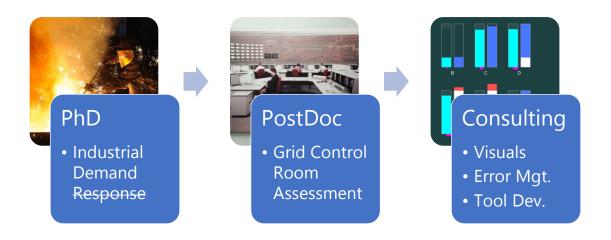

4/20/2018


## Human Factors of Electric Transmission, Past, Present, & Future?

Antony Hilliard

Human Factors in Control Spring Meeting 2018, April 18<sup>th</sup>



## My Background



### Acknowledgements


- Operations Staff
- MITACS
- Greg Jamieson @ University of Toronto
- Richard Brath @ Uncharted Software Inc.
- ABB
- Neville Moray & Jens Rasmussen

### What is Transmission Market & System Operation?

In a nutshell:

- 1. Match Supply and Demand (controlling supply, mostly)
- 2. Configure Network Securely while allowing maintenance

For 1000 pages more, see: EPRI Power System Dynamics Tutorial Human Factors Review of Electric Power Dispatch Centers 1981-86



https://www.occto.or.jp/en/about\_occto/

### What do people do in Market & System Operation?

- Plan
- Catch inconsistencies/errors
- "babysit" Automation
  - Feed it (tell it stories)
  - Monitor it
  - Clean up after it
- Anticipate situations
- Communicate
- Deal with situations



Framed in the control room kitchen

### What I saw in Market Operation

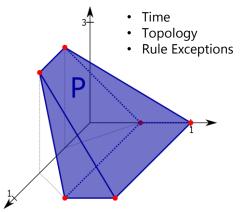
#### **Supervising Market Inputs**

Demand-focused

- Day-ahead plan plus:
- Generator Telemetry
- Demand Forecast
- Wind+Solar Supply Forecast

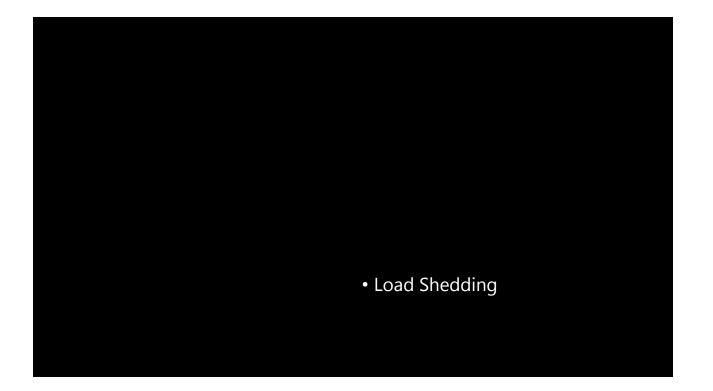
### = Weather

Garbage data, Automation **Modes**...


#### **Supervising Market Outputs**

Supply-focused

- Automatic dispatch (mostly)
  - Generators
  - Intermittent generators (down)
  - (very few) Loads
- New instructions every 5 min, two minutes delay to review...


### What I saw in Market Operation

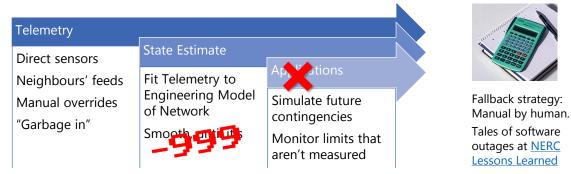
#### **Imperfect Models vs. Reality**



#### **Mechanisms of Flexibility**

- 3% Load Demand Response
- ???% Industrial Peak-Dodging
- Phone the Neighbours
- 3% Emergency Procedures
  - Public appeal + Voltage shave




## What I saw in Transmission Operation

#### **Assessing the True State**

- Automated estimate part of it
- Also: Weather, 24h TV news

#### Anticipating the future

- Always plan n-1
- Requires simulating behavior of grid *and automation*

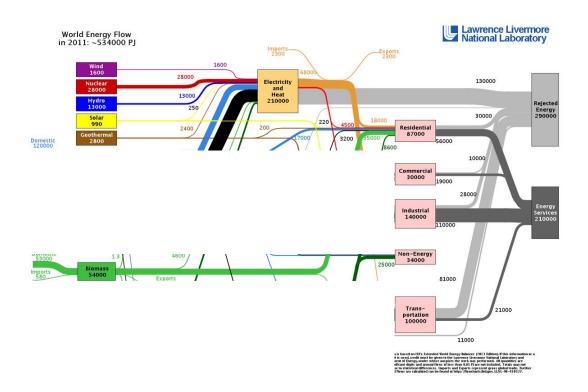


## What I saw in Transmission Operation

#### **Control & Protection Automation**

- Set & Forget?
- Arm & Dis-arm 'Special' Protections
- 'Regular' protections have ~9% mis-operation chance!
  - 1. Design/Programming errors
  - 2. Device failure/malfunction
  - 3. Communication failure

https://www.nerc.com/pa/RAPA/PA/Pages/default.aspx


#### **Topology & Voltage Control**

- Switching Lines & Equipment
- "Why is this done manually?"
  - Variety of situations
  - Coordination with field crews
  - Maintain skills post-blackout!









