Alarm sounds based on Human Factors

Natasha Barrett

HFC WEB seminar, oktober 2021

Background:

Alarm sounds for Equinor's Hywind Tampen control room.

Challenges and solutions are relevant to different situations.

Problems with today's common alarms:

The sounds:

- Unpleasant aurally
- Unpleasant experientially
- Can be too loud
- Can be too startling
- Could be more informative

The result:

- Silence the alarm as soon as possible
- Disturbance to communication
- Work fatigue
- (Muting the complete alarm system!)
- (Adding personal sounds!)

What should alarms be like?

- Indicate what response is required without the negative effects of current alarms sounds.
- Be easy to understand.
- Unique
- Be designed in keeping with the control / notification system (which in turn should consider human limitations).

What else could alarms do?

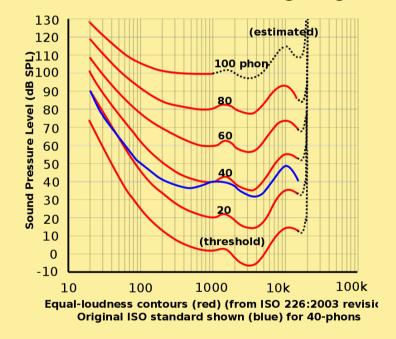
- Indicate which console is sounding in a multi-console environment
- Provide more information about the type or class of alarm.

New alarm sounds: Function | Sound-design | Acoustics |Work environment |Perception

Past work: Patterson (1982)

Most of the past work in alarm sound builds on ideas published by Roy Patterson in 1982:

- A burst of sound with its own set of frequencies in the range 150–3000 Hz at a dB level.
- A repeated pattern of sound-pause durations
- Different levels of priority are indicated by changes in the sound-pause pattern
- Subsequent variations on this idea have added pitch / note patterns to the sound-pause pattern.


These solutions neglect some obvious problems:

Sounds were chosen to 'cut through' noisy environments:

Background noise has decreased.

- To avoid confusing levels of urgency, fast note sequences are needed. These create stress.
- Development: note sequences are shown to create confusion rather than add clarity.
- A lack of design compounds negative factors concerning uninteresting sounds.

The suggested frequencies are located in our most sensitive hearing range.

Past work: Alarms and 'earcons'

- Sounds that may range from representational (resembling real-world sounds) to abstract (pure tones, buzzers or instrumental sounds).
- The idea is that there is some identifiable content that overcomes the problems associated with <u>learning the meaning</u> of single tones.
- Experimental work on representational sounds: less appropriate in the workplace.
 - Too strange
 - Experienced as annoying
 - Spectrally (frequency content) not clear enough

Specification from Equinor

- 'Alarm' sound design to signal difference levels of priority
- 'Earcons' sound design as indication sounds.

'Alarms' and 'earcons'?

Alarms and notifications

The idea of 'earcons' is obsolete if we instead assume that our alarms overcomes the problems associated with learning the meaning of single tones.

Basic design considerations

Environment:

- Background noises and other sounds.
- People interaction.
- People location.
- Acoustics.
- Loudspeaker locations.

Perception and action:

- Audibility.
- Identity.
- Affect.
- Repetition.
- Redundancy.
- Interaction (silencing alarm).

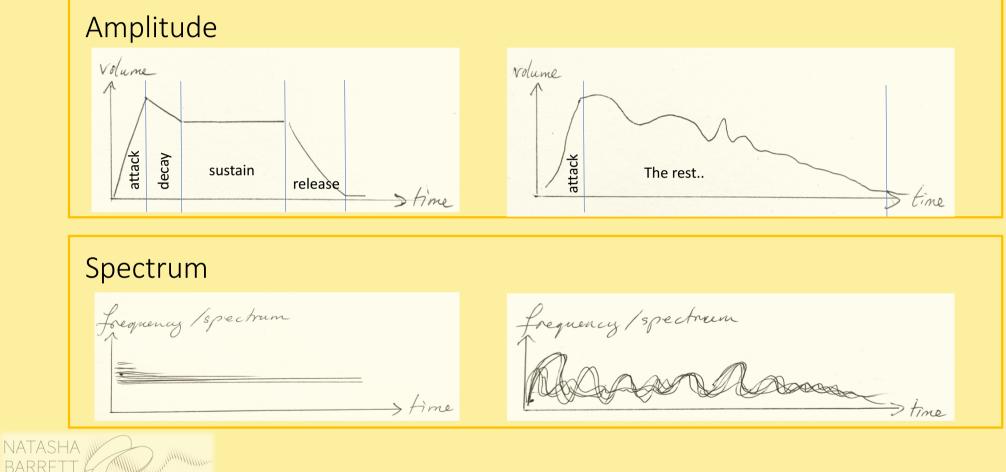
Design process

Move away from:

- Extreme differences in pattern speed reflecting urgency.
- Attacking the most sensitive frequency area of our hearing.
- Simple / boring note sequences.

Instead ask:

- What kind of sounds we are used to hearing?
- What kind of sounds we can accept as alarm sounds?
- How would the different sounds fit together as a set?
- How to optimise the volume and spectrum onsite by simple calibration?
- Urgency / priority as relative rather than absolute (i.e. only archetypes such as fire alarm bells and the like should be absolute).


Choice of sound types

- Acoustic sources and their transformations (identity / uniqueness).
- Synthesised sources (identity / genre).
- Pitch ranges and spectral distribution.

acousticTransformationsyntheticDigital signal processingSynthetic

Morphology, identity and interest

sound designer

First set of sounds

- A selection of acoustic sounds transformed with digital signal processing.
- A selection of synthesised sounds transformed with digital signal processing.
- Importance of contrast (even if it was expected that sound sounds would appear too strange for most listeners).

examples

Testing stage 1: private testing on myself

- Environmental emulation
- Loudspeaker that will be used in the control room
- Combinations / permutations
- Repetition and patterns

Result: short list

Testing stage 2: Test set-up

- Testing with real listeners in a work environment: four / five people on different shifts.
- How to 'rate' the alarms? statistical approaches e.g. pairwise comparisons are problematic without a large number of listeners and special Bayesian approaches to test for 'self-contradictions'.
- Ask listeners to explain why they liked one sound more than another using their own words.
- Use a dB meter to ensure an approximately correct listening level.

Results

Listener comments:

- Like or dislike of what a listener associated the sound with.
- Suggestion of the sound's implied priority.
- Description of how stressful / relaxed the sound felt.
- Description of parts of the sound that were liked or disliked (and what it made the listener feel).
- Whether the sound was simply pleasant to hear, irritating, or unpleasant.
- How well the sound contrasted or fitted with the other sounds in the work place.

Results

- Less 'real-world' sounds were more successful.
- The following simpler adjustments changed the results:
 - Listening volume: morphology allowed reduced volume.
 - EQ (spectral brightness): tuned for the speakers and acoustic.
 - Repetition speed implying urgency and its connection to stress.

Second test set

- Reduced list of sounds.
- New results: some contradiction to the first results for the same sound presented in a new way to the same listeners.
- Sound-pause sequences where not only about urgency, but about 'sustainability'.
- Small changes in duration and morphology were important: i.e. play the duration that is needed to communicate the message.

Final set of four sounds

Future potential

Shared control rooms with unique alarms.

A control station audio fingerprint.

Alarms could sound simultaneously and not lead to confusion or stress.