

Karl Watson

HF in Operational Risk Management Mobile Technology to reduce Human Error in Procedures

Introduction – Karl Watson

- Process Safety Product Manager, ABB OGC
- Chartered Instrument Engineer (MInstMC)
- · 29 years experience in Process Industry
- ICI Chemical and Polymers, ICI Engineering, ABB Consulting (UK, US), ABB Enterprise Software
- Specialist in Functional Safety

Power and productivity for a better world*

Content

- Introduction to procedures
- Use of Technology
- Procedures and Barrier Management
- Wrap-up / Questions

© ABB Group 02/05/2016 | Slide 3 ABB

Introduction into Procedures

"What makes you think no-one understands you?"

Why do we need Operating Procedures

- To comply with regulatory requirements Compliance
- Ensure reliable and repeatable operations Consistency
- Tool for operational learning and feedback Communication

© ABB Group 02/05/2016 | Slide 5 ABB

Do humans follow procedures?

Task Type	Percentage of users who state they use procedures (percentage of users having procedures open in front of them at time of task)
Quality Critical	80 (46)
Safety Critical	75 (43)
Problem Diagnosis	30 (17)
Routine (Including maintenance)	10 (6)

Source: D. Embrey, Creating a procedures culture to minimise risk (1998)

Why are we concerned with HF in Procedures?

- A 2012 study of 1632 hazardous chemical incidents showed 65% were related to human error
- 56% of forced outages occurred less than a week after a planned or maintenance shutdown
 - Yes toss a coin to see if you are going to have a plant trip after a maintenance shutdown
- 55% 65% of all problems associated with maintenance are related to human performance.

ABB

A Human Factors Roadmap for the Management of Major Accident Hazards

Identifying Critical Procedures

ABB

Content

- Introduction to procedures
- Use of Technology
- Procedures and Barrier Management
- Wrap-up / Questions

Technology

Right Task, Wrong Object Stavanger, Monday

© ABB Group 02/05/2016 | Slide 13

Right Task, Wrong Object Camelford 1988

ABB

Right Task, Wrong Object Technology

Device image from Bartec

Completion Errors

© ABB Group 02/05/2016

| Slide 16

ABB

Completion Errors

Photo from HSE Presentation

© ABB Group 02/05/2016 | Slide 17

Completion Errors

	< Back	Station	Reading	<u>a 05%</u> 1.24 PN ≣				
PRE TESTING PROCEDURES (2.1-2.5)	High High Level Sv	witch Proof Test						
2.1-Record "Process Value Prior to Test" from the SIS Log	0	A	10	00	_		Ð	
2.2-Take a photo of the Block and High pressure manifol	Station Location	Tank 912					()	
transmitter, as they are found.	Equipment ID	E TAILS JIZ						
2.3-Positively identify the Block and High pressure manif	LSHH-912				N/A		⊕ ?	
transmitter. See the attached photo of the ideal state.	Short Instructions	nd and As Left C	orrect any differ	ances				
2.4-Confirm the:	compare As rou	nd and As cert. C		ences.				
Block valves are open		Jer Jer		et the		\sim	œ	
High pressure manifold isolation valves open		X	× 600	1	\ll	\sim	Ð	
Manifold drain/vent is closed	5/3/			61. 4	3	\sim	÷	
Drain plugs in place		20	No C		0	\sim	÷	
2.5-Ensure High pressure vent valves and plugs if fitted a	200	P)	12 m		2/× N/A		(Ŧ)	
Lo boure right pressure rent furtes and plags in interest		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	XX	\sim		2	
	XX	XX		XX	X			
К ВАСК							NEXT	»
	-	_						
	Camera	Video El	es Autio	Delete				
B Group	< Previ	ous	N	ext 🕽				L R
/2016 Slide 18	Corecono developor	from ADD One	rationa Manage	ment and Mahid	o Colturaro		-	

Sequence/Omission Errors

Picture taken from CSB Animation of Texas City Incident

Sequence/Omission Errors

Integration with Lifecycle Information

Judgment Errors

0	▲ ∕0	<i>a</i> 4	
Station Location Gasoline Storage T	ank 912	Equipment	
LSHH-912		Failure Mode	Level Transmitter
Short Instructions		Failure Condition	Solenoid Valve Valve
Increase test set of value	utput until Trip Initiates. Confirm the	Information discussed with SIS Custodian?	
00.2%			
33.270	00.0%		
Min	90.270		
May	98%	Equipment	Solenoid Valve
Tolerance	+/ 2%	Failure Mode	Did not operate
Unit	%	Failure Condition	Blockages
Unit	~	Information discussed with SIS Custodian?	Yes
•		一	