### One vision for 100% Wind-Water-Solar

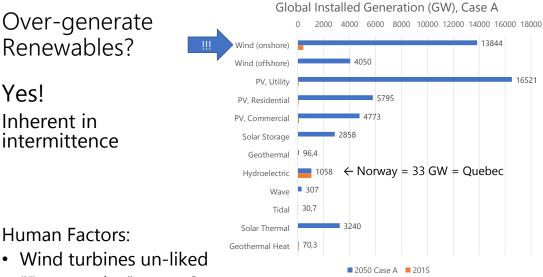
- Jacobson, Delucci, Cameron, and Mathiesen 2018
- Update of controversial 2010 paper
- Bulk supply-storage-demand modeling, 1h timestep
- Future Work:
  - How to control such a grid?
  - What Human Factors in play?



### Build more Transmission?

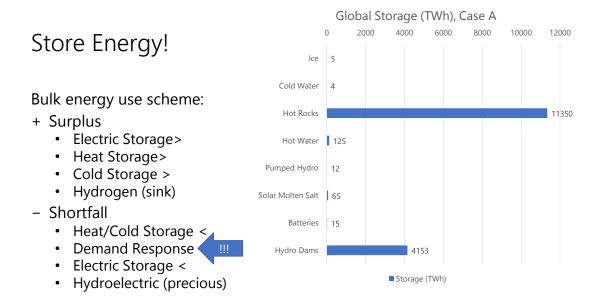
- Interconnect to average out wind and follow the sun
- HVDC 'supergrid'?
- Small islands left out

Human Factors:


- Power lines un-liked
- Interconnection = Interdependence



[Press Release] Continuing frequency deviation in the Continental European Power System originating in Serbia/Kosovo: Political solution urgently needed in addition to technical

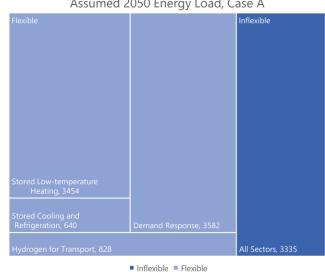

Published: 06/03/2018

The Continental European (CE) Power System -a large synchronized area stretching from Spain to Turkey and from Poland to Netherlands; encompassing 25 countries- is experiencing a continuous system frequency deviation from the mean value of 50 Hz, and this since mid of January 2018.



Brussels

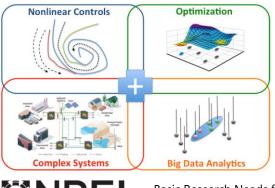
• "Free surplus" power?




### Reduce Demand to Match Supply

100% WWS estimate by 2050:

- Transport: 85% flex-charging
- High-Temp Industry: 70% flex
- Residential/Comm./Agri: 15%
- "Other": 75% flexible
- Storage for Heat/Cold, and ٠ once exhausted: 15% flexible


Flexible = Delay up to 8 hours! Massive Human Factors



#### Assumed 2050 Energy Load, Case A

## What Human Factors in this Control?

- Automated Agent Interaction (what do I want vs. grid need)
- Storage & Demand Response (lead time for planning)
- Market vs. Social Equity (what is value of energy?)
- 2<sup>nd</sup>-order effects (response!?)
- Human adaptation / Habituation
- Culture





Basic Research Needs for Autonomous Energy Grids





## Publications

- Hilliard, A., Fiona, T., & Greg A., J. (2018). Work Domain Analysis of Power Grid Operations. In N. A. Stanton, P. M. Salmon, G. Walker, & D. P. Jenkins, *Cognitive work analysis: applications, extensions and future directions* (p. 151). Retrieved from http://dx.doi.org/10.1201/9781315572536
- Tran, F. F., Hilliard, A., & Jamieson, G. A. (2017). Keeping the Lights On Across the Continent. *Ergonomics in Design: The Quarterly of Human Factors Applications*, 25(4), 10–22. <u>https://doi.org/10.1177/1064804617723781</u>
- Tran, F. F., Hilliard, A., & Johnson, L. (2016). *Human Factors of Transmission Operations; Summary Principles from a Collaborative Research Project*. Presented at the NERC Human Performance Conference, Atlanta, GA. Retrieved from <a href="http://www.nerc.com/pa/rrm/hp/Pages/default.aspx">http://www.nerc.com/pa/rrm/hp/Pages/default.aspx</a>

# Thank you

antony.hilliard@se.abb.com

### Present observations

#### Market

- Inputs
- Outputs
- Models
- Flexibility

#### System

- State Estimation
- Anticipating Contingencies
- Protection Automation
- Topology & Voltage