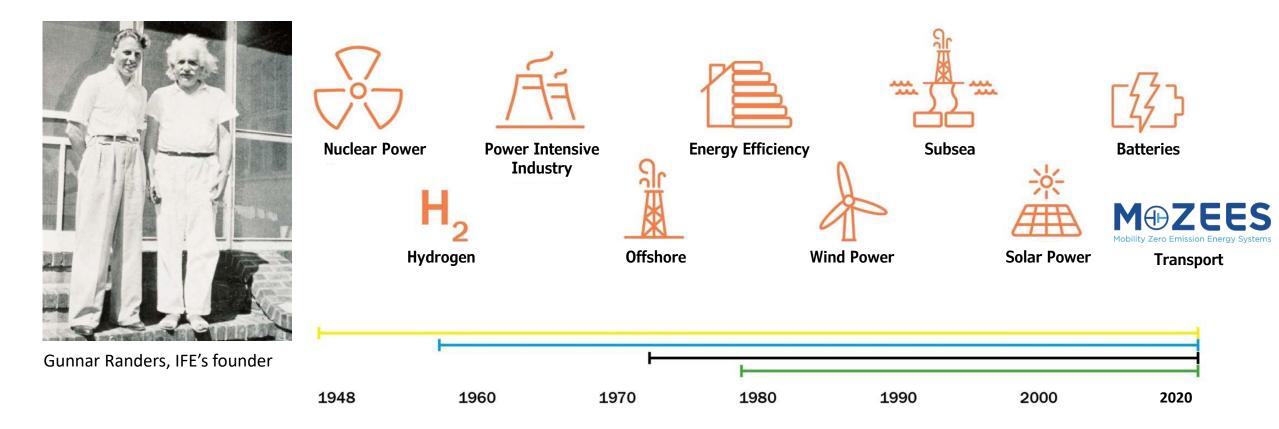


HFC-forum Human Factors in Control Det Grønne skiftet - sikkerhet og menneskelige faktorer underveis

19 October 2021

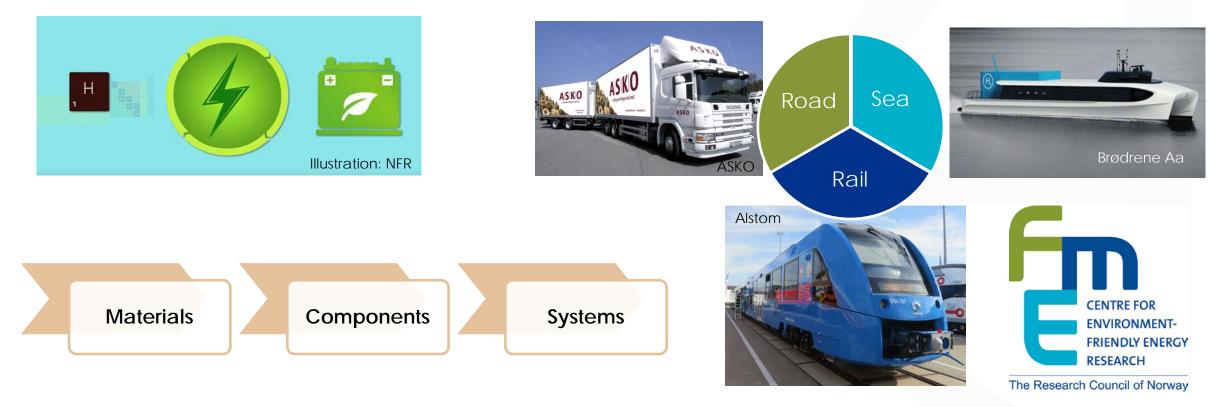
Hydrogen og batterier – Sikkerhetsutfordringer ved anvendelse i nye energisystemer og oppskalering


Øystein Ulleberg Forskningssjef IFE | Senterleder MoZEES

	01	Introduction – IFE and MoZEES
Contents	02	Hydrogen safety
Contents	03	Battery safety
	04	Summary

Institute for Energy Technology

IFE has contributed to the development of Norway as an energy nation for more than 70 years!



