee, 2021; Sheridan, 2019).  

Figure 7-1 provides a model of relational trust that illustrates interactions between two agents. This 
model does not address distributed trust involving groups of three or more (Huang et al., 2021), or how 
distrust might spread through reputation within a network of agents (Riegelsberger, Sasse, and McCarthy, 
2005). Chiou and Lee (2021) portray in Figure 7-1 that a trusting, highly capable automation depends on 
social decision situations that are embedded in a goal environment. Trust evolves from repeated interactions 
between a human agent (AH) and an automated agent (AA) and the outcomes of those interactions over time. 
Fading in this figure depicts future situations. The focus on dyadic exchanges highlights the structural 
influences of trust through interactions that are not usually explicit in studies on trust between more that 
two interacting agents. Although this model has limitations, it uses the dyad as a simple unit of analysis to 
explore the relationships between inter-agent coordination and cooperation (Williams, 2010).  

FIGURE 7-1 Goal environment.  
SOURCE: Chiou and Lee, 2021, (p. 8). Reprinted with permission from Sage Publications. 
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TRUSTING AI IN COMPLEX WORK ENVIRONMENTS 

Most team, AI, and automation trust literature assumes a shared goal. In the committee’s opinion, 
goals may become misaligned to various degrees in fast-changing, adversarial environments. Although 
squadron leaders have some judgment-based decision authority for on-the-ground decisions, for example, 
broader strategic goals could come into conflict with the goals of other units, as new information emerges. 
When we consider human-AI teaming in multi-domain operations (MDO) environments, there is an even 
more pervasive demand for rapid information gathering, processing, filtering, and communicating, to 
support strategic decision-making between agencies in decision contexts that are also rapidly changing. 
Although organizational process controls may address this—through appropriate, interdependent 
performance measures that foster cooperation within and across agencies, for example— trust is likely to 
be central to smoothing these complex interactions. For the success of human-AI teams, the committee 
believes it is crucial to understand how the organizational and social contexts of those teams affect the 
evolution of trust at the interactive, front-line level of decision making (e.g., within the context of the 
conflicting goals of preserving the safety of civilians versus mission accomplishment). This understanding 
can also partly inform how trust between teams evolves (e.g., the scenario in Gao, Lee, and Zhang, 2006). 
Trust in other teams is complicated by the need to understand the capacity of the other team’s AI system 
and the influence of that system on the team. Team situations require the integration of an individual with 
the team’s goals and, in the extreme, being a “team player” may mean a willingness to set aside individual 
goals and cooperate on shared, team goals. 

The committee finds that any assumption of shared goals in teaming merits examination, as 
exemplified by AI team members such as HAL 9000 in Stanley Kubrick and Arthur C. Clarke’s novel and 
film 2001: A Space Odyssey, and Murderbot from Martha Well’s 2017 novella All Systems Red. In military 
contexts, the dilemma of whether people should be sacrificed to achieve broader strategic goals seems 
central to trusting AI team members. The challenge emphasized in this report is less about the moral 
philosophy or ethics behind decisions, and more about how local goals will need to be adapted, negotiated, 
or aligned to achieve global use of human-AI teams in complex and dynamic task environments. In such 
environments, AI systems may be distrusted not because they perform poorly, but because they act on a 
broader information array that conflicts with the narrower information array available to the human, 
resulting in misaligned goals. In addition, the effects of concept drift, in which current situations are 
different than the situations the AI has been trained for (Widmer and Kubat, 1996), can negatively affect 
goal alignment and trust. In teaming, the process of adapting, negotiating, and aligning goals with actions 
depends on trust. Until recently, guidance on how to specify those increasingly complex contexts has been 
sparse.  

In the committee’s judgment, understanding the context in which AI systems will be implemented 
within MDO, whether in the office, on the ground, in the air, or at sea, is critical to specifying the goal 
environment. For example, recent work on standardizing evaluation criteria for trusting AI systems (Blasch, 
Sung, and Nguyen, 2020), focused heavily on criteria that identify the AI system’s information credibility. 
This focus would be less appropriate for evaluating the trustworthiness of AI systems involved in 
cybersecurity access control, scheduling and logistics, or resource management domains, among many 
other areas with differing task demands within their respective goal environments. Even in the 
comparatively restricted realm of plays and Playbooks, agents must be delegated some authority to behave 
within the constraints of the play if there is to be workload savings for the team (Miller and Parasuraman, 
2007) and truly autonomous and independent agents can, presumably, always choose to violate their orders 
if trust or willingness to sacrifice is lacking. 

KEY CHALLENGES AND RESEARCH GAPS 

The committee finds two key challenges that need to be addressed for improving the understanding of 
trust in an AI teammate, particularly in the MDO context.  
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• Trust research, testing, and evaluation environments need to be reframed. This can be 
accomplished by specifying the social structure of team decisions in trust research, and by moving 
toward directable and directive interactions, not just transparent and explainable interactions.  

• Trust measures and statistical models need to be reframed. This can be accomplished by moving 
from technology reliance to team coordination and cooperation, delineating distrust from trust, 
considering dynamical models of trust evolution, and thinking about trust as a process that emerges 
from interacting dyads as well as from multi-echelon networked agents.  

 
RESEARCH NEEDS 

The committee recommends addressing six major research objectives for improving trust in human-
AI teams.  

 
Research Objective 7-1: Effect of Situations and Goals on Trust. To establish baseline models of trust 
across studies of interacting agents in various operational task contexts, situation structures could be used 
to study how the goal environment affects trust decisions. Situation structures (different from the task 
situation defined in Chapter 4) refer to a formalism in social decision making based on interdependence 
theory (Kelley and Thibaut, 1978) and are commonly represented as a 2 x 2 decision matrix. “[A] situation 
structure specifies the choices available to each actor in a dyad, the outcomes of their choices, and how 
those outcomes depend on the choices of the other agent” (Chiou and Lee, 2021, p. 9). Situation structures 
are useful in determining the relative advantages of trust for cooperation or coordination in an environment. 
Situation structures can be used as an organizing framework for designing evaluation environments (e.g., 
testbeds) for trust research in human-AI teaming (Chiou and Lee, 2021). Trust calibration, which is to align: 
 

“a person’s trust with the automation’s capabilities--is often described as a prerequisite for superior 
human–AI performance (Lee and See, 2004). However, conflicting results show that trust calibration alone 
is not sufficient for superior performance (McGuirl and Sarter, 2006; Merritt et al., 2015; Zhang et al., 
2020). The situation structures show that when the performance profile of the person and the automation 
are highly correlated, trust calibration does not matter (Zhang et al., 2020)” (Chiou and Lee, 2021, p. 10).  
 
Furthermore, situation structures can be used to show “when it might be appropriate for humans to 

rely on AI, even when AI performs worse on a task than humans would, “because relying on the automation 
enables [humans] to shift attention to a more important activity” (Chiou and Lee, 2021, p. 11). Situation 
structures encourage an analysis that considers reliance on AI in a broader sociotechnical context. Although 
formally representing situations as decision matrices can be one way for researchers and developers to 
quickly identify trust-relevant contextual similarities across empirical studies and to evaluate the 
generalizability of those studies, identifying these common structures can also help explain the variable and 
seemingly contradictory findings in the trust literature, and can help define the contexts within which we 
can begin to find consistent results. As such, field studies that leverage mixed methods, including 
anthropological studies with rich qualitative data sets, are also necessary to help identify the many situations 
that might exist within a task environment. Other computational approaches (e.g., agent-based modeling 
and hidden Markov modeling) that capture interaction patterns and investigate outcomes of interactions 
(Cummings, Li, and Zhu, 2022; Juvina, Lebiere, and Gonzalez, 2015) can also benefit from these formal 
representations of situations. Beyond identifying the situation structure, identifying strategies for 
negotiating these situations is a closely related issue. Such strategies could help the AI teammate maintain 
cooperation in a situation in which competition is likely (Chiou and Lee, 2021). 

 
Research Objective 7-2: Effects of Directability on Trust. Concepts like transparency and explainability 
would benefit from being accompanied by concepts like directability, to better support dynamic, trusting 
relationships in complex task environments. Directability is “one’s ability to influence the behavior of 
others and complementarily be influenced by others” (Johnson and Bradshaw, 2021, p. 390). Designing for 
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AI system transparency and explainability remains important for communicating purpose, process, and 
performance information about an AI teammate (see Chapter 5). Such information, when communicated 
effectively, can facilitate smoother human-AI team integration by engendering, repairing, and sustaining 
trusting relationships. However, in the committee’s judgment, studies that focus exclusively on how design 
techniques can improve human or human-AI performance tend to miss the relational aspects of these 
constructs that are foundational for trust. These relational aspects include the idea that transparency can 
mean different things to different stakeholders within and between organizations or organizational units 
(Ananny and Crawford, 2016), and that anthropomorphism can enable a sense of efficacy with and 
understanding of AI, yet its effects are highly variable and sometimes inappropriate (Epley, Waytz, and 
Cacioppo, 2007). To be deemed an explanation according to human social interactions, explanations must 
be presented relative to the explainer’s beliefs about the receiver's beliefs (Miller, 2019). Furthermore, 
transparency and explanations may not always be necessary or possible, depending on the teaming 
arrangement (e.g., in human-animal teams that do not share mental models or communication modalities).  

In the committee’s opinion, responsivity may be a more useful concept for teaming with AI. AI 
responsivity refers to “the degree to which the automation effectively adapts to the person and situation,” 
and “captures the notion that [AI] could affect trust development through its responses to common ground 
variables” (Chiou and Lee, 2021, p. 6). Common ground, which is a concept related to shared mental models 
(see Chapter 3) and shared situation awareness (see Chapter 4), refers to “the mutual knowledge, beliefs, 
and assumptions that support [the type of] interdependent actions” (Klein et al., 2005, p. 146; Chiou and 
Lee, 2021, p. 6) required in teamwork, not just task work.  

Therefore, beyond thinking about transparency and explainability (or related concepts like legibility, 
observability, and explicability) in a more relational way, AI responsivity requires making information on 
the purpose, process, and performance of the AI system directable and observable (i.e., transparent). To 
what extent does sharing transparency information, versus behaving in a transparent manner, affect in-the-
moment decisions (Takayama, 2009)? Further, AI responsivity may provide the AI system with the ability 
to observe and direct its human counterparts (Johnson and Bradshaw, 2021). This means going beyond 
simply presenting information that “privilege[s] seeing over understanding” (Ananny and Crawford, 2016, 
p. 8), and advances from the notion that AI reliability alone affects trust, if trusting relationships are to be
sustained over time and across contexts. In the committee’s judgment, this seems critical for the
coordination and timing of AI contributions, balancing workload, and sharing tasks according to expertise,
as effective teams often do. Perhaps more important is understanding whether the dynamic interaction can
help to align goals for cooperation. Team situations require that people align their goals and cooperate.
Although this requirement is often assumed during the formation of a team, in complex work environments
with fast-paced, changing conditions, goal alignment and cooperation may additionally require setting aside
individual goals (or initial goals) to align quickly to the updated goals that are in the best interests of the
team. Analyzing the situation structure can identify the degree to which individual goals must be adjusted
to align with team goals.

Research Objective 7-3: Cooperation as a Measure of Trust. In teaming structures, behavioral measures 
of cooperation would be useful to employ, to understand when trust matters beyond reliance and compliance 
in function allocation structures. Team science literature provides a useful framework for understanding 
human-AI teaming (i.e., interactions with increasingly capable automation) because teams in general tend 
be comprised of members with high levels of autonomy, meaning team members do not have complete 
control over other team members (NRC, 2015). Therefore, an assumption of teaming is that it is not 
deterministic (i.e., not akin to choreographing a collection of autonomous agents), but that coordination 
emerges from the team’s interactions (Cooke et al., 2013) with trust playing a central role (i.e., in 
teamwork). In the function allocation approach outlined in early conceptualizations of human-automation 
systems (Fitts, 1951; Sheridan and Verplank, 1978), which remains prevalent in modern applications of AI 
with well-defined roles narrowly scoped to a particular task, reliance and compliance may make sense as 
primary behavioral outcomes of interest when it comes to human trust. However, coordination to achieve 
a specific goal in laboratory studies of teaming needs to be distinguished from coordination in more 
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complex environments, in the field or in simulated settings, that involve uncertainty and changing goals. 
These environments often demand a dynamic process of trust that is central to coordination.  

Whereas “coordination is about the timing or arrangement of joint decisions” (Chiou and Lee, 2021, 
p. 10), or dependency management (Malone and Crowston, 1994), cooperation is about negotiating and
aligning individual goals when they differ from the joint goal, and it is best identified in team members
willing to give up individual benefit to achieve greater benefits for the team. “Negotiating goals to
cooperate—by way of trust—has different outcomes compared to coordination. Importantly, situation
structures indicate which decisions require negotiation” (Chiou and Lee, 2021, p. 10). Although “trust plays
a role in both coordination and cooperation situations, for coordination, the benefits of trust” (Chiou and
Lee, 2021, p. 10) tend to be more interpersonal (similar to how perceived collegiality accumulates as social
capital to facilitate positive downstream outcomes in a relationship) whereas, in cooperation situations,
“trust directly affects the immediate decision outcome” (Chiou and Lee, 2021, p. 10). Strain test situations
are one example in which decisions to cooperate can emerge from interactions. If a team member
cooperates, or meaningfully helps a teammate in the moment, even though it incurs some cost to the team
member (e.g., time, other resources), then that team member is said to have “passed” the strain test, and
such actions are known to bolster trust in a relationship (Simpson, 2007). Behavioral outcome measures of
trust that do not interfere with work performance and dynamics should be considered.

Research Objective 7-4: Investigations of Distrust. In teaming environments that are highly interactive, 
more granular measures may be needed to consider distrust separately from trust, rather than as opposing 
ends of the same linear scale. Studies on highly reliable (but not perfect) automation that fails have shown 
a resulting bimodal distribution in trust, which is not well explained by individual differences, such as 
predisposition to trust. Furthermore, there is a theoretical argument (Harrison McKnight and Chervany, 
2001), and more recent empirical evidence (Dimoka, 2010; Schroeder, Chiou, and Craig, 2021; Seckler et 
al., 2015) that distrust is a separate, albeit related, construct from trust, and that there is merit in viewing 
trust and distrust as separate, simultaneously operating concepts. Yet, many studies that focused on trust 
in technology do not measure distrust separately from trust, possibly because influential 
instruments developed to measure trust have suggested that trust and distrust could be treated as 
part of the same continuum (Jian, Bisantz, and Drury, 2000). One working hypothesis from this 
committee is that active suspicion of a teammate is a different mode from looking for reasons to trust, and 
that distrust and trust may be more about switching between modes. For example, a system may be 
mistrusted due to its performance capabilities or due to a suspicion that it has been hacked. Therefore, as a 
dynamical system, human-AI teaming may not only involve calibrating trust or developing trust with one 
another (i.e., seeking out reasons to trust), but may also involve detecting adversarial behavior that leads to 
distrust. 