Integration with Level 2 (via Level 3)

Other Considerations

- Ensures latest version of the procedure
- Implement competency checks
- · Makes documents available in the field
 - Avoiding return to workshop / guessing
- · All steps recorded automatically electronically
- Branching makes procedures easy to follow
- Tailored procedure based on experience/profile

© ABB Group 02/05/2016 | Slide 24

Content

- Introduction to procedures
- Use of Technology
- Procedures and Barrier Management
- Wrap-up / Questions

Barrier Lifecycles

Barrier Lifecycle Barrier Status

© ABB Group 02/05/2016 | Slide 27

Barrier Lifecycle Closing the loop

ABB

Knowledge and learning capture Closing the loop

© ABB Group 02/05/2016 | Slide 29

IEC61511 Standard (Ed. 1 & Ed. 2) Closing the loop

16.2.9 <u>Discrepancies between expected behaviour and actual behaviour</u> of the SIS shall be analysed and, where necessary, modifications made such that the required safety is maintained. This shall include monitoring the following:

- the demand rate on each SIF (see 5.2.5.3);
- · the actions taken following a demand on the system;
- the failures and failure modes of equipment forming part of the SIS, including those identified during normal operation, inspection, testing or demand on a SIF;
- the cause of the demands;
- · the cause and frequency of spurious trips;
- the failure of equipment forming part of any compensating measures.

16.3.1.5 At some periodic interval (determined by the user), the frequency of testing shall be re-evaluated based on various factors including historical test data, plant experience and hardware degradation

© ABB Group 02/05/2016 | Slide 30

Information Gathering Closing the loop

High High Level Sw	tch Proof Test		
0	A /0	2 0	
Ctation I contian			
Gasoline Storage	Tank 912	Equipment	
Equipment ID		Failure Mode	I aval Transmittar
		Failure Condition	Programmable Logic Solver Solenoid Valve
Short Instructions		Painire Condition	Valve
value.	utput until Trip Initiates. Confirm the	Information discussed with SIS Custodian?	
99.2%			
Last reading	96.2%		
Mir	94%	Emirmant	Solanoid Valva
Max	98%	Reference Marda	The second second
Tolerance	+/- 2%	Failure Mode	Did not operate
Uni	. %	Failure Condition	Blockages
		Information discussed with SIS Custodian?	Yes
•		品	
Camera	teo Files Audio	Delete	

Barrier Lifecycle Closing the loop

tentifiers						Reference	15		
istrument type				Manufacturer		Link	Link		
Temperature	transmi	itter	×	ABB ~		http://et	http://abb.com/instrumentation/T80		
Model		Version We	tted	Proven in use (PIU)?					
Transmitter 800 with thermocouple		1 ~ Yes ~		Yes ~	200 installed				
Manufacture	r's relia	bility data	~	EPSHEG: Instrur	nent Reliability data fo	r use in TRAC	7 years		
Parameter	Rase		actor	Used in calculations	Justification		From Operations		
λD	0.004	83 1	0	0.0483	Recommended factor for use in oil and gas		0.0526		
λS	9.6E-4	6 10	0	9.6E-5	Recommended factor for use in oil and gas		8.5E-5		
MTTR	72			72			50		
MTTR Safety capabil Diagnostic cov	72 ties erage	Safe failure	fraction	72 Safe failure fraction	(SFF) band		50		
0	78	00	56	SPP between 60	- 30 70				
lype		HW fault to	lerance	Max HW SIL (61508) Systematic capa	bility			
		HET O		CII 4	ell 2 V				

© ABB Group 02/05/2016 | Slide 32 ABB

Wrap-up

- Human Error attributed to 65% of hazardous chemical incidents
- · Procedures more likely to be used for Quality than Safety
- More time and effort being spent on procedures
 - Not equating to increase up take in use.
- Mobile technology can help:-
 - Improve usability
 - Techniques to reduce Human Error
 - Improves efficiency in procedures
 - Can identify areas for procedure improvements
- Information can be used in barrier management and 'Closing the Loop'

© ABB Group 02/05/2016 | Slide 33

02.05.2016

Thank you Any questions?

© ABB Group 02/05/2016 | Slide 34

ABB

R