MoZEES – A Research Center on Zero Emission Transport

Battery & Hydrogen

- Technology Value Chains

Heavy Duty Transport: Road, Rail, Sea – Areas for Innovation & New Business

FME MoZEES project: 260 million NOK (2017-2024)

RA3 – Hydrogen & Battery Systems & Applications

• Objectives

- Optimize design & controls of battery / fuel cell systems
- Develop safe battery and hydrogen systems
- Improve water electrolysis systems wrt. costs

Focus Areas

- Hybrid battery/fuel cell systems for heavy duty applications, with improved lifetime and lower overall costs
- Li-ion battery cell lifetime and system safety
- PEM water electrolyzer system operation

PEM Fuel Cells

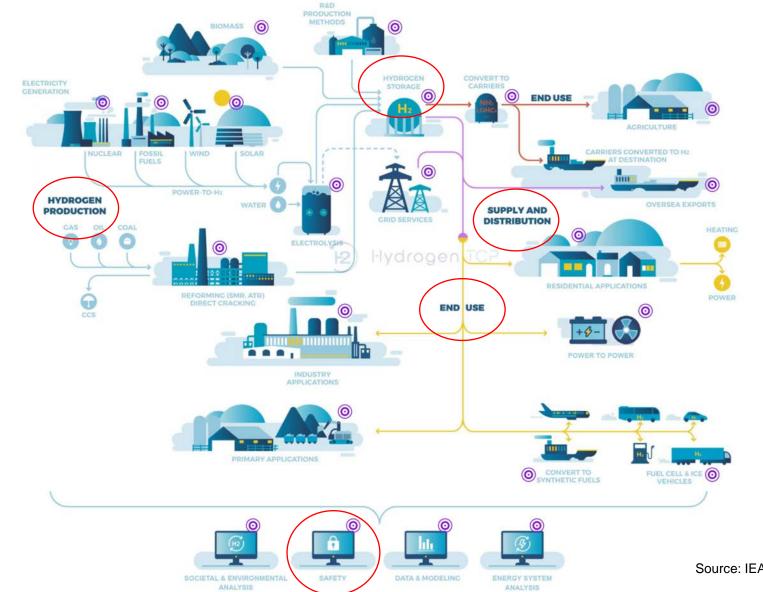
Li-ion Batteries

PEM Water Electrolysis

IFE Hydrogen Research Infrastructure

• IFE Hynor

- 1. Hydrogen Refueling Station (2011 2021)
- 2. Solid oxide fuel cells (2014 2016)
- 3. Sorption Enhanced Reforming ongoing
- 4. PEM Fuel Cells & Batteries ongoing
- 5. PEM Water Electrolysis ongoing
- 6. Liquid Hydrogen storage (2022)
- Norwegian Fuel Cell and Hydrogen Centre*
 *open research infrastructure
 - PEM Fuel Cell System Laboratory
 - PEM Water Electrolysis System Laboratory