Research Objective 7-5: Dynamic Models of Trust Evolution. Dynamic models of trust evolution within 
specified goal environments are needed, which go beyond eliciting and categorizing the factors that could 
affect trust in an AI teammate. For example, research has shown that trust can be lost after a system failure 
and may take time to recover, and that automation failures have a greater effect on trust than automation 
successes (De Visser, Pak, and Shaw, 2018; Lee and Moray, 1992; Lewicki and Brinsfield, 2017; 
Reichenbach, Onnasch, and Manzey, 2010; Yang, Schemanske, and Searle, 2021). As an analog for team 
outcomes, Gottman, Swanson, and Swanson (2002) show how marriage outcomes can be described and 
predicted through dynamical systems analysis and differential equations, an approach that is not about 
understanding individual differences, spousal traits, or environmental factors, but about the dynamics of 
partner communication. Such models are needed to understand how trust evolves and affects performance 
outcomes in various human-AI team contexts. These contexts can be specified through situation structures 
after identifying and understanding the goal environment of the human-AI team, shown in Figure 7-1, which 
envelops the task environment.  
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The citations in the previous paragraph, focused on eliciting and categorizing factors that could 
possibly affect trust in an AI teammate may be useful for understanding the state-of-the-art in research 
(e.g., Kaplan et al., 2021), but may also do little to advance our understanding of trust dynamics, such as 
how trust evolves in real-world, interactive contexts. Furthermore, factor analyses that rely on a layperson’s 
concept of the word “trust” may dilute, or worse, lead astray from, the rigorous, theoretical concept of trust 
as something influenced by the purpose, process, and performance information of a partner in work contexts 
(Lee and See, 2004; Long et al., 2020; McCroskey and Young, 1979). Dynamic models of trust help make 
better use of the behavioral responses that are associated with trust and that are often the primary outcomes 
of interest with respect to understanding trust. Such dynamic trust models, and their use of contemporary 
datasets, can help to capture the granularity of how interactions in one context might influence subsequent 
interactions in another context.  

Research Objective 7-6: Trust Evolution in Multi-Echelon Networks. Trust between multi-echelon 
networked agents has unique properties that cannot be captured by studying dyadic trust alone. Proposed 
frameworks of trust in self-organizing, agent-based automation and AI-enabled teammates have raised 
issues including the concept of trust transitivity among multi-agent teams (Huang et al., 2021; Lee, 2001). 
Also, a recent meta-analysis identified reputation as an impactful AI-related antecedent of trust (Kaplan et 
al., 2021). Though studies of dyads remain critical for understanding the dynamics of trust through 
interactions, effects on critical team concepts like coordination, cooperation, or competition, and human 
decision making with technology, dyads are limited for understanding the spread of trust in multi-echelon 
networked agents and the effects of trust on broader outcomes like organizational performance (Moreland, 
2010; Williams, 2010). Understanding coalition building across teams and how peripheral stakeholders 
within the human-AI team’s goal environment form various situation structures require further study 
involving larger units of analysis, including teams of three to eight, teams of teams, and networks.  

SUMMARY 

The development of increasingly capable AI-enabled teammates, and the flattening of organizational 
structures from hierarchies to MDO, mosaic-like structures, suggest that a reframing of trust is needed to 
advance our understanding, design, and implementation of human-AI teams. Although a good deal of 
research has focused on promoting human reliance on automation by calibrating trust, this approach does 
not address the relational aspects of teaming and system-level outcomes, such as cooperation. The proposed 
research objectives outline a path forward for understanding how organizational and social factors 
surrounding AI systems inform the interdependent process of trust in teams. These objectives go beyond 
the pervasive focus on calibrating trust solely for appropriate reliance and compliance.  
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8 

Identification and Mitigation of Bias in Human-AI Teams 

HUMAN BIASES 

Decision bias, in the current context, is a preference toward certain information or options that is 
considered to be “irrational”. Bias is created through systematic error introduced by selecting or 
encouraging one outcome or answer over others. In decision sciences, the concept of bias is related to the 
concept of rationality, the principle of maximization in agreement with subjective expected utility theory 
(Einhorn and Hogarth, 1981). The value of subjective expected utility theory as a principle of human 
decision making has been criticized from its inception. Notably, early critique by Simon (1955, 1957) 
described humans as approximately rational (i.e., boundedly rational) rather than rational. A substantial 
body of research on human heuristics and biases followed, which has gained significant popularity over the 
past several decades (Kahneman, Slovic, and Tversky, 1982; Tversky and Kahneman, 1974). This research 
has resulted in increased understanding of several well-known human decision biases, including anchoring, 
confirmation bias, framing effects, and availability. Since then, the list of human biases has grown. Most 
commonly, these biases describe gaps in human decision making compared to rational decisions, rather 
than explaining how humans actually make decisions (Gonzalez, 2017; Klein, 1993; Lipshitz, 1987). It is 
often assumed that the introduction of AI will reduce or eliminate human decision bias, however, this has 
not yet been shown to be the case in complex real-world settings. While there are important evolutionary 
reasons for many of these human biases, most notably their ability to reduce cognitive load and allow rapid 
decision making, these same benefits are not necessarily applicable to AI systems that do not suffer from 
the same significant attention or processing limitations as humans. 

AI BIASES 

AI also suffers from biases, which occur when a computer algorithm makes prejudiced decisions based 
on limited training data (West, Whittaker, and Crawford, 2019). AI bias can also result from certain features 
of the algorithm. The most common form of AI bias results when the data used to train an AI algorithm 
carries systematic deviations from a norm (e.g., fairness), which can result from inherent frequencies of 
examples in AI training sets or a lack of representativeness of the data. For example, algorithms that carry 
flaws based on the data they are trained on can lead to serious discrimination in the selection of job 
candidates, or in police actions based on race (Daugherty and Wilson, 2018). In the committee’s judgment, 
these biases may often be hidden.  

Humans can introduce multiple sources of subjectivity and bias into the design of human-AI teams 
(Cummings and Li, 2021b), which include: (1) bias from inappropriate data curation; (2) bias in the design 
of one or more algorithms; and (3) bias in the interpretation of the resulting algorithms. Regarding data 
curation, it is well established that bias can be inadvertently introduced into an AI system due to underlying 
data sample selection bias (Gianfrancesco et al., 2018; Samimi, Mohammadian, and Kawamura, 2010). 
However, there is substantially less research on how the actual curation of the data set affects outcome, and 
it is still not well understood how problems in data labelling affect algorithm brittleness. For example, 
inherent subjectivity in emotion labelling can make any resulting models suspect (Cowie et al., 2011). 
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Errors made in actual data labelling, either by humans or machine-based labelling systems, are even 
more problematic. One study, looking at 10 commonly used computer vision, natural language, and audio 
datasets, found a 3.4 percent average error rate across all datasets (Northcutt, Athalye, and Mueller, 2021). 
Data-labelling errors affect overall classification outcomes and can be pervasive in commercial language 
models and computer vision systems, which can form elements of systems used by the DOD. Ongoing 
research seeks to identify and correct bias in machine-learning (ML) datasets (Lee, Resnick, and Barton, 
2019), but significantly more work is needed in this area. 

In addition to data curation, significant bias can be introduced into an AI system when the designer 
subjectively selects an AI algorithm and the associated parameters for an application. One recent study 
illustrated that there were at least 10 significant subjective decisions made by designers of ML algorithms 
that could impact the overall quality of the algorithms (Cummings and Li, 2021b). The committee finds 
that there are currently no standards or accepted practices for how such points of bias and subjectivity could 
or should be evaluated or mitigated. 

The third major source of bias is that generating results from ML-based probabilistic models requires 
interpreting complex statistics, which is a known and well-documented point of weakness, even for experts 
(Tversky and Kahneman, 1974). Research efforts have recently attempted to make outputs more explainable 
(Chandler, 2020) or interpretable through sensitivity analyses like counterfactual explanations (Fernández-
Loría, Provost, and Han, 2020). However, most of these efforts attempt to explain or improve 
interpretability for experts and developers of these algorithms, and significantly less effort is aimed at 
helping users of AI systems to understand the results of such systems (see Chapter 5).  

Further, bias may result when the training data is not representative of the situations in which the AI 
system will be applied. For example, if an AI system is trained on situations found in one environment, it 
will be biased in its recommendations when applied to a different type of environment. An AI system 
trained on the military tactics of one adversary would do poorly when directed at a different adversary 
because it is biased toward its training data. In this sense, bias can be thought of as resulting from over-
generalization of an AI system beyond what was represented in its training.  

The committee finds that the importance and impact of AI bias cannot be understated, especially for 
users of time-pressured systems—a hallmark of military systems. Users may be completely unaware that 
there are potentially flawed assumptions and biases that could call into question the results presented by AI 
systems, and users also do not typically have a way to understand the practical confidence intervals of AI-
based recommendations. This challenge is also noteworthy because it impacts certification efforts. For 
example, if external system evaluators (non-creators) cannot understand how systems are developing 
solutions and executing operations or their possible failure modes, those evaluators cannot develop 
appropriate confidence that the AI systems can meet the specified requirements.  

Given the increased use of AI in many societal applications, including policing, legal decision making, 
social benefits, hiring, and others, the committee finds that the interdependencies between human and AI 
bias are a major concern. In particular, in multi-domain operations (MDO), the impact of AI biases may be 
large and significant, given the variety of new and novel situations that may be encountered.  

HUMAN-AI TEAM BIAS 

Although it is often assumed that humans can oversee an AI system and correct its errors, providing 
independent checks on the system, this has been shown to be untrue; human decision making can be directly 
affected by the accuracy of the AI system, creating a human-AI team bias. Kibbe and McDowell (1995) 
found that when image analysts were provided with recommendations from an automated target recognition 
system, this rarely resulted in improved performance over either the human or the automated system 
working alone. Similarly, Metzger and Parasuraman (2005) found that air traffic controllers performed 
better on their own than with an imperfect conflict-detection system. Further, when AI systems are wrong, 
their human partners are much more likely (30–60%) to make errors than when they receive no advice from 
the AI system (Layton, Smith, and McCoy, 1994; Olson and Sarter, 1999; Sarter and Schroeder, 2001). 
This has also been called concept drift (Widmer and Kubat, 1996). Similarly, when automation is used to 
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cue important information in a visual scene, users are more likely to choose a cued target, even if that target 
is incorrect, and to miss uncued targets (Yeh and Wickens, 2001; Yeh, Wickens, and Seagull, 1999). Selcon 
(1990) also showed that, when the confidence levels associated with multiple options considered by an AI 
system are similar, human decision making is significantly slowed.  

This body of research shows that people will often anchor on the recommendation of the AI system, 
and then gather information to agree or disagree with it. The AI system therefore provides direct input into 
human decision making, increasing the risk of human error when the system is wrong, akin to confirmation 
bias. The time taken for the human to make that assessment can, in some cases, be significant. Rather than 
operating in a parallel fashion with AI systems, as independent decision makers (which would increase 
system reliability), humans actually operate in a serial manner with AI systems, taking their inputs into 
account along with data gathered independently, reducing reliability and overall human-AI team 
performance (Endsley and Jones, 2012).  

Further, the impact of AI on human performance can depend on the way an AI system’s 
recommendations are presented. For example, Endsley and Kiris (1994) examined methods of presenting 
an AI system’s confidence in recommendations, including digital percentages, analog bars, rankings, and 
categories such as high, medium, and low. They found that performance was not significantly improved by 
AI advice, even for novices, and decision time increased for most methods of presentation. Decision times 
were slightly faster when categorical presentation was used by the AI system compared to when no 
information was provided by the system. More recently, Friesen et al. (2021) compared alternative advisory 
system displays for safe-path planning in a helicopter flight-route-planning application. They found that, 
when the advisory system generated a specific flight path, pilots tended to follow it even when there were 
better trajectories available that would save fuel and time. In contrast, when the advisory system used 
constraint-based displays showing multiple path options, pilots were more likely to select an optimal route. 
Framing effects have also been noted (Banbury et al., 1998). While these examples show the importance of 
system transparency (see Chapter 5), they also demonstrate the subtleties involved in combining human 
and AI system decision processes. The number of decision options generated, the agent (human or AI) 
generating the decision options (Endsley and Kaber, 1999), the order of exchange of decisions (human first 
or AI first) (Layton, Smith, and McCoy, 1994), and the format or framing of decisions have all been found 
to have a significant effect on decision quality. These effects can be quite insidious, as they may not be 
apparent to either the decision maker or the system designer. 

Thus, human biases present in the selection and development of AI training datasets or in the 
development of AI algorithms can create AI biases. AI biases can lead to human decision-making biases 
when the AI system is incorrect or uncertain, and decision-making biases can negatively affect human 
performance. The committee finds that the interactive effects of bias in the human-AI team may often be 
subtle, occurring below conscious awareness, but can lead to poor decision outcomes with potential ill 
effects, such as increased collateral damage, fratricide, or damage from adversarial attacks. Further, human-
AI teams may be subject to common team-based biases, such as information pooling or group think, that 
could negatively affect performance. While it is logical that people need to gather information to check the 
output of an AI system, the lack of independence of human and AI decision processes means that people 
may be inadequate at performing this important cross-check function, and it demonstrates the 
interdependent effects that biases can create. 

KEY CHALLENGES AND RESEARCH GAPS 

The committee finds five key research gaps that exist with respect to the potential for both human and 
AI biases that can negatively affect performance. More information is needed in the following areas: 

• Improved understanding of the interdependencies between human and AI biases;
• Examination of the potential for adversarial attacks on human and AI biases, and detection and

mitigation of these effects;
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• Determination of human-AI biases that emerge from AI learning based on small and sparse
datasets;

• Development of adaptive and personalized AI models that can predict human biases and respond
appropriately; and

• Preventative detection of emergent human and AI biases within the context of online, continuously 
evolving learning systems.

RESEARCH NEEDS 

The committee recommends addressing five related research objectives to reduce bias in human-AI 
teams.  

Research Objective 8-1: Human-AI Partnerships in Continuous-Learning Environments. AI and 
human biases can feed into each other. This interconnectedness of heterogeneous and autonomous AI 
systems with humans who continuously learn and adapt their behaviors can generate emergent behaviors 
that are difficult to predict and may result in catastrophic effects (Ramchurn, Stein, and Jennings, 2021). 
Research is needed to determine the effects of AI biases on human biases, and of human biases on AI biases, 
to ensure that human-AI interdependencies are understood and their outcomes ethical, appropriate, and safe. 
Research is also needed to determine how human-AI interdependencies will evolve with continuous 
interactions, so that biases can be prevented and situation awareness of teammates’ biases can be 
determined (see Chapter 4). It would be advantageous for research to determine the appropriate regulations 
of and accountability for these interdependencies in human-AI partnerships.  

The interdependence of biases between humans and AI systems needs to be studied in cooperative as 
well as adversarial settings. Open AI and explanations that help humans identify AI anomalies need to be 
investigated. Very little work exists to address conflicts within human-AI relationships, in particular in 
team settings (Lin and Kraus, 2010). For example, how much control should be given to a human to mediate 
the detection of AI biases when the human can also be biased?  

Research Objective 8-2: Adversarial Effects on Human-AI Team Biases. In multi-domain operations, 
human-AI team biases can develop within adversarial situations. For example, in the context of 
cybersecurity teams (Buchler et al., 2018), many human biases can be identified (Cranford et al., 2021; 
Gutzwiller et al., 2018) in which humans have difficulty detecting the intentions of an attacker. Cyber 
criminals often use human biases to conduct phishing attacks and get credentials to access an organization’s 
systems, for example (Rajivan and Gonzalez, 2018; Singh et al., 2019). Furthermore, cyber criminals may 
also attack via AI biases. Adversarial machine learning research has identified many weaknesses of AI 
algorithms that can be easily exploited by an adversary (Harding et al., 2018). New research needs to 
investigate potential biases in multi-domain operations and the weaknesses these biases represent for 
defense. Research is greatly needed for cyber defense, to prevent enemies from gaining advantage via 
human-AI biases, and to determine how defenders can exploit such biases for cyber defense (Gonzalez et 
al., 2020). Machine-learning and AI-bias research is needed to prevent attacks to AI systems that occur by 
taking advantage of AI biases. Multi-domain operations research would be well served to adopt an adaptive 
approach to overcome biases, as in recent advancements of adaptive cyber-defense methods (Gonzalez et 
al., 2020; Marriott et al., 2021).  