IFE Hynor Hydrogen Technology Center

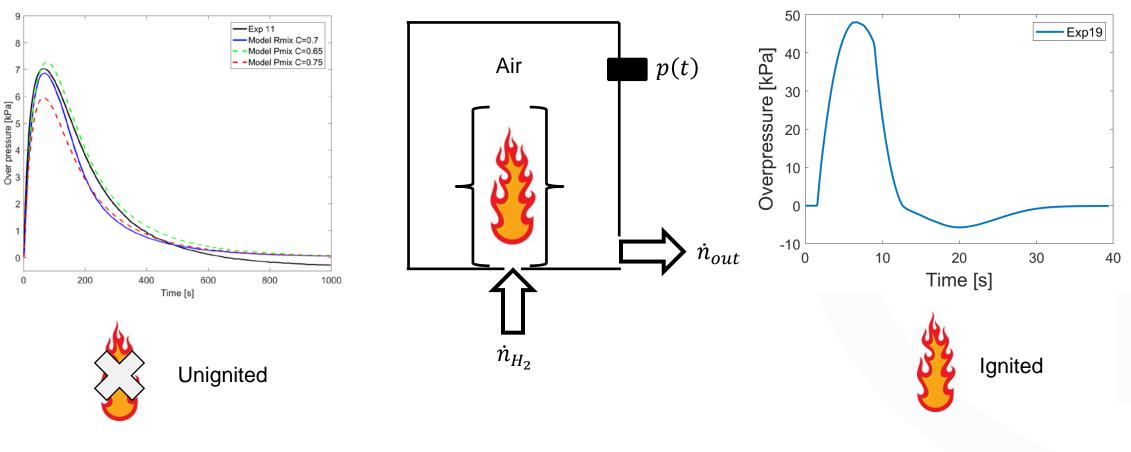
NORWEGIAN FUEL CELL AND HYDROGEN CENTRE FUEL CELL & ELECTROLYSER SYSTEMS

Contents	01	Introduction – IFE and MoZEES						
	02	Hydrogen Safety						
	03	Battery Safety						
	04	Summary						

Safety in Hydrogen Value Chains

Source: IEA Hydrogen TCP (2021)

MoZEES Hydrogen Safety Research – Examples


- 1. Hydrogen leakages in closed rooms & confined spaces (Task 3.2)
- 2. Safe design of high pressure water electrolyzers (Task 3.4)
- 3. Risk assessment of hydrogen & fuel cell driven high speed ferry (Task 3.5)

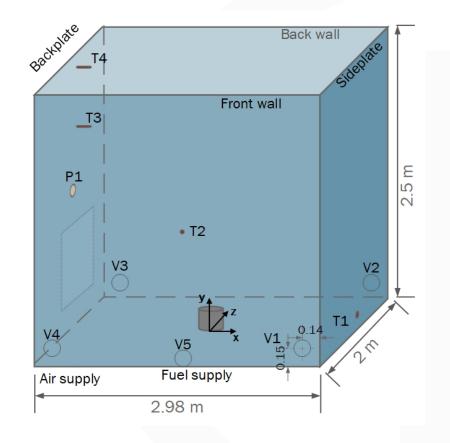
Hydrogen in Closed Rooms & Confined Spaces (1/3)

Pressure Peaking Phenomena

 $\dot{m}_{H_2} = 4.85 \ g/s$



 $\dot{m}_{H_2} = 8.62 \ g/s$

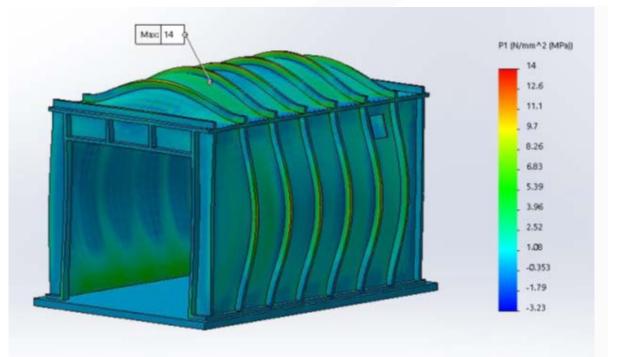

Hydrogen in Closed Rooms & Confined Spaces (2/3)

University of South-Eastern Norway

Number of vents open	Area (m²)
1	0.0055
2	0.0109
3	0.0164

Hydrogen in Closed Rooms & Confined Spaces (3/3)

Scope of Work:

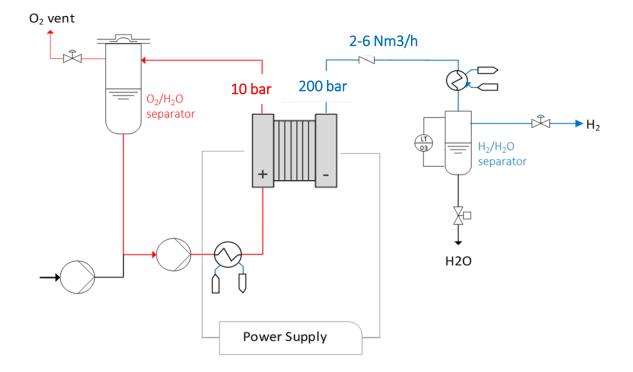

- Experimentation and modeling of H2-leakages in closed rooms and other confined spaces
- Large scale experiments in container (3m × 2m × 2.5m)
- Development of analytical model that captures the physics of the system