Research Objective 8-3: Biases from Small Datasets and Sparse Data. In many human-AI teams, 
important decision making often resides with the human, while information gathering and analysis is the 
job of the automation (Blaha et al., 2019; Tambe, 2011; see Gonzalez et al. (2014) for a discussion of 
decision making in cybersecurity teams). However, automation (specifically AI and machine learning 
(ML)) and similar data-driven technologies can be significantly affected by the quantity and quality of the 
data the systems are trained on (Ramchurn, Stein, and Jennings, 2021). Appropriately representative data 
sets may be limited in many multi-domain operations applications.  
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Work on adversarial ML demonstrates a major weakness of ML algorithms: they are prone to simple visual 
perturbations by an adversary (Goodfellow, Shlens, and Szegedy, 2015; Papernot et al., 2016). While ML 
algorithms are created to shield the human from the overwhelming amount of data he or she would fail to 
successfully process, humans can easily overcome this security weakness of ML algorithms by visual 
identification (Harding et al., 2018). This creates an ironic situation in human-AI teams: the AI system that 
is created to strengthen security may actually weaken it. Because ML relies on data, the performance of 
ML systems depends on the realism and correctness of data, and how the systems are maintained. In the 
committee’s judgment, much research exists on methods to deal with small data sets and sparse data, but 
the bias problem emerging from these systems has not been addressed. Research is required to address 
resultant human-AI biases that emerge from AI learning based on small and sparse datasets.  

Research Objective 8-4: Inductive and Emerging Human Biases. A number of consistent deviations 
from rational behavior have been identified using laboratory experiments with simple prospects described 
in terms of probabilities and outcomes (Kahneman and Tversky, 1979). However, currently, the large 
collection of human cognitive biases cannot all be explained by one comprehensive theory and, most 
importantly, it is unknown how biases develop over time or how they initially emerge (Gonzalez, 2017). 
As a result, little is known about how to overcome human biases. 

Recently, a large amount of work has been dedicated to the development of models and approaches to 
determine human decisions (Erev et al., 2010; Gonzalez and Dutt, 2011). These models have been extended 
to involve team and group work (Gonzalez et al., 2015), but it is unclear how these models would generalize 
to the particularities of human-AI team interdependencies. To effectively capture human-AI biases in multi-
domain operations, AI algorithms must be aware of the human’s preferences and constraints (Ramchum, 
Stein, and Jennings, 2021). Furthermore, it would be useful for such models to be able to trace human 
preferences and biases dynamically and to be able to customize and personalize AI responses according to 
the predicted levels of biases. Such an adaptive and personalized approach is being investigated in the 
context of cybersecurity (Cranford et al., 2020; Ferguson-Walter, Fugate, and Wang, 2020; Gonzalez et al., 
2020; Gutzwiller et al., 2018). The investigation of adaptive and personalized models that can predict 
human biases needs to be extended to other aspects of multi-domain operations. 

Research Objective 8-5: Preventative Detection and Mitigation of Human-AI Team Biases in 
Learning Systems. Preventative detection of emergent human and AI biases needs to be studied within the 
context of continuously evolving learning systems. Identification and detection of AI biases are often 
difficult before a system is deployed (Slack et al., 2020). Current techniques are limited to explaining biases 
after they have emerged rather than preventing AI biases from emerging in the first place (Gilpin et al., 
2018; Ramchurn, Stein, and Jennings, 2021). More research is needed to detect, prevent, and/or mitigate 
potential AI biases before an AI system is deployed, and research is also needed to test AI systems against 
attempted adversarial exploitation. Further, methods are needed to discover, measure, and test bias in 
human-AI teams. It is unknow how human decision biases affect data curation, how this can be evaluated, 
and what can be done to mitigate such biases. It is also unclear how to overcome implicit human biases, 
given the limited research on the emergence of such biases. Cognitive models of learning can help identify 
and prevent human biases (Cranford et al., 2020; 2021), but more research targeting the identification and 
prevention of human biases is required. It is important to build on research on anti-fragility teams to 
determine how individual biases influence team biases (Taleb, 2012).  

SUMMARY 

Humans are subject to several well-known biases that can negatively affect their decision making. AI 
systems, far from being perfect, are also subject to a number of biases that may be hidden from the people 
who interact with them, and which can negatively affect an AI system’s performance and the performance 
of the combined human-AI team. Research is needed to better understand the interdependencies between 
human and AI biases, and to detect and prevent biases that impede effective performance in human-AI 
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teams in multi-domain operations, particularly in the face of adversarial actions that may try to exploit 
them. 
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9 

Training Human-AI Teams 

Training has long been a hallmark of both DOD operations and teamwork. Team training is conducted 
in a manner that seeks to leverage knowledge, skills, and attitudinal competencies to improve general team 
processes (Salas et al., 2008). The reasons for team training are abundant. Team training improves 
performance (Salas et al., 2008), improves adaptive response (Gorman, Cooke, and Amazeen, 2010), 
decreases error (Wiener, Kanki, and Helmreich, 1993), and develops team cognition (Marks et al., 2002). 
For these reasons, team training has a long history, spanning multiple decades (Delise et al., 2010; Salas et 
al., 2008; Tannenbaum and Cerasoli, 2013). Throughout the years, many types of training mechanisms and 
modalities have been developed and implemented in multiple contexts, to unleash the full capabilities of 
teams. However, to date, team training has focused primarily on human-human teaming interactions 
because teams have traditionally consisted only of human team members, with very few exceptions (human-
animal teams being one exception, see Chapter 3), but this is changing with the advent of human-AI teaming 
(see O’Neill et al., 2020 for a complete review).  

In response to human-AI teaming, the committee finds that training needs to adapt to account for both 
perceptual and procedural teaming changes. Humans perceive AI teammates as fundamentally different 
than human teammates (Zhang et al., 2021) and work with AI teammates differently than they do human 
teammates (McNeese et al., 2018). Human-AI team training can benefit significantly by leveraging current 
and past human-human team-training standards to inform and jumpstart its own standards. However, it is 
essential to consider that human-human teaming is different from human-AI teaming and, for that reason, 
new methods, mechanisms, and modalities will need to be developed and introduced to fully leverage 
human-AI teaming capabilities. This chapter will review human-human team-training methods with an eye 
to how they can inform human-AI team training, identify key challenges, and present relevant research 
needs.  

HUMAN-HUMAN TEAM TRAINING TO INFORM HUMAN-AI TEAM TRAINING 

As noted, the concept of team training is well established, and its impacts on improved teaming are 
well founded. The foundational knowledge associated with team training is focused on training humans to 
collaborate with other human team members to effectively work toward a shared goal. Many types of team 
training have been proposed.  

Strategies for Team Training 

The strongest theme in the human-human team-training literature is the use of various training 
strategies. Although teams can be trained using various methods, the focus of this chapter is limited to the 
three main types of training found most frequently in the literature: procedural training, cross-training, and 
adaptive or perturbation training. These training methods have shown consistently positive results over the 
decades (Delise et al, 2010; Salas et al., 2008: Tannenbaum and Cerasoli, 2013).  

Procedural training is a traditional methodology that focuses on repeated introduction of team 
members to task-related stimuli, with positive reinforcement provided in a standardized or procedural 
manner (Gorman, Cooke, and Amazeen, 2010). This type of team training is often used in environments 
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with high workloads and stressors, in which deviating from the standard work protocol can have serious 
adverse consequences.  

Cross-training is defined as “an instructional strategy in which each team member is trained in the 
duties of his or her teammates” (Volpe et al., 1996, p. 87). Cross-training seeks to introduce individual team 
member responsibilities and tasks to other team members, so each team member has a shared understanding 
of all aspects of team-related taskwork. In general, cross-training has a net positive effect on team 
effectiveness, especially in terms of shared understanding and interaction dynamics (Marks et al., 2002).  

Adaptive or perturbation training is based on the idea of purposefully perturbing or manipulating a 
team-related task, which then requires adaptation at the team level, either through communication or 
coordination. Perturbation training has been shown to be effective and, in some cases, even more effective 
than cross-training when the two are directly compared (Gorman, Cooke, and Amazeen, 2010). Perturbation 
training within teams allows more flexibility and on-demand coordination, which may increase team 
resiliency. Additionally, perturbation training has been utilized in human-robot teaming, leading to the 
development of computational models that allow for joint strategies in coordination (Ramakrishnan, Zhang, 
and Shah, 2017). 

It is important to note that there is no universally accepted team-training method, as context and team 
personnel can influence team-training effectiveness. Thus, to develop human-AI team training, the 
committee finds that it will be necessary to experiment with many types of team training, to ascertain their 
effectiveness within this new paradigm. Furthermore, research may find that many team-training strategies 
are not well aligned with the logistics of human-AI teams.  

Are training strategies that are effective for human-human teaming adequate and appropriate for 
human-AI teaming tasks and environments? This question remains to be answered, and research is needed 
to translate team-training methods and validate their utilization in this new paradigm. 

The Use of Simulation 

Simulations are at the heart of most team-training initiatives because training becomes more effective 
when it is grounded within a meaningful context (Marlow et al., 2017). Teams are inherently linked to the 
context they operate within; context dictates the tasks teams work on, their environment, and the tools they 
utilize. Thus, for teams to train realistically, simulation environments that represent real-world operations 
are needed. For this reason, simulation-based team training (SBTT) is viewed as integral to effective team 
training. SBTT is an instructional technique used for skill development by leveraging real-world 
environments, and it is most often utilized and cited within the healthcare community (Owen et al., 2006; 
Weaver et al., 2010). Simulations and simulation task environments (STEs) are used in all types of contexts 
and are oriented for both the physical and digital worlds (Gray, 2002). Many STEs are digital 
representations of the real-world environment, lowering the cost of training while still promoting significant 
acquisition of domain and task-relevant knowledge. Another advantage of SBTT is that trainees can 
experience events that would rarely occur in the real world. 

The committee finds that, as human-AI teaming advances, digital STEs will be critical to training both 
human and autonomous team members in meaningful environments. The representation of the autonomous 
agent (i.e., either physical (robot) or digital (synthetic)) will dictate the type of SBTT and/or the STE. In 
the committee’s judgment, the standardized environment of many STEs: (1) will help humans to train with 
autonomous team members; (2) can help autonomy to train with human team members, if properly 
designed; and (3) can help autonomy to train itself within the environment. In many cases, synthetic 
environments are the main environments in which AI teammates will be deployed. 

Training Content: Taskwork and Teamwork 

Teaming is generally composed of two interrelated foci: teamwork- and taskwork-related 
understandings and actions. The teamwork component generally focuses on understanding how team 
members should work together to accomplish shared goals, whereas taskwork focuses on team task-specific 
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knowledge (Mohammed, Ferzandi, and Hamilton, 2010). Both aspects of teaming are interdependent and 
overlap, but it is essential to focus on specific aspects of teaming when implementing team training. To 
train a team generically, without a focus on specific components, will not translate into meaningful 
performance outcomes. Instead, in the committee’s judgment team training is best when it directly targets 
teamwork or taskwork, or a combination of the two. At a fundamental level, teams need to be trained to 
understand: (1) their teammates; (2) teamwork-related processes; and (3) the team task.  

Training human-AI teams on both teamwork and taskwork is a challenge, specifically training for the 
aspects of teamwork. Autonomous team members simply do not understand teamwork-related concepts, 
making training them for such concepts exceptionally difficult. In the committee’s judgment, first, 
fundamental teaming concepts need to be embedded into the AI system so that a foundation of teamwork 
knowledge can be established and built upon for the future. Until AI advances to the point of understanding 
basic teaming concepts, the focus will need to be on training taskwork team-related initiatives. 

 
KEY CHALLENGES AND RESEARCH GAPS 

The committee finds ten key research gaps related to training human-AI teams that need to be 
addressed.  

 
• Human-AI teams require the need for multi-focused levels of training—humans teaming with 

humans, humans teaming with autonomous agents, and autonomous agents teaming with 
autonomous agents. However, within each of these foci, the team still needs to train together at 
the team level. Research is needed on these various levels of teaming. 

• In human-AI teaming, the human currently needs to train on and understand: (1) his or her role; 
(2) the AI teammate; (3) how to interact with the AI teammate; and (4) how to interact with human 
teammates. Assimilating these aspects for training purposes, in a way that does not overwhelm the 
human operator, is challenging and needs further investigation. 

• Team training is difficult when the autonomous agent cannot fully understand natural language or 
deploy effective natural language processing, and more research is needed in this area. 

• Team training of teamwork-related components is difficult when the autonomous agent does not 
understand basic teaming concepts, so more work is needed in this area. 

• There is a current gap in understanding the impact that training has on human-AI trust in the team 
setting. 

• To allow for resilient teamwork in the case of AI system failure, team training needs to be 
conducted with both accurate and inaccurate AI. Perturbation training for human-AI teaming may 
be indicated.  

• Simulation environments need to be built to allow for team-level human-AI training.  
• The concept of the autonomous teammate as a team trainer for purposes such as coordination 

coaching (e.g., McNeese et al., 2018) needs to be explored.  
• Training will need to be constantly reassessed for potential updating, due to the autonomous 

teammate’s ability to train and update its skills and capabilities continually; work is needed in this 
area.  

• There is a gap in understanding when to train human-AI teams to a diversity of experiences 
(perturbation/adaption) versus when to train to standardization (procedural). 

 
RESEARCH NEEDS 

The committee recommends addressing six major research objectives for improving human-AI team 
training.  

 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

68 HUMAN-AI TEAMING: STATE-OF-THE-ART AND RESEARCH NEEDS 

PREPUBLICATION COPY – Uncorrected Proofs 

Research Objective 9-1: Developing Human-Centered Human-AI Team-Training Content. There is 
a great deal of knowledge about, and resources for, training human-human teams, but none explicitly 
devoted to human-AI teams. Authentic training content materials and mechanisms need to be developed 
for human-AI teams. The human-AI teaming paradigm includes many potentially different foci, ranging 
from individual team responsibilities to understanding and interacting with both human and AI team 
members. This multi-level focus presents a challenge in terms of knowing not only what to focus and train 
on but also how to train on each of these areas. Directed research is needed to outline areas of focus and the 
content to be highlighted in training methods. For example, does a human team member need to be trained 
on what an AI system is and what it can do? If so, what training content is needed to impart that information? 
Similarly, given the issues related to training human-AI teams on teamwork-related content, how should 
this aspect of training best be approached? 

Research Objective 9-2: Testing and Validating Traditional Team-Training Methods to Inform New 
Methods. As previously noted, there is a long and rich history of team-training strategies that have been 
successful in the human-human context. Strategies such as procedural training, cross-training, and 
adaptive/perturbation training all need to be adapted and translated for the human-AI teaming environment. 
Then, each strategy needs to be empirically validated to understand: (1) if it is feasible for the human-AI 
team paradigm; and (2) the impact of these strategies on overall human-AI teaming performance and related 
teamwork outcomes, such as team cognition, shared situation awareness, and communication and 
coordination. Through this understanding, existing training strategies can be explicitly adapted, or new 
strategies can be developed for human-AI teaming.  

Research Objective 9-3: Training to Calibrate Human Expectations of Autonomous Teammates. 
Recent work by Zhang and colleagues (2021) investigating humans’ perceptions relating to human-AI 
teaming highlighted that, in many cases, humans have unrealistic expectations and requirements regarding 
autonomous teammates. Specifically, humans often indicate that they want autonomous teammates to be as 
good or better than human teammates. This requirement is problematic because autonomous teammates 
currently have inherently limited capabilities that prevent them from doing many basic teamwork-related 
behaviors. Thus, there seems to be a perceptual misalignment between what humans expect from AI 
teammates and what AI teammates can do. Specific content is needed to set adequate expectations of 
autonomous teammates, related to Research Objective 9-1. In other words, it would be best if training 
materials do not only focus on teaming procedures, but also focus on the expectations and capabilities of 
the autonomous system. 

Research Objective 9-4: Designing Platforms for Human-AI Team Training. Human-AI teaming needs 
research platforms in which to develop and test teamwork procedures, especially platforms that allow for 
the testing of team-training strategies and methods. The explicit design of simulated task environments that 
allow humans and AI systems to work together is necessary. Rather than starting from the ground up, 
researchers could use existing videogame platforms that inherently contain both teaming and AI 
capabilities.  

Research Objective 9-5: Adaptive Training Materials Based on Differing Team Compositions and 
Sizes. There is no standard composition or size of human-AI teams, and training materials need to reflect 
that. A human-AI team may consist of 2–10 human or autonomous entities with differing ratios, for 
example. McNeese and colleagues (2021b) examined various human-AI teaming compositions and found 
performance differences between teams with differing ratios of humans and AI teammates. Thus, it is 
critical that training materials be developed for various types of human-AI teams.  

Research Objective 9-6: Training That Works Toward Trust in Human-AI Teaming. As outlined in 
Chapter 7, trust is central to effective human-AI interactions and both human-human teaming (Salas, Sims, 
and Burke, 2005) and human-AI teaming (McNeese et al., 2021a). Thus, team-training materials need to 
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specifically account for the explicit development of team-level human-AI trust and calibration of that trust. 
It would be beneficial for training to focus not only on the human’s trust in the AI teammate, but also on 
the human’s trust in other human teammates. More work is needed to develop and test training methods 
designed to engender trust, and it would be useful for methods such as explanations and transparency to be 
a key focus when developing trust-related team-training material. 

SUMMARY 

Training human-AI teams is different from training human-human teams. Despite some similarities, 
human-human teams and human-AI teams are fundamentally different. The manners and methods by which 
human-AI teams conduct work and do procedural teamwork are, and will continue to be, fundamentally 
different from those of human-human teams. The tasks and environments in which human-AI teamwork 
occurs will also be different. Thus, a great deal of work is needed to create training strategies and methods 
to support human-AI teaming. The research community would undoubtedly benefit from exploring 
traditional human-human team-training techniques to inform human-AI team training, but they would also 
be best served to remain open to creating entirely new methods based on research outcomes. Significant 
research is needed to develop empirically driven training initiatives for human-AI teams. 
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10 

HSI Processes and Measures of Human-AI Team Collaboration and 
Performance 

Human-systems integration (HSI) addresses human considerations within the system design and 
implementation process, with the aim of maximizing total system performance and minimizing total 
ownership costs (Boehm-Davis, Durso, and Lee, 2015). HSI incorporates human-centered analyses, 
models, and evaluations throughout the system lifecycle, starting from early operational concepts through 
research, design-and-development, and continuing through operations (NRC, 2007). HSI policies and 
procedures applicable to defense-acquisition programs have been published (DODI 5000.02T, Enclosure 7 
[DOD, 2020]), and HSI standards have been adopted by the DOD (SAE International, 2019). Further the 
Human Factors Ergonomic Society/American National Standards Institute (HFES/ANSI) 400 standard on 
human readiness levels was developed, which codifies the level of maturity of a system relative to HSI 
activities, ranging from human readiness level 1 (lowest) to 9 (highest) (Human Factors and Ergonomics 
Society, 2021). In this chapter, the committee examines the state-of-the-art, gaps, and research needs 
associated with design and evaluation processes for human-AI teams, and discusses the need for 
incorporating HSI considerations into development of AI systems in addition to the specific design and 
training issues discussed in previous chapters.  

TAKING AN HSI PERSPECTIVE IN HUMAN-AI TEAM DESIGN AND IMPLEMENTATION 

The committee notes that, to date, HSI methods have had limited application to the design of human-
AI teams. This is largely attributable to the fact that AI systems are currently being developed primarily in 
a research-and-development context and for non-military applications, in which HSI methods are not 
commonly applied. While HSI methods are applied outside of the military, AI systems are currently being 
developed in areas where HSI is not common practice (e.g., automobiles, consumer apps). However, lessons 
learned during the design of earlier AI systems make clear the importance of taking an HSI approach, to 
avoid developing AI systems that fail to meet user and mission requirements, resulting in lack of system 
adoption or extensive need for workarounds when the systems are fielded (NRC, 2007).  

The need to consider the context of use throughout the design and evaluation process is an area of 
consensus in HSI practice (Air Force Scientific Advisory Board, 2004; Boehm-Davis, Durso, and Lee, 
2015; Evenson, Muller, and Roth, 2008; NRC, 2007; SAE International, 2019). Context of use includes 
characteristics of the users, the activities they perform, how the work is distributed across people and 
machine agents, the range and complexity of situations that can arise, and the broader sociotechnical 
“environment in which the system will be integrated” (NRC, 2007, p. 136). Context of use is best 
determined via field observations and interviews with domain practitioners (e.g., cognitive task analysis 
methods) to understand the pragmatics of the work context in which the human-AI team will operate 
(Bisantz and Roth, 2008; Crandall, Klein, and Hoffman, 2006; Endsley and Jones, 2012; Vicente, 1999).  

The pitfalls of failing to take the context of use into account continue to be relearned by developers of 
AI systems. A recent example is a deep-learning system developed for detection of diabetic retinopathy 
(Beede et al., 2020). While the system achieved levels of accuracy comparable to human specialists when 
tested under controlled conditions, it proved unusable when implemented in actual clinics in Thailand. 
Beede and colleagues (2020) identified multiple socioenvironmental factors preventing the system’s 
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effective performance that were only uncovered in the field. They noted that there is currently no 
requirement for AI systems to be evaluated in real-world contexts, nor is it a customary practice. They 
advocated for human-centered field research to be conducted prior to and alongside more formal technical 
performance evaluations.  

As a positive contrast, Singer et al. (2021) examined development of successful machine learning 
(ML)-based clinical support systems for healthcare settings. They reported much more active engagement 
in the field of practice, with back-and-forth between developers and end-users shaping the ultimately 
successful AI systems. The committee highlights the importance of grounding AI system designs in a deep 
understanding of the context of use, and the need for continual engagement with users throughout the 
development and fielding process, to understand the impact of user engagement on practice.  

Another point of emphasis in HSI is the need for analysis, design, and testing to ensure resilient 
performance of the human-AI team in the face of off-normal situations that may be beyond the boundary 
conditions of the AI system (Woods, 2015; Woods and Hollnagel, 2006). Resilience refers to the capacity 
of a group of people and/or automated agents to respond to change and disruption in a flexible and 
innovative manner, to achieve successful outcomes. Unexpected, off-normal conditions are variously 
referred to as black swans (Wickens et al., 2009) and dark debt (Woods, 2017), as well as edge, corner, or 
boundary cases (Allspaw, 2016). These events tend to be rare and often involve subtle, unanticipated system 
interactions that make them challenging to anticipate ahead of time (Woods, 2017). Allspaw (2012) argued 
for the need to continuously search for and identify ways to mitigate these anomalies, starting in 
development and continuing into operation. Neville, Rosso, and Pires (2021) are developing a framework 
(called Transform with Resilience during Upgrades to Socio-Technical Systems) that characterizes the 
sociotechnical system properties that enable human-AI teams to anticipate, adapt, and respond to situations 
that may be at or beyond the edge of the AI system’s competency envelope. The Neville, Rosso, and Pires 
framework is being used to derive tools and metrics for evaluating system resilience and guiding technology 
transition processes. Gorman et al. (2019) have similarly developed a method of measuring the dynamics 
of the human and machine components of a system before, during, and after a perturbation in a simulated 
setting, to understand the system interdependencies and possible unintended consequences of unanticipated 
events. In the committee’s judgment, these are promising directions, but more research is needed to develop 
and validate effective methods for design and evaluation of resilient human-AI teaming. 

Key Challenges and Research Gaps 

The committee finds three key gaps related to HSI for human-AI teams. 

• Currently, the development of AI systems often does not follow HSI best practices.
• Context-of-use analyses to inform design and evaluation of AI systems are not commonly

practiced.
• There is limited research and guidance to support analysis, design, and evaluation of human-AI

teams to ensure resilient performance under challenging conditions at the boundaries of an AI
system’s capabilities.

Research Needs 

The committee recommends addressing the following research objective for improved HSI practice 
relevant to human-AI teaming.  

Research Objective 10-1: Human-AI Team Design and Testing Methods. There is a need to develop 
and evaluate design/engineering methods for effective human-AI teaming. There is a need to develop and 
test methods for analysis, design, and evaluation of human-AI team performance under conditions that are 
at or beyond the competence boundary of the AI system(s).  
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REQUIREMENTS FOR RESEARCH IN HUMAN-AI TEAM DEVELOPMENT 

The development of high-quality system requirements includes specifying high-level goals and 
functions for a desired system, and typically includes assigning responsibilities to various agents (human 
or computer-based) to complete these goals (MITRE, 2014). Ideally, requirements should be 
understandable, succinct, unambiguous, comprehensive, and complete (Turk, 2006). When a cognitive 
systems engineering approach is used to augment the development of requirements, such requirements will 
address information needs that explicitly consider human decisions and cognitive work, for individuals, 
human-human teams, and possibly human-AI teams (Elm et al., 2008).  

The committee finds that the rise of AI has introduced new problems currently not addressed by either 
traditional or cognitive systems-engineering approaches. Although there is a substantial body of literature 
addressing how requirements should and could be developed for military systems, the bulk of this work 
assumes that the underlying decision-support systems rely upon deterministic algorithms that perform the 
same way for every use. Thus, in earlier research, while the underlying algorithms may not always exhibit 
high performance, they exhibit consistent performance (Turban and Frenzel, 1992), and so it is relatively 
straightforward to determine if information requirements are met and under what conditions. 

In the committee’s opinion, the increasing use of connectionist or ML-based AI in safety-critical 
systems, like those in military settings, has brought into sharp contrast the inability of traditional systems-
engineering and cognitive systems-engineering approaches to address how development of requirements 
needs to adapt. A major current limitation of ML-based AI systems is that their use could affect cognitive 
work and role allocation, and may create the need for new functionalities due to use of systems that reason 
in ways that are unknown to their designers (Knight, 2017).  

Another major problem with ML-based AI is its inability to cope with uncertainty. AI powered by 
neural networks can work well in very narrow applications, but the algorithms of an autonomous system 
can struggle to make sense of data that is even slightly different in presentation from the data on which it 
was originally trained (Cummings, 2021). Such brittleness means humans may need to adjust their cognitive 
work and unexpectedly take on new functions due to limitations in the underlying AI. In addition, much 
recent work has revealed how vulnerable ML-based AI systems are to adversarial attacks (Eykholt et al., 
2017; Su, Vargas, and Sakurai, 2019). So, in addition to managing AI systems that are inherently brittle, 
humans may also be burdened with monitoring such systems for signs of potential adversarial attacks. 

Key Challenges and Research Gaps 

The committee finds that an improved ability to determine requirements for human-AI teams, 
particular those that involve ML-based AI, is needed.  

Research Needs 

The committee recommends addressing the following research objective for improved HSI 
requirements relevant to human-AI teaming.  

Research Objective 10-2: Human-AI Team Requirements. A number of requirements for AI system 
development will likely change in the presence of machine learning-based AI. Research is needed to address 
several overarching issues. When and where should machine learning-based AI be used as opposed to 
symbolic in systems that support human work? What new functions and tasks are likely to be introduced as 
a result of incorporating brittle AI into human-AI teams? What is the influence of time pressure on decision 
making for systems that leverage different kinds of AI? How could or should acceptable levels of 
uncertainty be characterized in the requirements process, especially as these levels of uncertainty relate to 
human decision making? How can competency boundaries of both humans and AI systems be mapped so 
that degraded and potentially dangerous phases of operational systems can be avoided? 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

74 HUMAN-AI TEAMING: STATE-OF-THE-ART AND RESEARCH NEEDS 

PREPUBLICATION COPY – Uncorrected Proofs 

RESEARCH TEAM COMPETENCIES 

To address the gap in understanding how AI systems could and should influence requirements and the 
design of systems that support human work, particularly in settings that are high in uncertainty, the 
committee finds that a new approach is needed for the formation of research teams to tackle such problems. 
There is a research gap that misses interconnections between fields of focus, partially because scientists 
and researchers often work in “silos” but also due to a lack of formal interdisciplinary programs that train 
people to be proficient in more than one field. To address these issues, the committee believes that research 
teams looking at basic and applied problems in human-AI team development will need to be multi-
disciplinary to address the myriad of problems that overlap separate fields.  

The exact makeup of any specific research team will depend on the nature of the research question(s), 
as Figure 10-1 illustrates for human-AI team development. The committee finds that there are four clusters 
of desired research competencies: (1) computer science; (2) human factors engineering; (3) sociotechnical 
science; and (4) systems engineering. 

FIGURE 10-1 Research team competencies human-AI teaming. 
SOURCE: Committee generated 

In the committee’s opinion, these competencies represent the broad areas needed to support numerous 
human-AI team research scenarios. Computer science is at the core because any system that incorporates 
any kind of AI will necessarily have computer scientists (or related disciplines) as the creators of the 
underlying technology. The importance of computer scientists teaming with other researchers, like those in 
human factors, systems engineering, and sociotechnical aspects, cannot be overstated. Such 
multidisciplinary teams promote an understanding of the broader impacts of the technology and help to 
make it functional and successful in real world applications (Dignum, 2019). Table 10-1 illustrates 
representative topics within each of the research thrusts that the committee finds may be needed to support 
human-AI teaming research projects; it is likely that even a single project would benefit from collaboration 
between individuals in multiple blocks of the table. 

TABLE 10-1 Representative Multidisciplinary Team Competency Topics 

Systems 
Engineers

Human 
Factors 

Engineers 

Computer 
& Data 

Scientists

Socio-
technical 

Researchers
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Computer and 
Data Science 

Systems 
Engineering 

Human Factors 
Engineering 

Sociotechnical 
Research 

Machine/Deep 
Learning 

Requirements 
Engineering 

Cognition Ethics 

Artificial Intelligence Test and Evaluation Human Performance Philosophy 
Computer Vision Safety Engineering Experimental Psychology Law 

Natural Language 
Processing 

Risk Modeling Human Computer/Robot 
Interaction 

Policy and 
Regulation 

SOURCE: Committee generated 

Key Challenges and Research Gaps 

The committee finds that, to develop AI systems with competent human-AI teaming, a new approach 
to the formation of research teams is needed, which incorporates competencies and approaches from 
multiple disciplines.  

Research Needs 

The committee recommends addressing the following research objective for improved human-AI team 
development.  

Research Objective 10-3: Human-AI Team Development Teams. New multidisciplinary teams and 
approaches to the development of human-AI teams need to be created. A systems perspective is needed to 
create successful human-AI teams that will be effective in future multidisciplinary operations, and this will 
require synergistic work across multiple disciplines that cannot be achieved through a siloed approach. 
Exploration and evaluation of mechanisms for achieving successful team collaboration in human-AI 
development teams are needed.  

HSI CONSIDERATIONS FOR HUMAN-AI TEAMS 

Biased or brittle AI creates a significant challenge for certification efforts. Understanding these biases 
and limitations is critical for framing the developmental, operational, and support requirements any program 
must address (MITRE, 2014). Within the DOD, HSI is divided into a number of domains: manpower, 
personnel, training, human factors engineering, safety and occupational health, force protection and 
survivability. These encompass a number of important developmental objectives and requirements that have 
traditionally been called ilities.  

Relevant to AI systems, three overarching ilities are paramount (Simpkiss, 2009): 

• Usability: “[Usability] means “cradle-to-grave” including operations, support, sustainment,
training, and disposal. This includes survivability” (Simpkiss, 2009, p. 4).

• Operational suitability: “Includes utility, lethality, operability, interoperability, dependability,
survivability.” (Simpkiss, 2009, p. 4)

• Sustainability: Includes supportability, serviceability, reliability, availability, maintainability,
accessibility, dependability, interoperability, interchangeability, survivability.