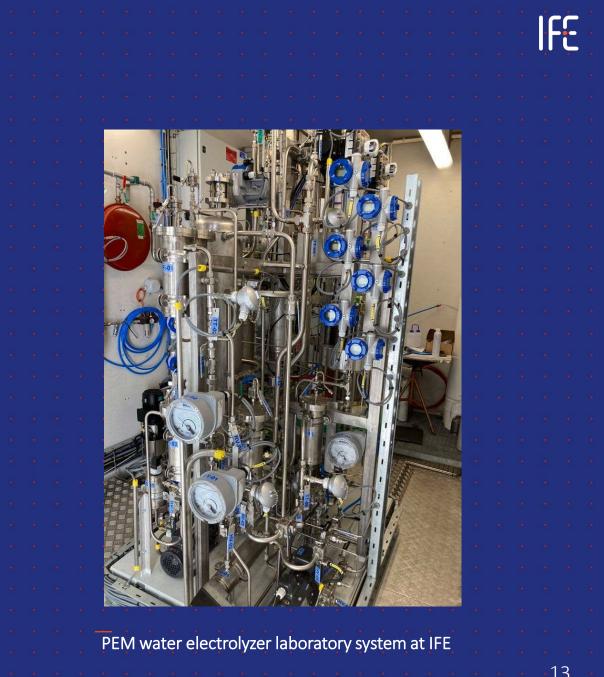
Result:

 Modeling tool for design of safe hydrogen rooms and confined spaces

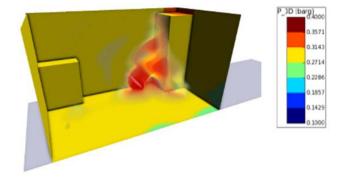
Future Work:

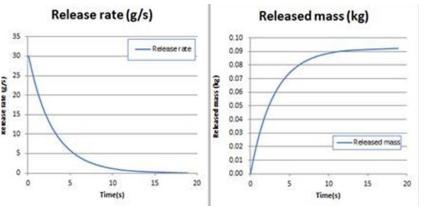
- LH2 releases; including condensation effects
- 700 bar GH2 releases; unignited and ignited

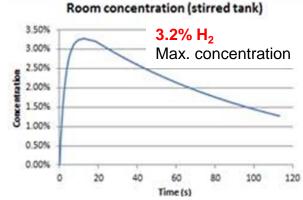


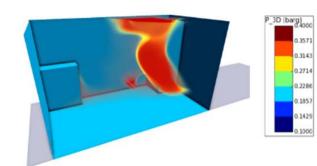


Safe design of High-Pressure Water Electrolyzers (1/3)