Other important ilities include functionality, reliability, supportability, and flexibility among others 
(de Weck et al., 2011). In addition to these important considerations, there are also new ilities to consider 
for human-AI teams. Table 10-2 outlines both how traditional ilities will need to be adapted for human-AI 
teams and new ilities that need to be considered. In addition to traditional usability concerns that are well-
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known to the HSI community, there will need to be added focus on making the limits of AI transparent to 
users. As noted previously, though there has been a recent increase in research on explainability and 
interpretability for AI (see Chapter 5), a large part of this research focuses on explainability and 
interpretability for the developers of AI, with far less focus on the users of AI in practical settings. This is 
of particular concern to the USAF because time pressure is an attribute of many operational environments 
and, given the propensity for biased decision making in such settings (Cummings, 2004), in the committee’s 
judgment it is especially important that AI systems be truly usable and transparent. 

In the operational suitability category, the biggest need is to address the notion of concept drift, also 
known as model drift. Concept drift occurs when the relationship between input and output data changes 
over time (Widmer and Kubat, 1996), making the predictions of such systems irrelevant at best, and 
potentially dangerous at worst. In the DOD, an embedded AI system that relies on an older training set of 
data as it attempts to analyze images to find targets in a new and different region will likely experience 
concept drift. Thus, concept drift is a possible source of dynamic uncertainty that needs to be considered 
when determining whether an analysis in one setting may adapt well to a different setting. The committee 
finds that the DOD does not currently have a system in place to ensure the periodical evaluation of AI 
systems to ensure drift has not occurred or to inform the human operator of the level of applicability of an 
AI system to current problem sets (see Chapter 8). 

The notion of concept drift also affects the sustainability category, given that the best way to prevent 
such drift is to ensure the underlying data is adequately represented in any AI model. The USAF clearly 
recognizes that sustainability, reliability, serviceability, and maintainability are key considerations 
(Simpkiss, 2009), but it is not clear that the USAF has mapped out the workforce changes needed to 
adequately address these concerns for AI systems. In the committee’s judgment, as there are for aircraft, 
there will need to be an AI maintenance workforce whose jobs entail database curation, continual model 
accuracy and applicability assessment, model retraining thresholds, and coordination with testing 
personnel. In the committee’s judgment, the USAF should create an AI maintenance workforce which, if 
done correctly, could be the model for both other military branches and commercial entities. 

In addition to the changes needed in terms of the more traditional ilities, the committee finds that there 
is also a need to explicitly consider auditability, which is the need to document and assess the data and 
models used in developing an AI system, to reveal possible biases and concept drift. Although there have 
been recent efforts in developing processes to better contextualize the appropriateness of datasets (Gebru 
et al., 2018) and model performance with a given data set (Mitchell et al., 2019), there are no known 
organized efforts for military applications. In the committee’s opinion, military AI systems could require a 
level of auditability that far exceeds commercial systems, due to their use on the battlefield. Auditability 
could fall under the purview of an AI maintenance workforce, as mentioned above. 

The last new ility category that will likely need to be expressly considered by the USAF for AI systems 
is that of passive vulnerability. There is increasing evidence that ML-based AI systems trained on large 
data sets can be especially vulnerable to forms of passive hacking, in which the environment is modified in 
small ways to leverage vulnerabilities in the underlying deep-learning algorithms. For example, adversarial 
ML techniques can deceive face recognition algorithms using relatively benign glasses (Sharif et al., 2016), 
and recently a Tesla was tricked into going 85 mph versus 35 mph using a small amount of tape on a sign 
(O’Neill, 2020). Such scenarios, though predominantly occurring in the civilian domain, have clear 
relevance for military operations, and occur not only in computer vision applications of AI but also in 
natural language processing (Morris et al., 2020). Such results indicate that, to combat this new source of 
vulnerability, the USAF will need to continue to develop new cybersecurity capabilities that will require 
reskilling of the workforce and advanced training. 
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TABLE 10-2 HSI Considerations for Human-AI Teams: Traditional and New Ilities 
Ility Needs 
Traditional 

Usability • AI operational limitations and competency boundaries need to be made
transparent to users.

• In appropriate settings, users need the ability to conduct sensitivity
analyses to explore a decision space, as well as the limitations.

• Routine feedback about usability needs to be elicited from users, including
post-software updates.

Operational 
Suitability 

• A process for tracking and documenting issues with concept drift as well
as operator disuse, misuse, or abuse of AI would be useful.

• A process needs to be implemented that maps any operational
dependencies created in the implementation of AI systems, to determine
which downstream processes could be negatively affected if an AI system
is degraded or fails.

Sustainability • A process for identifying changes in operations or environmental
conditions that affect model outcomes would be useful, including when
retraining should occur for ML-based AI systems.

• An incident repository needs to be created and routinely analyzed for all
AI systems, in which users and supervisors can document erroneous,
unusual, and unexpected system behaviors.

• A process for tracking software changes and possible unintended impacts
on either operations or human activity would be useful.

New 
Auditability • Data and resulting models need to be periodically audited to uncover

issues with suitability and sustainability, as well as possible issues with
bias.

• Automated tools will be needed to support humans conducting auditing
tasks.

Passive Vulnerability • Adversarial machine-learning vulnerabilities need to be identified and
mitigated.

SOURCE: Committee generated 

Key Challenges and Research Gaps 

The committee finds that the requirements for the development of trained workforces and methods for 
detecting problems and testing AI systems need to be determined. 

Research Needs 

The committee recommends addressing the following two research objectives to develop an 
understanding of workforce needs to support future human-AI teams.  

Research Objective 10-4: AI System Lifecycle Testing and Auditability. The required workforce 
skillsets, tools, methodologies, and policies for AI maintenance teams need to be determined. There is also 
a need to find methods for AI system life-cycle testing and auditing to determine the validity and suitability 
of the AI system for current use conditions. Determining the enabling processes, technologies, and systems 
that need to be incorporated into fielded AI systems to support the work of AI maintenance teams is 
necessary. 
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Research Objective 10-5: AI Cyber Vulnerabilities. The necessary workforce skillsets, tools, 
methodologies, and policies need to be determined for detecting and ameliorating AI cyber vulnerabilities 
and for detecting and responding to cyber attacks on human-AI teams.  

TESTING, EVALUATION, VERIFICATION, AND VALIDATION OF HUMAN-AI TEAMS 

Because of the nascent nature of embedded AI in safety-critical systems, testing, evaluation, 
validation, and verification (TEVV) has been recognized as a potential Achilles’ heel for the DOD 
(Flournoy, Haines, and Chefitz, 2020; Topcu et al., 2020). A recent report highlighted the significant 
organizational issues surrounding TEVV for defense systems and spelled out the policies and actions that 
the DOD is advised to implement in the near- and far-term to address current inadequacies (Flournoy, 
Haines, and Chefitz, 2020). While this effort outlined the many high-level issues associated with AI TEVV, 
this section will detail more nuanced areas of TEVV inquiry with a focus on needed areas of research. These 
issues are also relevant to the training of human-AI teams (see Chapter 9), however, the committee 
emphasizes that training can never be a substitute for proper design and testing of the AI system. 

In the committee’s opinion, the primary reason that TEVV for human-AI teams needs significant 
attention is the problem with how such systems cope with known and unknown uncertainty. There are three 
primary sources of uncertainty in any human-AI team, as illustrated in Figure 10-2. As is familiar to the 
HSI community, human behavior for actors both within and external to a system can be widely variable 
and can carry significant uncertainty. For the military, the environment is also a major contributor to 
operational uncertainty, often referred to as the fog of war. What is new in human-AI teams is the need to 
account for the variability, (i.e., blind spots) in the embedded AI, and how those blind spots could lead to 
problems in human performance during the operation of human-AI teams (Cummings, 2019). 

FIGURE 10-2 Sources of uncertainty in human-AI teams. 
SOURCE: Committee generated 

Previous technological interventions (e.g., radar, decision-support tools, etc.) were meant to reduce 
uncertainty but, with the insertion of AI, (particularly ML-based AI) there is now a third axis of uncertainty 
to be considered: that of AI blind spots. As discussed previously, AI can be brittle and fail in unexpected 
ways. One recent example is the interpretation of the moon as a stoplight by a Tesla vehicle (Levin, 2021). 
Although such a mistake seems relatively benign, there have also been several high-profile incidents in 
which a Tesla crashed broadside into a tractor trailer or hit a barrier head on, killing the drivers; so the 
combination of significant AI blind spots and human inattention can be deadly (NTSB, 2020). 

It is generally recognized that significantly more work is needed in the area of assured autonomy, in 
which autonomy reliably performs within known and expected limits (Topcu et al., 2020). Assured 
autonomy requires significant advances in AI testing. In the committee’s judgment, to reach acceptable 
assurance levels, the DOD needs to adapt its testing practices to address the AI blind-spot issues, but there 
has been little tangible progress. The DOD’s current approach to testing generally includes developmental 
tests at the earlier stages of a technology’s development, followed by operational testing as system 

Human Behavior

AI
Blind Spots 
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development matures. The committee finds that, although this approach is reasonable for deterministic 
systems, it will not be sustainable for systems with embedded AI. The constant updating of software code 
that is a necessary byproduct of modern software-development methods is a major reason that the DOD 
needs to adopt new testing practices. Seemingly small changes in software can sometimes lead to 
unexpected outcomes. Without principled testing, particularly for software that can have a derivative effect 
on human performance, the stage will be set for potential latent system failures. Moreover, because software 
is typically updated continuously throughout the lifecycle of a system, it will also be necessary to adapt 
testing to catch the emergence of a problem in a system with embedded AI. It is not ideal to rely on system 
users to discover issues during actual operations, and it is particularly problematic in safety-critical 
operations such as MDO. There is a need for user testing prior to issuing each software update, particularly 
in cases when the update will impact how the user interacts with the system (e.g., changes the information 
displayed or the behavior of the system).  

In addition, users of the system will inevitably discover issues during actual operations, regardless of 
the testing or development approaches. The question is not whether these surprises will occur, because 
generally they will. The committee's goal is to improve DOD testing practices to reduce the occurrence of 
surprises, by incorporating tests prior to the introduction of any software change. These tests could probe 
for potential effects of software changes on the ways people must interact with the system. Considerations 
include assessing: (1) how easy it will be for humans (especially users) to anticipate and detect unexpected 
behavior; and (2) how easy it will be for humans (especially DevOps personnel) to make quick adjustments 
to the code to mitigate, block, or otherwise make moot the results of the unexpected behavior. 

In addition, the committee finds that the DOD’s current staged approach to testing does not explicitly 
account for the need to test AI blind spots, as illustrated in Figure 10-2 and discussed previously. There is 
a dearth of research and knowledge around how the subjective choices of AI designers could lead to AI 
blind spots, poor human-AI interaction, and, ultimately, system failure (Cummings and Li, 2021a). As a 
result of the new sources of uncertainty that require rethinking TEVV, particularly in terms of human work, 
new testbeds will be needed that allow for not only investigation of such uncertainties, but also use by the 
various research areas outlined in Figure 10-2.  

Key Challenges and Research Gaps 

The committee finds that methods, processes, and systems for testing, evaluation, verification, and 
validation of AI systems across their lifespans are needed, particularly with respect to AI blind spots and 
edge cases, as well as managing the potential for drift over time.  

Research Needs 

The committee recommends addressing the following research objective to improve testing and 
verification of human-AI teams.  

Research Objective 10-6: Testing of Evolving AI Systems. Effective methods need to be determined for 
testing AI systems to determine AI blind spots (i.e., conditions for which the system is not robust). How 
could or should test cases be developed so that edge and corner cases are identified, particularly where 
humans could be affected by brittle AI? How can humans certify machine learning-based and probabilistic 
AI systems in real-world scenarios? Certification includes not just understanding technical capabilities but 
also understanding how to determine trust for systems that may not always behave in a repeatable fashion. 
The National Science Foundation recently published an in-depth study on assured autonomy, so there is a 
potential important collaboration between this organization and the AFRL (Topcu et al., 2020). Given that 
changes in both software and environmental conditions occur almost continually (due to the potential for 
concept drift) in AI systems, how to identify, measure, and mitigate concept drift is still very much an open 
research question. Living labs involving disaster management may form suitable surrogates for research on 
multi-domain operations human-AI teams. 
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HUMAN AI-TEAM RESEARCH TESTBEDS 

To address the numerous complexities inherent in human-AI research, the committee finds that there 
needs to be substantially improved testbed availability, above and beyond what the USAF currently has. 
One of the core issues at the heart of human-AI experimentation is the role of simulation versus real-world 
testing (Davis and Marcus, 2016). As seen in Figure 10-3, simulation is generally thought to be the 
appropriate testbed for basic research, while a shift toward real-world testing (or approximations of such) 
is needed for more applied research. While these principles are also valid for human-AI research, there is a 
clear need to consider the role of uncertainty, as previously outlined. 

Because uncertainty is a potential “unknown unknown” that can come from the design of AI systems, 
the environment, humans, and the interplay of these factors (Figure 10-2), the committee believes that much 
greater emphasis is needed on studying this effect in human-AI research. To that end, Figure 10-3 illustrates 
that, while some human-AI testing can occur in simulations, testbeds that cannot incorporate elements of 
real-world uncertainty will necessarily miss a critical element of research. 

FIGURE 10-3 The relationship of human-AI testing fidelity to the nature of research questions. 
SOURCE: Committee generated. 

Regardless of whether the testbeds are in simulations or with real-world elements, they need to be 
designed to support the multidisciplinary efforts outlined in Figure 10-1. This means it would likely be 
beneficial for testbeds to support different kinds of users (e.g., researchers who code as well as researchers 
studying people). The committee believes that, ideally, testbeds would be modular so that, for example, 
different data sets, algorithms, or decision-support systems could be substituted as needed, without 
requiring major system overhauls. In addition, given the realistic constraints of a post-Covid-19 world, 
testbeds would ideally be usable both in person, for those researchers who need physical access to the 
testbed, and remotely. 
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Key Challenges and Research Gaps 

The committee finds that testbeds for human-AI teaming are needed that can support relevant 
interdisciplinary research, challenging scenarios, and both pre- post-deployment testing needs.  

Research Needs 

The committee recommends addressing the following research objective for developing testbeds to 
support human-AI teaming research-and-development activities.  

Research Objective 10-7: Human-AI Team Testbeds. Given the changes that AI is bringing and will 
continue to bring to both the design of systems and their uses, flexible testbeds for evaluating human-AI 
teams are needed. It would be advantageous to use these testbeds to examine relevant research questions 
included throughout this report. The testbeds need to allow for multidisciplinary interactions and inquiry 
and include enough real-world data to allow for investigation on the role of uncertainty as it relates to AI 
blind spots and drift. It would also be useful for testbeds to accommodate the need for routine post-
deployment testing, including person-in-the-loop evaluations, anytime meaningful software changes 
(which need to be defined) are made, or whenever environmental conditions change, which could lead to 
latent problems.  

HUMAN-AI TEAM MEASURES AND METRICS 

The establishment of appropriate evaluation measures and metrics is an important element in 
evaluating human-AI teams (see Chapter 2). Measures typically refer to the measurement scale used for 
evaluation, and metrics typically refer to the threshold levels on the measurement scale that serve as 
reference points for evaluation judgments (Hoffman et al., 2018). Multiple types of measures are relevant 
for evaluating human-AI teams, including individual cognitive process measures, teamwork measures, and 
outcome performance measures. Although some measures are highly mature, others are just emerging and 
in need of further study. 

Cognitive process measures such as workload and situation awareness have been extensively studied 
and validated in the context of human-automation interaction (e.g., Endsley and Kaber, 1999) and continue 
to be relevant for evaluating the cognitive impact of human-AI teaming on human team members (Chen et 
al., 2018; Mercado et al., 2016), (for reviews of situation awareness and workload measures, see Endsley, 
2020b, 2021a; Kramer, 2020; Young et al., 2015; Zhang et al., 2020.)  

Because AI systems exhibit complex behavior and, in some cases, provide explanations for their 
performance, new measures are being developed that are particularly applicable to human-AI teaming. One 
of the most prominent new measures relates to trust in the AI system. A variety of rating-scale measures of 
trust have been developed that vary in the number and type of items included, as well as the rating scale 
used (see Hoffman et al., 2018 for a review of representative measures of trust).  