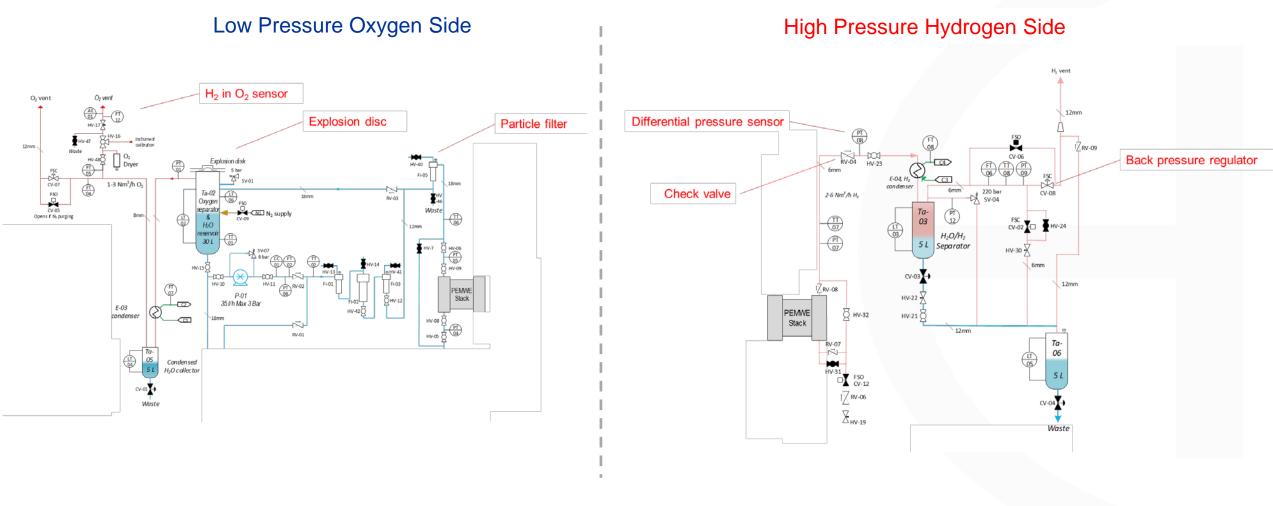

High-pressure PEM water electrolyzer system at IFE
 Op to 200 bar differential pressure stacks



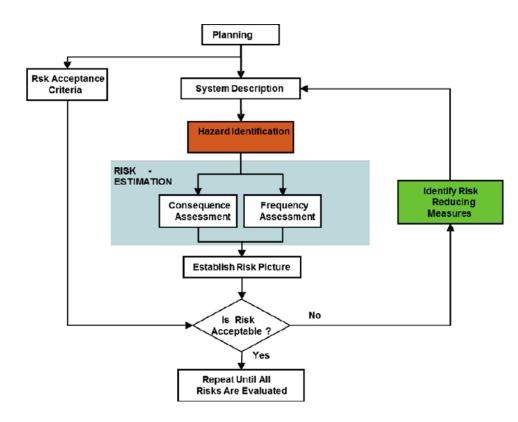

Safe design of High-Pressure Water Electrolyzers (2/3)


- Reverse flow of hydrogen into O₂-side
 - e.g. due to membrane rupture
- Hydrogen gas cross-over in stack
 - e.g. H₂ in O₂ > 4% at part load operation
- Self-ignition Oxygen-rich mixtures on O₂-side
 - e.g. due to friction or stray particles
- Hydrogen leakage into container

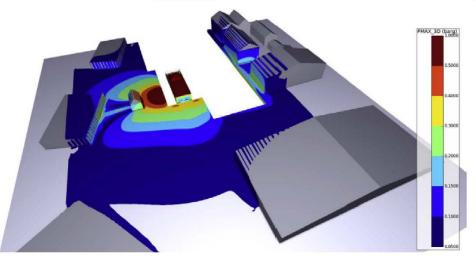
Figur 7.5 - Fullt rørbrudd (initiell lekkasjerate 186 g/s) i konteiner 75 ms etter antenning ved tid for maksimalt overtrykk.


Figur 7.6 – Fullt rorbrudd (initiell lekkasjerate 186 g/s i konteiner 475 ms etter antenning, trykket har nå sunket betraktelig.

Safe design of High-Pressure Water Electrolyzers (3/3)



IFE



MoZEES Maritime Case Study – Risk Assessment (1/2)

MoZEES Maritime Case Study – Risk Assessment (2/2)

Scope of Work:

- Approval process for IGF-code Alternative Design Approach
- New hydrogen ignition probability model
- New vulnerability thresholds
- Vessel design recommendations

Result:

Risks are well within expected tolerance criteria!

Follow-up:

• KPN H2Maritime-project

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 45 (2020) 1359-1372

Concept risk assessment of a hydrogen driven high speed passenger ferry

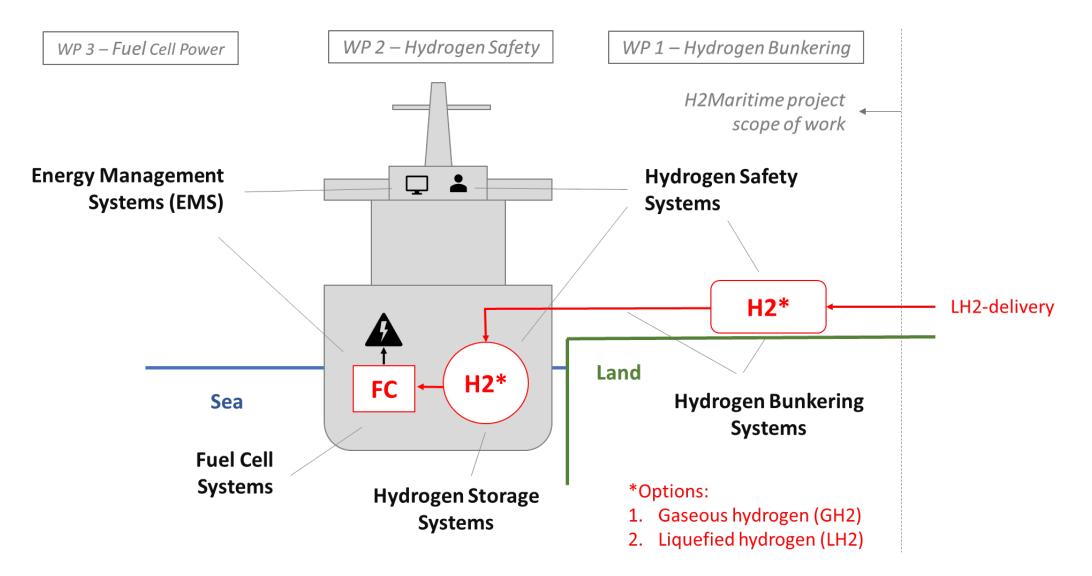
Fredrik G. Aarskog ^{a,*}, Olav R. Hansen ^b, Trond Strømgren ^c, Øystein Ulleberg ^a

ABSTRACT

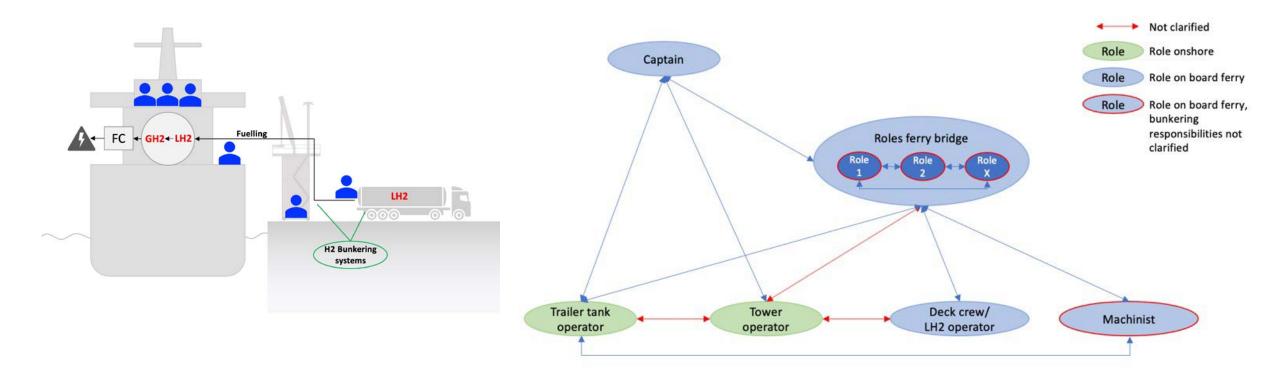
^a Institute for Energy Technology, Kjeller, Norway
 ^b Lloyd's Register Risk Management Consulting, Bergen, Norway
 ^c Maritime Association Sogn & Fjordane, Florø, Norway

ARTICLE INFO

Article history: Received 15 November 2018 Received in revised form 13 May 2019 Accepted 14 May 2019 Available online 11 June 2019