There is growing interest in measuring people’s mental models of AI systems to assess their 
understanding of those systems. There have been a variety of approaches developed to assess mental models 
of AI systems, including think-aloud protocols, question answering/structured interviews, self-explanation 
tasks, and prediction tasks that ask people to predict what an AI system will do in various situations (see 
Hoffman et al., 2018 for a review of representative measures). With the recent emphasis on generating AI 
systems that are explainable, interest has also emerged in developing measures of explainability. Hoffman 
et al. (2018) present a questionnaire that can be used to measure people's assessment of explanation 
satisfaction, which is defined as the degree to which they feel they understand the AI system or process 
being explained. Sanneman and Shah (2020) propose a measure of explanation quality that is based on the 
situation awareness global assessment technique (Endsley, 1995a).  

Measures of teamwork processes that have been used in all-human teams have been adapted for 
measuring teamwork in human-AI teams. These teamwork processes include communication, coordination, 
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team situation assessment, team trust, and team resilience. Though scales exist for self-assessment of team 
process or observer-assessment of team process (Entin and Entin, 2001), there is a growing trend toward 
measuring teamwork in an unobtrusive manner, in real or near-real time (Cooke and Gorman, 2009; 
Gorman, Cooke, and Winner, 2006; Huang et al., 2020). These measures rely heavily on communication 
data, which is readily available from most teams. However, communication flow patterns are used more 
than communication content. McNeese et al. (2018) found that the communication patterns displayed by 
the AI system were less proactive than those of human teammates and, over time, the human-AI team’s 
coordination suffered, as even the humans became less proactive in their communication. Physiological 
measures of teamwork such as neural synchrony have also been used (Stevens, Galloway, and Lamb, 2014), 
however, these present a challenge in terms of identifying the sensor that is the AI counterpart. Though a 
challenge, the prospect of collecting sensor data from an AI system that is akin to human physiological 
signals is, in the committee’s judgment, more promising than measuring AI teamwork through survey data. 

Another important set of measures for evaluating human-AI teams relates to the objective performance 
of the human-AI team on specific tasks. Traditionally, outcome measures have included quality of 
performance and completion time. It is possible that human-AI team performance may be objectively 
worse than the performance of the human(s) working without AI support (e.g., Layton, Smith, and 
McCoy, 1994; see Chapter 8 for additional discussion).It is possible that human-AI team performance 
may be objectively worse than the performance of the human(s) working without AI support (see Chapter 
8). Figure 10-4 shows pertinent measures for evaluating human-AI teams, including overall team 
performance, team knowledge structures, team processes, team efficiency measures, and team sustainability 
considerations. 

FIGURE 10-4 Human-AI team metrics. 
SOURCE: Committee generated. 

The ability of the human-AI team to perform effectively in unanticipated conditions at or beyond the 
boundaries of the AI system is an important concern in measuring human-AI team outcome performance. 
This is often measured in terms of out-of-the-loop recovery time (Endsley, 2017; Onnasch et al., 2014). 
There are also ongoing efforts to develop methods for measuring resilience (Hoffman and Hancock, 2017; 
Neville, Rosso, and Pires, 2021) More research is needed to provide practical measures and metrics that 
can be used to assess human-AI team resilience as part of performance-evaluation efforts.  
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Key Challenges and Research Gaps 

The committee finds four key gaps related to metrics for human-AI teaming. 

• Although emerging measures of trust, mental models, and explanation quality are important
additions for evaluation of people’s understanding and level of trust in AI systems, there is a
growing proliferation of alternative methods for measuring each of these constructs. The reliability
and validity of these alternative methods need to be determined.

• The impact of AI systems to bias human performance, resulting in negative impacts, is an
important concern. Practical methods for assessing such biases are needed.

• Although there are ongoing efforts to develop measures of the resilience of the human-AI team,
these efforts remain in the early stages and more research is needed.

• In real-time measurement of human-AI teams, there is a need to understand the best source of
signals from the AI agent, and to be able to interpret human-AI interaction patterns in terms of
team state.

Research Needs 

The committee recommends addressing the following research objective for improved metrics relevant 
to human-AI teaming.  

Research Objective 10-8: Additional Metrics for Human-AI Teaming. There is a need for more research 
to establish the reliability and validity of alternative methods for measuring trust, mental models, and 
explanation quality. Ideally, the research community would converge on a common set of methods for 
measuring these parameters, to facilitate comparison of results across studies. This research also needs to 
develop: (1) methods to measure the potential bias that AI agents can have on human decision-making 
processes and overall quality of performance; and (2) methods to measure human-AI team resilience in the 
face of unanticipated conditions that require adaptation.  

AGILE SOFTWARE DEVELOPMENT AND HSI 

Agile software processes first emerged more than 20 years ago, with the goal of developing quality 
software more rapidly, to increase responsiveness to dynamically changing user needs (Dybå and Dingsøyr, 
2008). Typically, agile software-development processes occur through multiple short sprints (each on the 
order of weeks), with the idea of delivering usable software early, followed by the delivery of incremental 
improvements generated through subsequent sprints. More recently, the trend toward agile software has 
been extended into software-development operations (DevOps) for more seamless, continuous delivery of 
quality software (Allspaw and Hammond, 2009; Ebert et al., 2016). DevOps represents a new paradigm 
with associated tools and processes intended to tighten the loop between software development and 
operations. The goal is to shorten the cycle time for delivery of software and upgrades as well as enable 
software to be easily changed during operations (not just prior to deployment).  

Agile software-development processes and DevOps have been widely embraced by industry and more 
recently by government and DOD operations (Sebok, Walters, and Plott, 2017). DOD Instruction 5000.02 
lays out policies and procedures for implementing an adaptive acquisition framework to improve 
acquisition process effectiveness (DOD, 2020). It specifically calls for the use of agile software 
development, security operations, and lean practices to facilitate rapid and iterative delivery of software 
capability to the warfighter.  

Adopting agile software approaches has many important benefits. Particularly, it results in more rapid 
delivery to users than has been possible with traditional waterfall-engineering and acquisition approaches. 
Equally important, the agile software approach allows the software-development process to be more 
responsive to changing user needs (or changing understanding of user needs). Unlike traditional approaches, 

http://www.nap.edu/26355


Human-AI Teaming: State of the Art and Research Needs

Copyright National Academy of Sciences. All rights reserved.

84 HUMAN-AI TEAMING: STATE-OF-THE-ART AND RESEARCH NEEDS 

PREPUBLICATION COPY – Uncorrected Proofs 

requirements need not be fully defined at the start of the program but can emerge while working in 
collaboration with the user community. These are important attributes of effective software development 
that were explicitly called for in the National Research Council Human-System Integration in the System 
Development Process: A New Look report (2007) on HSI. Further, agile development approaches make 
auditability of the software easier. 

The committee finds that, although agile approaches to software development have clear benefits, there 
are also significant challenges that will be particularly relevant to the development of AI systems that can 
work effectively as teammates with humans. There is growing recognition that the focus on delivering 
software quickly can incur technical debt. Technical debt refers to design or implementation choices that 
may be expedient in the short term but may make future changes more costly or impossible (Boodraj, 2020; 
Kruchten, 2016). A literature review examining causes and consequences of technical debt in agile software 
development found that, for architecture and design issues, “a lack of understanding of the system being 
built (requirements), and inadequate test coverage” were among the most cited causes of technical debt 
(Behutiye et al., 2017, p. 154). The committee acknowledges that technical debt can arise with any software-
development approach, including waterfall methods. Our point in raising a concern with respect to technical 
debt in the case of agile software relates to the specific types of technical debt documented in the literature—
most particularly lack of understanding of system requirements and inadequate test coverage. These are 
precisely the concerns that were expressed in presentations to the committee. 

Similar conclusions were drawn from a review of agile development processes used for safety and 
mission-critical applications (Sebok, Walters, and Plott, 2017). Among the challenges identified in the use 
of agile methods was the limited opportunity to develop a consistent, coherent vision for the overall system. 
These researchers recommended including a “sprint 0” that involved more extensive analysis of the 
demands of the work domain and the needs of the user, as well as development of an integrated design 
concept to provide a larger, coherent structure to inform later sprints. They also emphasized the need for 
more holistic verification and validation processes of the larger system, as well as more comprehensive 
documentation.  

These findings highlight that, if not conducted in a thoughtful manner, agile software processes may 
limit the ability to produce coherent, innovative software solutions that depend on a comprehensive 
understanding of mission and performance requirements. By emphasizing rapid sprints without the benefit 
of a big-picture understanding of the larger problem space, there is a real risk of missing important mission 
requirements or opportunities to dramatically improve performance. The potential to miss mission-critical 
requirements is a particular concern in MDO, in which there are myriad sources, complexity, constraints, 
and objectives to be satisfied, and where the evolving concept of operation can result in system deficiencies. 
The committee acknowledges that completely bug-free and surprise-free software is an unattainable goal, 
and that missing requirements and failing to anticipate all edge-cases can occur with any software-
development approach, not just agile. Our point is the need to develop more effective and efficient 
approaches for capturing critical system requirements early in the development process. The objective is to 
impose some upfront, high-level analyses to reduce the chance, of missing important requirements early in 
the design process that may be much harder, and more expensive, to accommodate later in the design 
process. This is particularly important in complex systems such as MDO, in which there are many roles, 
each with interrelated functionality and information needs. 

In recognition of these concerns, the Human Readiness Level Scale in the System Development 
Process (HFES/ANSI 400-2021 standard) has developed guidance for more effectively incorporating HSI 
approaches into the agile development process that are highly relevant to AI and MDO (Human Factors 
and Ergonomics Society, 2021). These include: 

• Agile software should only be applied when “human capabilities and limitations are known and
design guidelines for software system are established” (p. 28).

• While, in agile processes, user requirements are typically determined during each sprint for small
portions of the system, for complex and safety-critical systems (such as military operations), “more
upfront analysis of human performance requirements may be needed” (p. 28).
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• “Cross-domain and cross-position information sharing requirements may need more extensive 
upfront analysis of user needs” (p. 28), which certainly applies to MDO command and control. 

• “Graphical user interface design standards must be established and applied consistently across 
software iterations and design teams, enabled by human factors engineering and user experience 
style guides” (p. 28). This is especially important for multiple-position operations, such as in MDO 
command and control. 

• Objective and comprehensive testing is required, involving human factors in the development 
teams, and considering both normal and off-normal events.  

 
The committee recognizes that the HFES/ANSI recommendations represent an ideal that is not always 

completely achievable. For example, while it is important to strive for objective and comprehensive testing, 
we recognize that there are no known methods that guarantee complete test coverage or guarantee that all 
problems will be caught. Nevertheless, this report highlights areas in which more attention is needed to 
insure that HSI concerns are adequately addressed within an agile development process. 

 
Key Challenges and Research Gaps 

The committee finds that best-practice HSI methods are currently not incorporated into the agile 
development process. This can lead to a failure to systematically gather user performance requirements, 
develop coherent innovative solutions that support human performance, and conduct comprehensive 
evaluations to ensure effective performance across a range of normal and off-normal conditions. 

 
Research Needs 

The committee recommends following research objective to address the incorporation of HSI into agile 
software development, particularly as it relates to human-AI teaming and MDO.  

 
Research Objective 10-9: Human-Systems Integration for Agile Software Development. There is a 
need to develop and validate methods for more effectively integrating human-systems integration (HSI) 
best practices into the agile software-development process. This may include identifying and building upon 
success stories in which HSI analyses have been successfully inserted into agile processes, as well as 
developing and testing new approaches for incorporating HSI activities into agile development processes 
as called for in HFES/ANSI 400. HSI standards, tools, and methodologies need to be explicitly incorporated 
into agile software-development processes for AI and multi-domain operations.  

 
SUMMARY 

The development of AI systems that can work effectively with humans depends on meeting a number 
of new requirements for successful human-AI interaction. A reliance on good HSI practices is essential, as 
is improving analyses, metrics, methods, and testing capabilities, to meet new challenges. A focus on 
testing, evaluation, verification, and validation of AI systems across their lifespans will be needed, along 
with AI maintenance teams that can take on relevant upkeep and certification processes. Further, HSI will 
need to be better integrated into agile software-development processes, to make these processes suitable for 
addressing the complexity and high-consequence nature of military operations. The committee believes that 
all these suggestions should be applied to the development of AI systems. 

The committee also suggests that the AFRL put into place best practices for AI system development 
based on existing HSI practice guidelines and current research. These include: 

 
• Adopting DOD HSI practices in development and evaluation; 
• Adopting human readiness levels in evaluating and communicating the maturity of AI systems; 
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• Conducting human-centered, context-of-use research and evaluations, prior to and alongside
more formal technical performance evaluations;

• Including a focus on systems engineering of human-AI teams within the USAF HSI program;
• Establishing an AI maintenance workforce;
• Establishing an AI TEVV capability that can address human use of AI, and that would feed

into existing development and operational test efforts;
• Documenting and assessing the data and models used in developing AI systems to reveal

possible biases and concept drift;
• Continuing to monitor performance of the human-AI team after implementation and throughout

the lifecycle, to identify any bias or concept drift that may emerge from changes to the
environment, the human, or the AI system;

• Incorporating and analyzing real-time audit logs of system performance failures throughout the
lifecycle of an AI system, to identify and correct performance deficiencies; and

• Assessing the state-of-the-art in agile software-development practices in the DOD and in
industry, and developing recommendations for more effective processes for incorporating agile
software methods into the DOD HSI and acquisition process.
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Conclusions 

The introduction of AI into advanced command and control systems brings with it many challenges, 
not least of which will be the development of reliable and robust technology capable of high levels of 
performance within the highly complex, variable, and changing scenarios common for peacekeeping and 
warfare operations. Further, the challenges of cyber attacks and more subtle information attacks may offer 
new pathways for adversarial actions against AI systems. Nonetheless, there is a likelihood that the military 
may begin to adopt AI systems, at least for limited applications, in the foreseeable future.  

In keeping with DOD directives and ethical considerations, as well as in attempt to ensure that AI 
systems operate in a manner that is safe and consistent with military objectives, there will be a need for 
people to direct and oversee the operations of AI systems. However, decades of research have shown that 
people often struggle to perform this role adequately, due to both cognitive limitations (e.g., poor vigilance 
in monitoring, inappropriate levels of trust) and inadequate design of the technology (e.g., inadequate 
transparency, system designs that create low engagement levels or bias human decision making). It is 
imperative that AI systems be designed to support the needs of the warfighters who will have the ultimate 
responsibility for successful mission execution.  

As AI is developed to provide more intelligent behaviors, there will be an increased need for AI 
systems to function effectively as teammates with humans. Just as human-only teams have many advantages 
over people working alone (e.g., the ability to spread work to manage workload fluctuations, the provision 
of diverse skills, knowledge, and capabilities toward the completion of common goals, and the ability to 
compensate for deficiencies or challenges faced by individuals) human-AI teams can have similar benefits. 
When considering an AI system as a part of a team, rather than simply a tool capable of limited actions, the 
need for a framework for improving the design of AI systems to enhance the overall success of human-AI 
teams becomes apparent. A failure to consider the needs of the many airmen, soldiers, seamen, guardians, 
and marines who are responsible for successful military operations will result in AI technologies that 
ultimately fail to provide the necessary high levels of performance and may instead cause harm.  

The design of AI systems for human-AI teams needs to incorporate several highly interrelated 
considerations. These include designing the AI system to support not only taskwork, but also teamwork. AI 
systems capable of communication, coordination, cooperation, social intelligence, and human-AI language 
exchange will be needed. In addition, there will be a need to support ongoing shared situation awareness 
(SA) between humans and AI teammates, including SA of the environment, SA of the broader system and 
context, SA of each other's tasks, and SA of one's own and each other's performance or state. SA includes 
the need to maintain a representation and alignment of changing goals, functional assignments, tasks, plans, 
and actions across the distributed team.  