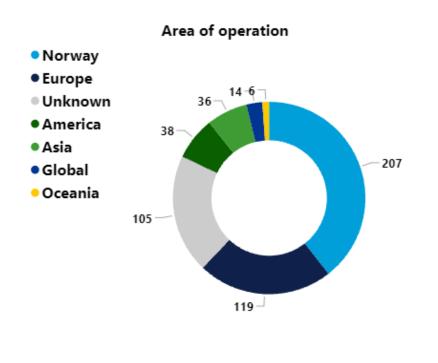

Keywords: Risk assessment Safety High speed passenger ferry Hydrogen PEM fuel cell A concept risk assessment of a hydrogen and fuel cell driven high speed passenger ferry has been performed. The study focused on fatality risk related to the hydrogen systems on the vessel, both during operation and while moored in harbour overnight. The main objective with the study was to evaluate whether the risk related to the hydrogen systems is equivalent to that of conventionally fuelled vessels and can be considered acceptable according to the requirements of the IGF-code (International Code of Safety for Ships Using Gases or Other Low-flashpoint Fuels). Since hydrogen behaves differently than other flammable gases, some adjustments to existing models and vulnerability criteria have been proposed. The conclusion of the study is that the estimated risk related to hydrogen systems is relatively low, and much lower than the expected acceptable risk tolerance level of 0.5–1.0 fatalities per 10⁹ passenger km. Furthermore, for the overnight mooring in harbour the estimated risks are well within MoZEES, a Norwegian research centre for environmentally friendly technology and zero emission transport.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.


H2Maritime Hydrogen and Fuel Cells for Maritime Applications

H2Maritime

Hydrogen Safety in Human Operations (WP2)


- How to ensure safe filling and bunkering of hydrogen?
- Use case on LH2-bunkering

Contents	01	Introduction – IFE and MoZEES
	02	Hydrogen safety
	03	Battery safety
	04	Summary

Batteries

Electrification of the Maritime Sector – Norway in the forefront

Source: Maritime battery forum ship database 2020

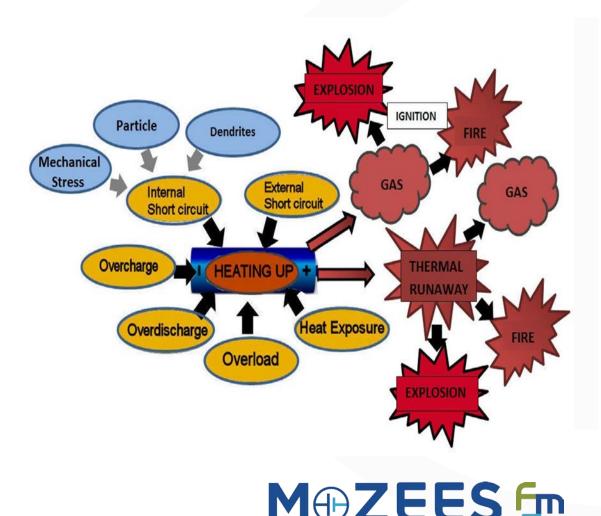

Battery Incidents – Examples

- 1. MF Ytterøyningen, 10 October 2019
 - Leakage in battery water cooling system \rightarrow light arch
 - Heating of battery \rightarrow fire

Source: NRK

- 2. MF Brim Explorer, 11 March 2021
 - Smoke development and alarm in battery room
 - Fast evacuation of personnel (no passengers)

Source: Vestfold fire department and Corvus Energy



Battery Safety

Standards, regulations & best practice. How to design a thermally robust battery modules

- The Norwegian Maritime Authority (NMA)
 - Administrative and supervisory authority
 - Safety of life, health, material values, and the environment
 - Vessels with Norwegian flag and foreign ships in Norwegian waters
- NMA Circular
 - Detailed description on how to perform battery propagation tests
- Acceptance criteria:
 - No propagation between the modules
 - No propagation between the cells*
 *Note! Requirement for commercial boats < 24 m

Mobility Zero Emission Energy Systems

MoZEES Battery Safety Research – Examples

- 1. Explosion characteristics of Li-ion battery electrolytes (Task 3.3)
- 2. Thermal run-away in Li-ion batteries (Task 3.3)

Battery Safety Combustion and Explosion Characteristics of Gases Vented from Li-Ion Batteries

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Explosion characteristics for Li-ion battery electrolytes at elevated temperatures

^a Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Kjølnes Ring 56, Porsgrunn, 3901, Norway ^b Norwegian Defence Research Establishment (FFI), Instituttveien 20, 2007, Kjeller, Norway

ARTICLEINFO

ABSTRACT

Keywords: Dimethyl carbonate Diethyl carbonate Ethyl methyl carbonate Maximum explosion pressure The maximum rate of explosion pressure rise

Li-ion batteries

Li-ion batteries are used in electronic devices and electric cars, yet they create safety concerns due to the possibility of the release of combustible materials. The electrolyte, one of the main components in a Li-ion cell, consists of organic carbonates. Venting and thermal runaway release organic carbonates and when mixed with air, it can result in fires and explosions. A 20-liter explosion sphere was used to determine the explosion characteristics for three typical carbonates used in electrolytes, at 373 K, and 100 kPa absolute pressure. The explosion pressure and the maximum rate of explosion pressure rise are presented for the carbonates and for

https://doi.org/10.1016/j.jhazmat.2019.02.108

Explosion Sphere (20 liter) at USN

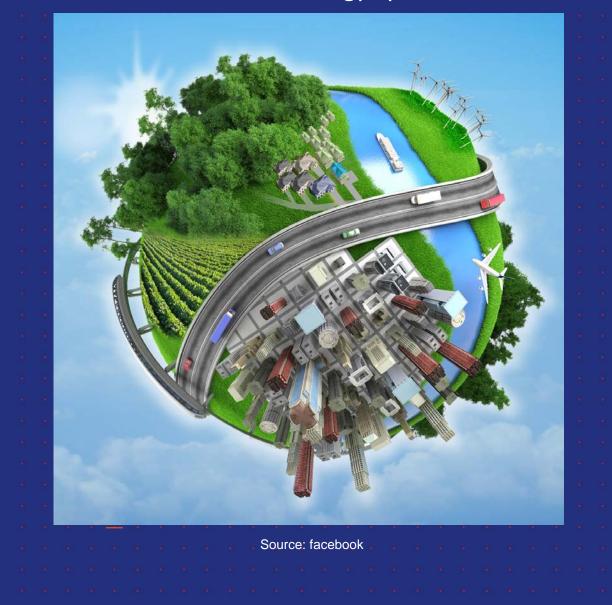
Safe Battery Design – Requires a Holistic Approach

- Electrically and mechanically robust design
 - including a redundant battery management system
- Responsive surrounding designed to handle a thermal incident in the battery
- Two key research questions:
 - 1. How can we design **thermally robust battery** modules <u>and</u> maintain a **high energy density?**
 - 2. Which method can be used to evaluate the **need for new propagation tests** for batteries with increased cell energy density?

Battery Safety – Measurement of Thermal Energy

• Method

- Energy released inside battery module during thermal incident can be determined by measuring the increase in temperature for a surrounding enclosure
- Application of Method
 - All battery cell types: Cylindrical, prismatic, pouch
 - Different fault conditions: Nail penetration, overcharge, external heating



Summary

- ♦ New battery & hydrogen technology
 → New safety challenges
- Main challenge with hydrogen: Hydrogen leakages
- Main challenge with batteries: Battery fires
- ✤ Possible to design safe battery & hydrogen system
 → New standards and regulation required
 → More experience with large systems required
- More research required
 - → Testing of systems (e.g., LH2-bunkering)
 - → Validation of methods (e.g., Li-ion propagation tests)

Sustainable Energy Systems

IFE

Acknowledgements

Institute for Energy Technology

																		ä	
																		-	
		, /\ A		.ife	r														
	• • •	v vv	vv.		2	Ų													
	<u>م</u>	/\^	///	.m	07		20	nc	2										
			V V		٧٢	.çı	-2.	, ic											
	1		/\//	f	nrs	: kr	hir) g	ra	de	_ †د	no							

Thank you for your attention!

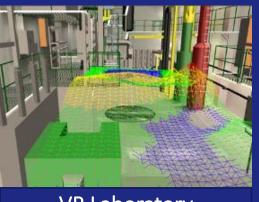
Øystein Ulleberg, PhDChief Scientist IFE | Director MoZEESMail: oysteinu@ife.noPhone: +47 995 864 53

www.ife.no | www.mozees.no

IFE – Advanced Infrastructure & Laboratories

3-phase Flow Laboratory

Solar Energy Laboratory


Hydrogen Laboratory

Tracer Tech Laboratory

Sensor Laboratory

VR Laboratory

Human Behavior Laboratory