Improved methods for supporting trust assessment are needed that consider the situational factors that 
inform humans of when it is appropriate to rely on an AI system (allowing attention to be shifted to other 
tasks) and when to be less reliant or to intervene. The effects of directability, transparency, and 
explainability on evolving trust and cooperation need to be further explored. Issues of both distrust and trust 
are important, as is an understanding of how trust evolves over time, trust repair, and how trust is affected 
by changing goals within the team. Further, a consideration of trust and SA within multi-echelon, 
distributed, and ad hoc networks of teams, potentially with multiple AI systems, presents new challenges 
that need to be addressed.  
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A key means of providing the needed SA and trust to support effective human-AI teaming is the 
development of AI systems with high levels of transparency and explainability, without information 
overload. Transparent, explainable AI systems are required to support decision making, often in time-
critical situations. Potential challenges, such as bias or brittleness in AI system capabilities, multiple AI 
systems that each work differently, and AI systems that learn and change over time, accentuate the need for 
high levels of real-time transparency and explainability. Humans cannot function effectively with AI 
systems in the absence of the ability to accurately understand and project the behavior of the AI systems.  

Training of the human-AI team as a unit will also become increasingly important. Training is essential 
for building accurate mental models of an AI system to support SA and trust, and for forming accurate 
expectations regarding teamwork behaviors. While training will need to include formal instruction, it will 
also increasingly need to rely on simulated, structured practice scenarios in which perturbations, edge cases, 
and novel events can be introduced. Opportunities for training and for observing AI system transparency 
prior to mission events (e.g., during planning, pre-mission briefings) or after mission events (e.g., during 
debriefing, after-action reviews) would also benefit from exploration, as these opportunities use periods of 
lower workload to provide high levels of relevant context. Considerable research is needed to determine 
effective methods for training human-AI teams. New research can leverage current knowledge on training 
in all-human teams, but also needs to extend beyond human-human team research to address the unique 
challenges associated with establishing appropriate expectations for human-AI interaction and trust.  

Central human-AI interaction design decisions, such as the distribution of responsibilities within the 
team (i.e., the level of automation), and the ways in which those responsibilities shift over time (i.e., flexible 
autonomy), have significant impacts on human workload, SA, and the overall success of the team in both 
routine and novel situations. Methods for supporting the smooth functioning of the team, such as Playbook 
or goal-based interaction, provide potential opportunities, but more research is needed to predict how design 
decisions affect emergent behaviors, skill retention, training requirements, job satisfaction, and overall 
human-AI team resilience. Research is also needed to develop predictive models of human-AI performance. 
AI system responsivity and directability may also provide methods for improving levels of trust, via system 
interaction design.  

Several significant challenges exist for successful AI system development. These include detecting 
and preventing information attacks and the systematic bias that can undermine AI system performance and 
negatively affect human decision making. AI systems with robust situation models and causal models will 
be needed for decision making. The challenges of maintaining SA in high-speed, on-the-loop operations 
are significant and will require new breakthroughs in information presentation and AI system capabilities.  

AI may also be beneficial in directly supporting the performance of team operations, including 
detecting and mitigating human biases and customizing AI system behaviors to adapt to the needs of its 
teammates. It would also be beneficial to explore the potential role of an AI system as a coordinator, 
orchestrator, or human-resource manager. Two-way communication between humans and AI systems may 
be important to consider, including the need to provide the AI system with explanations from humans, or 
to transmit information on human goals or states to the AI system. 

Good human-systems integration systems and practices underpin the ability of the USAF to address 
these various research-and-development goals. To support the development of AI systems that work 
effectively as a part of human-AI teams, improved methods for setting system requirements and analysis, 
design, and evaluation of human-AI team performance will be needed. These requirements are particularly 
important for systems developed via agile software-development processes, which need detailed safeguards 
for effectively incorporating human-systems integration best practices. An increased emphasis on 
interdisciplinary research-and-development teams is needed, along with research on workforce skillsets, 
tools, methodologies, and policies for new AI maintenance teams, and cyber detection and response teams. 
Methods, processes, and systems for testing, evaluation, verification, and validation of AI systems across 
their lifespans are needed, particularly with respect to AI blind spots and edge cases, as well as managing 
the potential for software drift over time, supported by robust human-AI testbeds.  

This report establishes a number of interrelated research objectives for meeting these needs. Table 11-
1 provides a summary of these research objectives, aligned along near- (1–5 years), mid- (6–10 years) and 
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far-term (11–15 years) objectives, with the most immediately accessible and foundational needs listed as 
near-term objectives and more advanced goals listed as mid- or far-term objectives. Because these 
objectives are all important for the development of AI systems that will work effectively with people in 
future military operations, it is not possible to fully prioritize them.  

Taken together, this integrated set of research priorities will help to achieve significant advances in 
human-AI teaming competence. These priorities are fundamental prerequisites to the safe introduction of 
AI systems into critical situations such as multi-domain operations. 
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TABLE 11- 1 Summary of Human-AI Teaming Research Objectives Aligned Along Near-, Mid-, and Far-
Term Objectives 

Near-Term (1–5 years) Mid-Term (6–10 years) Far-Term (11–15 years) 

Team Effectiveness 

2-1: Human-AI Team
Effectiveness Metrics

2-2: AI Uncertainty Resolution

2-3: AI Over-Promise Rate

2-4: Human-AI Team Models

Team Processes 
3-1: Human-AI Teamwork Skills in MDO

3-2: Support for Human-AI Teaming in MDO

Situation 
Awareness 

4-1: Team SA in MDO
4-2: Resilience of SA to
Information Attack

4-3: Human SA of AI Systems

4-4: Shared SA in Human-AI Teams

4-5: AI Awareness of Human Teammate

4-6: AI Self-Awareness

4-7: AI Situation and Task Models

Transparency and 
Explainability 

5-1: Transparency Information
Requirements
5-2: Transparency Display
Methods
5-3: Transparency
Temporality

5-4: Transparency of Machine Learning-Based AI in MDO

5-5: Explainability and Trust
5-6: Adaptive (and Adaptable)
Explainability
5-7: Explainability of Learned
Information and Change
5-8: Machine Personae and
Explanations

5-9: Machine Benefits from
Human Explanations

Interaction 

6-1: Human-AI Team Task
Sharing

6-2: On-the-Loop Control

6-3: Multiple LOA Systems
6-4: Flexible Autonomy 
Transition Support
6-5: Support for Flexible
Autonomy

6-6: GOC and AI
Transparency 

6-7: Playbook Extensions for
Human-AI Teaming

6-8: Human-AI Team Emergent Behaviors
6-9: Human-AI Team
Interaction Design
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Trust 

7-1: Effects of Situations and Goals on Trust
7-2: Effects of Directability on
Trust
7-3: Cooperation as a Measure
of Trust

7-4: Investigations of Distrust

7-5: Dynamic Models of Trust Evolution
7-6: Trust Evolution in
Multi-Echelon Networks

Human and  AI 
Bias 

8-1: Human-AI Partnership in
Continuous Learning
Environments

8-2: Adversarial Effects on
Human-AI Team Biases
8-3: Biases from Small Datasets
and Sparse Data

8-4: Inductive and Emerging
Human Biases

8-5: Preventative Detection
and Mitigation of Human-
AI Team Biases in
Learning Systems

Training 

9-1: Developing Human-Centered Human-AI Team-Training
Content 

9-2: Testing and Validating
Traditional Team Training
Methods to Inform New
Methods

9.3: Training to Calibrate 
Human Expectations of 
Autonomous Teammates 

9-4: Designing Platforms for Human-AI Team Training
9-5: Adaptive Training Materials Based on Differing Team

Compositions and Sizes 
9-6: Training That Works
Toward Trust in Human-AI
Teaming.

HSI Processes, 
Measures and 
Testing 

10-1: Human-AI Team Design
and Testing Methods

10-2: Human-AI Team
Requirements

10-3: Human-AI Team
Development Teams

10-4: AI System Lifecycle Testing and Auditability

10-5: AI Cyber Vulnerabilities

10-6: Testing of Evolving AI Systems

10-7: Human-AI Team Testbeds
10-8: Additional Metrics for
Human-AI Teaming
10-9: HSI for Agile Software
Development

SOURCE: Committee generated. 
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the integration of humans and automation. She has published extensively on the effects of automation and 
AI on human performance and situation awareness. She has authored more than 200 scientific articles and 
is the coauthor of Analysis and Measurement of Situation Awareness and Designing for Situation 
Awareness. Endsley received the Human Factors and Ergonomics Society Jack Kraft Innovator Award and 
the Aerospace Medical Association Kent Gillingham Award for her work in situation awareness. She is 
currently a member of the Board of Human-System Integration of the National Academies of Sciences, 
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engineering from the University of Southern California in 1990. 
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He co-organized the National Academy of Engineering U.S. Frontiers of Engineering (FOE) 2008 session 
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methodologies and human-AI-robot teaming in defense operations, urban search and rescue, and distributed 
space operations. Her work is funded primarily by the U.S. Department of Defense. She received her Ph.D. 
in cognitive psychology from New Mexico State University. 

Mary (Missy) Cummings is currently a professor in the Duke University Electrical and Computer 
Engineering Department and the director of the Humans and Autonomy Laboratory. A naval officer and 
military pilot from 1988 to1999, she was one of the U.S. Navy's first female fighter pilots. She is an 
American Institute of Aeronautics and Astronautics fellow and a member of several technology-focused 
national committees. Her research interests include human supervisory control, explainable artificial 
intelligence, human-autonomous system collaboration, human-robot interaction, human-systems 
engineering, and the ethical and social impact of technology. Cummings received her B.S. in mathematics 
from the U.S. Naval Academy, an M.S. in space systems engineering from the Naval Postgraduate School, 
and a Ph.D. in systems engineering from the University of Virginia. 

Cleotilde Gonzalez is a research professor of decision sciences and the founding director of the Dynamic 
Decision Making Laboratory at Carnegie Mellon University. Her main affiliation is with the Social and 
Decision Sciences Department and she has additional affiliations with many other departments and centers 
in the university. She is a lifetime fellow of the Cognitive Science Society and the Human Factors and 
Ergonomics Society. She is also a member of the governing board of the Cognitive Science Society. She is 
associate editor of Cognitive Science and part of the editorial board of Decision, the Journal of Experimental 
Psychology-General, the Journal of Behavioral Decision Making, Human Factors, and the System 
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Cognitive Science field. Her work includes the development of a theory of decisions from experience called 
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the Universidad de las Americas-Puebla, Mexico, and her M.Sc. and Ph.D. from Texas Tech University. 

John D. Lee is the Emerson Electric professor at the University of Wisconsin–Madison. He investigates 
the issues of human-automation interaction, particularly trust in automation. He has investigated trust in 
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domains that include UAVs, maritime operations, highly automated vehicles, and deep space exploration. 
His work also involves assessing interface and interaction methods to enhance trust calibration, as well as 
statistical approaches to assess trust and user state estimation. Lee helped to edit the Handbook of Cognitive 
Engineering, the APA Handbook of Human-Systems Integration, the Handbook of Human Factors for 
Automated, Connected, and Intelligent Vehicles, and is also a coauthor of a popular textbook Designing for 
People: An Introduction to Human Factors Engineering. He has served on several National Academies of 
Sciences, Engineering, and Medicine committees including the Committee on Human Factors, Committee 
on Reducing and Preventing Teen Motor Vehicle Crashes, and the Army Research Laboratory Technical 
Assessment Board. Lee received a Ph.D. in mechanical engineering and an M.S. in industrial engineering 
from the University of Illinois, and a B.S. in mechanical engineering and B.A. in psychology from Lehigh 
University. 

Nathan J. McNeese is an assistant professor and director of the Team Research Analytics in Computational 
Environments Research Group within the Human-Centered Computing Division in the School of 
Computing at Clemson University. He is also director of the university-wide Clemson University Data 
(Science) Lab. His research interests span across human-AI teaming, human-centered AI, and the 
development/design of human-centered collaborative tools and systems. He currently serves on multiple 
international/societal program and technical committees, in addition to multiple editorial boards including 
Human Factors. He is a previous member of the National Academies of Sciences, Engineering, and 
Medicine Panel on Human Factors Science, as well as previous member of the Army Research Lab HERD 
Technical Advisory Board. His research has received multiple best paper awards/nominations and has been 
published in top peer-reviewed human-computer interaction and human factors venues more than 90 times. 
In addition, he has acquired over $14M in research funding from agencies such as the National Science 
Foundation, the Office of Naval Research, the Air Force Office of Scientific Research, and the Agency for 
Healthcare Research and Quality. McNeese received a Ph.D. in information sciences and technology from 
Pennsylvania State University. 

Christopher Miller is now the chief scientist and a co-owner of Smart Information Flow Technologies 
(SIFT), a small business doing human-systems integration research and development for more than 20 
years. He is one of the co-creators of the Playbook® concept and has been involved in all phases of its 
development across multiple customers and applications. He has substantial project management 
experience, including leading more than 55 efforts in human-systems and human-automation interaction 
for DARPA, the U.S. Navy, U.S. Army, U.S. Air Force, and the National Aeronautics and Space 
Administration—both as prime and subcontractor—as well as in medical, industrial processing, and 
commercial aviation domains. Prior to joining SIFT, Miller led a series of projects as the human factors 
fellow at Honeywell Technology Center where he was principal investigator for Honeywell’s role in the 
U.S. Army’s Rotorcraft Pilot’s Associate ACTD Program and for Honeywell’s effort in automated learning 
for task and information requirements for the U.S. Air Force and DARPA’s Pilot’s Associate Program. He 
won Honeywell’s highest technical achievement award for his work in designing the intermodule and 
human communications aspects of the Abnormal Event Guidance and Information System—an associate-
like system for use in oil refineries. He has also provided consulting services to Australia, Canada, and the 
UK on various defense research projects, and to the European Science Foundation in prioritizing research 
for autonomy support for deep space missions. Miller is the author of more than 140 publications in these 
fields and has served as chair of 17 conference sessions or symposia and has given invited addresses to 
NATO RTO advisory boards, the European Space Foundation, and the National Academies of Sciences, 
Engineering, and Medicine. He has previously served on multiple National Academies’ activities including 
(most recently) helping to organize the Workshop on Human-Automation Interaction Considerations for 
Unmanned Aerial System Integration in 2018. Miller received his Ph.D. and M.A. degrees in cognitive 
psychology (with an emphasis on linguistics and language acquisition and use) from the University of 
Chicago and a B.A. from Pomona College. 
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Emilie M. Roth is owner and principal scientist of Roth Cognitive Engineering, a small company that 
conducts research and application in the areas of human factors and applied cognitive psychology (cognitive 
engineering). Her work involves analysis of human problem solving and decision making in real-world 
environments (e.g., military command and control; intelligence analysis; nuclear power plant emergencies; 
railroad operations; healthcare), and the impact of support systems (e.g., computerized procedures; alarm 
systems; advanced graphical displays; new forms of decision support and automation) on cognitive 
performance. Roth has supported analysis and design of first-of-a-kind systems, including design and 
manning of envisioned Army Future Vertical Lift; design and evaluation of next-generation nuclear power 
plant control rooms; and design of computer-based support systems for flight planning and monitoring for 
USTRANSCOM and the Air Mobility Command. She is a fellow of the Human Factors and Ergonomics 
Society, an associate editor of the Journal of Cognitive Engineering and Decision Making, and serves on 
the editorial board of Human Factors. She participated in the National Academies of Sciences, Engineering, 
and Medicine’s Committee on Human-System Design Support for Changing Technology (in 2006), the 
National Academies’ committee examining lessons learned from the Fukushima nuclear accident for 
improving safety and security of U.S. nuclear plants (2012 to 2016), and is currently a member of the Board 
on Human-Systems Integration at the National Academies. She received her Ph.D. from the University of 
Illinois, Urbana-Champaign, in cognitive psychology. 

William B. Rouse is research professor in the McCourt School of Public Policy at Georgetown University, 
as well as senior fellow in the office of the senior vice president for research, and professor emeritus and 
former chair of the School of Industrial and Systems Engineering at the Georgia Institute of Technology. 
His research focuses on understanding and managing complex public-private systems such as health care 
delivery, higher education, transportation, and national security, with emphasis on mathematical and 
computational modeling of these systems for the purpose of policy design and analysis. He was chair of the 
Committee on Human Factors before it became the Board on Human-Systems Integration. Over the past 
four decades, he has served as chair, co-chair, or member of roughly 40 Academy study committees, ad hoc 
committees, and other initiatives. He received his B.S. in mechanical engineering from the University of 
Rhode Island, and his S.M. and Ph.D., both in systems engineering, from the Massachusetts Institute of 
Technology. 
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Appendix B 

Human-AI Teaming Workshop Agenda 

July 28-29, 2021 

MEETING OBJECTIVES 
• Identify key human-systems integration design considerations, methods, approaches, and

associated research aimed at warfighter systems that incorporate human-AI teaming
• Identify gaps in knowledge on effective human-machine teaming necessary to achieve future

Air Force mission capability
• Identify promising human-systems integration and human factors research opportunities that

would accelerate mission capability development.

Wednesday, July 28, 2021 

10:00 a.m. Welcome and Introductions 
 Mica Endsley, Chair

10:15 a.m. AI In Future DOD Operations 
Facilitated by Nancy Cooke (committee member) 
 Mark Draper, Human-AI Interaction in Future Joint All Domain Operations:

Some Challenges and Opportunities, Air Force Research Laboratory
 Robin Murphy, Role of Autonomy in DOD and HADR, Texas A&M University
 Greg Zacharias, Human-Autonomy Test and Evaluation, DOD-OSD

12:00 p.m. Break 

12:45 p.m.  AI Status and Challenges 
Facilitated by Missy Cummings (committee member) 
 Matt Turek, XAI Program, DARPA
 Joanna Bryson, AI Ethics and Human Cooperation, Hertie School

2:00 p.m. Break 

2:30 p.m.  Human-AI Teaming Approaches 
Facilitated by Bill Rouse (committee member) 
 Ben Shneiderman, Human-Centered AI, University of Maryland
 Jay Shively, Human Autonomy Teaming, NASA Ames
 Matthew Johnson, Intelligent Teaming, Florida Institute for Human and Machine

Cognition

4:45 p.m.  Adjourn 
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Thursday, July 29, 2021 

10:00 a.m. Welcome and First Day wrap up 
 Mica Endsley, Chair

10:15 a.m. Human-AI Team Design and Processes 
Facilitated by Emilie Roth (committee member) 
 Jamie Gorman, Modeling human-autonomy team coordination using layered

dynamics, Georgia Tech University
 Brian Sandberg, ASIST program, DARPA
 Thomas O'Neill, Future Directions in Human-Autonomy Teams Research,

University of Calgary

12:15 p.m. Break 

12:30 p.m.  Bias and Trust 
Facilitated by John Lee (committee member) 
 Chris Wickens, Black Swans, Complacency and Automation Bias
 Peter Hancock, Trust in AI Meta-Analysis, University of Central Florida
 Joe Lyons, Trust Research in AFRL, Air Force Research Laboratory

2:00 p.m. Break 

2:30 p.m.  Transparency and Explainability 
Facilitated by Chris Miller (committee member) 
 Shane Mueller, XAI, Michigan Technology University
 Jessie Chen, Transparent Communications for Effective Human-Autonomy

Teaming, Army Research Laboratory
 Tim Miller, Transparency and Explainability, University of Melbourne

4:30 p.m. Conclusions/Discussion 

5:00 p.m. Adjourn 
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Appendix C 

Definitions 

Ad Hoc Teams – Teams that form rapidly and uniquely for short-term tasks and missions. 
Adaptable Automation – Automation that can be activated or have its level of automation modified by the 
human in real time during system operation.  
Adaptive Automation – Automation that automatically changes its performance or level of automation 
based on time, human performance or state, or other predefined characteristics of team performance. 
Agile Software – An approach to software development that produces rapid iterative sections of software 
or "sprints", each of which works to define requirements for a limited set of functions, and then develop, 
integrate, and test the associated software. Agile software-development approaches feature a focus on: (1) 
individuals and interactions over processes and tools; (2) working software over comprehensive 
documentation; (3) customer collaboration over contract negotiation; and (4) responding to change over 
following a plan (Abrahamsson et al., 2017; Beck et al. 2001; Cockburn 2002).  
Artificial Intelligence (AI) – Systems that seek to provide the intellectual processes characteristic of 
people, such as the ability to reason, discover meaning, generalize, or learn from past experience (Copeland, 
2021). AI systems may be applied to parts of a task (e.g., perception and categorization, natural language 
understanding, problem solving, reasoning, system control), or to a combination. AI software approaches 
may involve symbolic approaches (i.e., rule-based or case-based reasoning), often taking form as decision-
support systems; may apply other advanced algorithms such as Bayesian belief-nets, fuzzy systems, and 
connectionist or machine learning-based approaches (e.g., logistic regression, decision trees, or neural 
networks); or may incorporate hybrid architectures that include more than one algorithmic approach.  
AI Auditability – The ability to document and assess the data and models used in developing an AI-
embedded system. 
AI Explainability – The ability to provide satisfactory, accurate, and efficient explanations of the results 
(i.e., recommendations, decisions, and/or actions) of an AI system.  
Automation – A device that performs functions independently, without continuous input from an operator 
(Groover, 2020). Automation can be fixed (mechanical) or programmable (based on defined rules and 
feedback loops to ensure proper execution), either via a static set of software commands, or involving 
flexible, rapid customization by a human operator. Tasks may be fully automated (i.e., autonomous) or 
semi-automated, requiring human oversight and control for portions of the task. It is also often defined as 
“the execution by a machine agent (usually a computer) of a function that was previously carried out by a 
human. What is considered automation will therefore change with time” (Parasuraman and Riley, 1997, p. 
231).  
Automation Conundrum – “The more automation is added to a system, and the more reliable and robust 
that automation is, the less likely that human operators overseeing the automation will be aware of critical 
information and able to take over manual control when needed. More automation refers to automation use 
for more functions, longer durations, higher levels of automation, and automation that encompasses longer 
task sequences” (Endsley, 2017, p. 8). 
Autonomy – Systems that have a set of intelligence-based capabilities that can respond to situations that 
were not explicitly programmed or were not anticipated in the design (i.e., systems that can generate 
decision-based responses). Autonomous systems have a degree of self-government and self-directed 
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behavior (serving as a human’s proxy for decisions) (USAF, 2013). Systems may be fully autonomous or 
partially autonomous (i.e., requiring human actions or inputs for portions of the task).  
Bias – A preference toward certain information or options. Bias is created through systematic error 
introduced by selecting or encouraging one outcome or answer over others (Merriam-Webster, 2021). In 
the case of AI, bias may be introduced through a limited set of training data that fails to consider the wider 
range of circumstance where it may be employed, or by algorithms that focus on features in the datasets 
that may be incidental to performance. 
Black-Box AI – AI systems in which the reasoning and processes are not transparent or observable. 
Brittleness – The inability of automation to perform at the limits of its designed performance envelope, 
resulting in often unexpected system failures. 
Common Ground – Mutual knowledge, beliefs, and assumptions required to support interdependent 
actions in teams (Klein et al., 2005, p 146) (see also shared situation awareness and shared mental models). 
Context of Use – Includes characteristics of the users, the activities they perform, how the work is 
distributed across people and machine agents, the range and complexity of situations that can arise, as well 
as the broader sociotechnical environment in which the system will be integrated (NRC, 2007). 
Cooperation – “Negotiating and aligning individual goals when they differ from a joint goal”, (Chiou and 
Lee, 2021, p. 10) with individual teammates willing to give up individual benefit to achieve greater benefits 
for the team. 
Coordination – Managing dependencies between activities (Malone and Crowston, 2001). This includes 
the timing or arrangement of joint decisions, or dependency management (Malone and Crowston, 1994). 
Directability – “One’s ability to influence the behavior of others and complementarily be influenced by 
others” (Johnson and Bradshaw, 2021, p. 390). 
Distributed Teams – Teams that are distributed spatially (e.g., blocked from view by objects, in separate 
rooms, or separate geographical areas) or temporally.  
Explainability – Support for understanding the logic, process, factors, or reasoning upon which a system's 
actions or recommendations are based.  
Flexible Autonomy – Automation in which the level of automation can change dynamically over time for 
different functions, using either adaptive or adaptable approaches.  
Granularity of Control (GOC) – The degree of specificity of control inputs that are required to interact 
with the system. GOC can range “from (a) manual control; to (b) programmable control, requiring the 
programming of each task parameter and specification; (c) Playbook control, selecting from a Playbook 
of preset, yet adaptable, behaviors (Miller, 2000); and (d) goal-based control, where only a high-level goal 
needs to be provided to the system (USAF, 2015)” (Endsley, 2017, p. 17). 
Human-AI Team – A team consisting of “one or more people and one or more AI systems requiring 
collaboration and coordination to achieve successful task completion” (Cuevas et al., 2007, p. 64).  
Human-Systems Integration (HSI) – Addresses human considerations within the system design and 
implementation process, with the aim of maximining total system performance and minimizing total 
ownership costs (Boehm-Davis, Durso, and Lee, 2015). HSI incorporates human-centered analyses, 
models, and evaluations throughout the system lifecycle, starting from early operational concepts, through 
research, design, and development, and continuing through operations (NRC, 2007). Within the DOD, HSI 
is divided into seven domains: manpower, personnel, training, human factors engineering, safety and 
occupational health, force protection and survivability, and habitability. 
Ironies of Automation – The more advanced the automation, the more crucial the contribution of the 
human; the less likely the human is to have the manual skills necessary; and the more likely that workload 
will be high and more advanced cognitive skills will be needed when humans take over task performance 
(Bainbridge, 1983).  
Level of Automation (LOA) – The amount of control or authority that is granted to the automation (or AI 
system) for a given task or function.  
Lumberjack Effect – “More automation yields better human-system performance when all is well but 
induces increased dependence, which may produce more problematic performance when things fail” 
(Onnasch et al., 2014, p. 477). 
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Meaningful Human Control – “The ability to make timely, informed choices to influence AI-based 
systems that enable the best possible operational outcomes” (Boardman and Butcher, 2019, p. 7-1). 
Mental Model – “Mechanisms whereby humans are able to generate descriptions of system purpose and 
form, explanation of system functioning and observed system states, and predictions of future states” 
(Rouse and Morris, 1985, p. 7). 
Model Drift – Occurs when the relationship between input and output data changes over time, negatively 
affecting the accuracy of the model's predictions (Widmer and Kubat, 1996). 
Multi-Domain Operations (MDO) – Dynamic and distributed combinations of actions across the 
traditionally separate air, land, maritime, space, cyberspace, information, and electro-magnetic spectrum 
domains to achieve synergistic and combined effects with improved mission outcomes. 
Multi-Domain Operations Command and Control (MDC2) – Connected and “distributed sensors, 
shooters, and data from all domains to joint forces, enabling coordinated exercise of authority to integrate 
planning and synchronize convergence in time, space, and purpose” (USAF, 2020, p. 6). Also called joint 
all domain command and control (JADC2).  
On-the-Loop Control – Operations in which people oversee a system that is operating at a high level of 
automation at very fast timeframes and/or volumes exceeding human capacity. There is no expectation that 
people will be able to monitor or intervene in operations prior to automation errors occurring, however, it 
may be possible to take actions to turn off the automation or change automation behaviors in an outer 
control loop.  
Out-of-the-Loop (OOTL) – The tendency for people working with automated systems to be slower to 
detect a problem with system performance and slower to understand the problem once detected.  
Playbook – A set of plays that are templates of behavior for automation, known to be effective at 
accomplishing specific goals (Miller, 2000). 
Resilient Teams – Groups of people and/or automated agents that have the capacity to respond to change 
and disruption in a flexible and innovative manner to achieve successful outcomes. 
Responsivity – “The input–output gain of a detector system, reflecting an ability to adjust to sudden, altered 
conditions in the environment and to resume stable operation” (Chiou and Lee, 2021, p. 6). Automation or 
AI responsivity refers to the “degree to which the automation effectively adapts to the person and situation” 
(Chiou and Lee, 2021, p. 6). 
Shared Mental Model – A consistent understanding and representation of how systems work across 
teammates (i.e., the degree of agreement of one or more mental models). This includes models of the 
technology and equipment, models of taskwork, models of teamwork, and models of teammates (e.g., 
knowledge, skills, attitudes, preferences) (Cannon-Bowers, Salas, and Converse, 1993). 
Shared Situation Awareness – “The degree to which team members possess the same SA on shared SA 
requirements” (Endsley and Jones, 2001, p 48). 
Situation Awareness (SA) – “The perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning and the projection of their status in the near future” 
(Endsley, 1988, p 97).  
Situation Structure – A 2 x 2 matrix that “specifies the choices available to each actor in a dyad, the 
outcomes of their choices, and how those outcomes depend on the choices of the other agent” (Chiou and 
Lee, 2021, p 9). 
Social Intelligence – An “aggregated measure of self- and social-awareness, evolved social beliefs and 
attitudes, and a capacity and appetite to manage complex social change” (Ganaie and Mudasir, 2015, p. 23). 
Supervisory Control – Control by a human operator of automation which, at a lower level, is controlling 
a dynamic system. The human operator handles higher-level tasks and determines the goals of the overall 
system, monitors the system to determine whether operations are normal and proceeding as desired, and 
diagnoses difficulties and intervenes in the case of abnormality or undesirable outcomes (Sheridan, 1986; 
Sheridan and Johannsen, 1976). 
Taskwork – Activities, skills, and knowledge associated with carrying out the tasks required for a job (i.e., 
the functioning, operating procedures, and capabilities and limitations of equipment and technology; task 
procedures, strategies, constraints; relationships between components; and likely contingencies and 
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scenarios). Taskwork is directly related to the goals of a team (Cannon-Bowers et al., 1993), and is often 
contrasted with teamwork. 
Team – A “distinguishable set of two or more people who interact dynamically, interdependently, and 
adaptively toward a common and valued goal/objective/mission, who have each been assigned specific 
roles or functions to perform, and who have a limited lifespan of membership” (Salas et al., 1992, p. 4).  
Teammate – A fellow member of a team. Teammates may be human or non-human (e.g., an animal, bird, 
robot, or autonomous software agent).  
Teamwork – An interrelated set of knowledge, skills, and attitudes that facilitate coordinated, adaptive 
performance in teams. This includes an understanding of roles, responsibilities, interdependencies and 
interaction patterns, communications, and information flow (Cannon-Bowers et al., 1993). Teamwork is 
often contrasted with taskwork.  
Team Mental Model – A mental model of one's teammate(s) that provides an understanding of teammates' 
capabilities, limitations, current goals and needs, and current and future performance (Cannon-Bowers, 
Salas, and Converse, 1993). 
Team Situation Awareness – “The degree to which every team member has the SA required for his or her 
responsibilities” (Endsley, 1995, p. 39).  
Theory of Mind – The mental capacity to understand other people and their behavior by ascribing mental 
states to them. 
Transparency – The understandability and predictability of the system (Endsley, Bolte, and Jones, 2003), 
including its “abilities to afford an operator’s comprehension about an intelligent agent’s intent, 
performance, future plans, and reasoning process” (Chen et al., 2014a, p. 2).  
Trust – The attitude that an “agent will help achieve an individual’s goals in a situation characterized by 
uncertainty and vulnerability” (Lee and See, 2004, p. 2). Trust can mediate the degree to which people rely 
on each other as well as on a technology, such as AI.  
White-Box AI – AI approaches that can explain how they behave, how they produce predictions, and what 
the influencing factors are (i.e., transparent approaches).  
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