Reflections on the recent serious events in the offshore oil and gas sector from a risk assessment perspective with focus on human and organizational factors

Presentation
Professor II Jan Erik Vinnem
University of Stavanger
jan.erik.vinnem@preventor.no

Overview
• Background and challenges
• Brief history
• Trends in accidents & incidents
• Trends in modelling of major accidents
• Goal-setting regime
• Life-cycle perspective
• Main regulatory principles
• Modelling practices
• Could risk assessment have prevented Macondo or Gullfaks C?
• Barrier management
• Conclusions
Background

• Serious OO&G accidents since year 2000:
 – Capsize and sinking of Roncador P-36 (Brazil, 2001)
 – Burning blowout on Temsa field (Egypt, 2004)
 – Riser rupture and fire on Bombay High North (India, 2005)
 – Burning blowout on Usumacinta (Mexico, 2007)
 – Blowout on Montara field (Australia, 2009)
 – Burning blowout on Macondo field (US, 2010)
 – Pollution from well leak in Frade project, Campos Basin (Brazil, 2011)
 – Capsizing and sinking of Kolskaya jack-up during tow, (Russia, 2011)
 – Burning blowout on Endeavour jack-up platform (Nigeria, 12)
 – Uncontrolled well leak on Elgin platform in North Sea (UK, 12)
• Also several fatal helicopter accidents, during transit to offshore installations

Recent trends worldwide – offshore

• 2001–10 compared to 1991–2000:
 – Notably fewer major accidents in earlier period
 – Most severe ever, the explosions and fire on Piper Alpha in the North Sea in July 1988 in previous decennium
• Is this total failure of risk management?
• Proof that risk based regulations do not function?
• Virtually all offshore regions are represented
 – Looking to the North Sea, North Atlantic, Norwegian Sea and Barents Sea
 • Most severe accidents occurred some 20 to 30 years ago
 • No severe accidents at all during the latest period
 • Very serious near-misses recently
Risk Level project (N)

- **Objective**
 - Establishing a realistic and jointly agreed picture of trends in HES work
 - In order to support the efforts made by the PSA and the industry to improve the HES level within petroleum operations
- **History**
 - April 2001
 - 1. report issued, for period 1996-2000
 - January 2004
 - Responsibility for HES for offshore & onshore petroleum facilities taken over by Petroleum Safety Authority
 - April 2007
 - 1. report with 8 onshore plants included, based on 2006 data
 - 2010
 - Extension from risk to personnel to risk for spills to sea
- **Regular schedule**
 - Annual reports (risk to personnel) issued in April
 - Separate spill report in September

Risk level project (RNPP)

- **Major hazard risk one element of RNPP**
 - Indicators suggest that major hazard risk has been reduced since year 2000
 - Precursor based indicators
 - Proactive (‘leading’) indicators based on barrier elements
 - On the other hand
 - Some installations are dramatically worse than average
 - Some are also exceptionally good
 - Large differences is a challenge for authorities
 - Modeling based on risk analysis R&D
Offshore risk management – success story?

- Impression
 - Norwegian & UK systems have been successful
 - Confirmed by Presidential Commission (US)
 - Large accidents have been avoided in NW Europe for long time
 - UK: after 1988
 - Norway: after 1985
- Is the situation so glorious as may be inferred from this?

Perspective: Alexander Kielland To Macondo

- Capsize and sinking of Alexander Kielland (Norway, 1980)
- Burning blowout on Macondo field (US, 2010)
- 30 years separation:
 - Capsize of the flotel Alexander L. Kielland in Norwegian North Sea
 - Burning blowout on Deep Water Horizon in US GoM
- Encompasses the development and use of risk assessments in risk management offshore
Brief history: Use of risk analysis (N)

- Early start in late 1970s
- Regulatory requirement since 1981
- Approach initially based on practices in nuclear power plants
 - Usually no 3rd party personnel risk to consider offshore
- Development over time away from nuclear PSA approach
- QRA studies are not in the public domain
- Few cases where ethical controversies are known

- Offshore QRA
 - Focus on consequences (ignited HC leaks)
 - Limited focus on barrier failure probabilities
 - Causes of initiating events traditionally not covered

- NPP PSA
 - Focus on probability of defined scenarios
 - High focus on common mode & cause failures, etc
 - “Living PSA”

Brief history: Use of risk analysis

- Main application of risk assessments in the Norwegian industry in the 1980ties and 1990ties
 - Design tool, in order ensure that new installations had sufficient capabilities
 - To prevent major accidents and protect personnel in the case of such accidents
 - Significant investments in consequence modelling software tools, most well known is FLACS code
Brief history: Use of risk analysis

- Official inquiry by Lord Cullen in the UK, following Piper Alpha accident in 1988
 - Recommended that QRAs should be introduced into UK legislation
 - Corresponding to the way as in Norway nearly 10 years previously
 - Parallel focus on documentation through Safety Case documents

- Safety case
 - Primarily a tool for risk management in relation to existing installations
 - Main focus on consequences, layout and mitigation barriers
 - Similar approaches also adopted by several other countries (Denmark, Canada, Australia,..) & Shell on a worldwide scale ('HSE case')

- Many countries, most notably US, still have prescriptive regulations
Events that made marks on history

- NPPs
 - Three Mile Island (1979)
 - Chernobyl (1986)
 - Fukushima (2011)
- Accidents that have had similar extensive impact for the offshore operations:
 - Capsize of Flotel Alexander L. Kielland, 1980
 - Capsize of Mobile Offshore Drilling Unit Ocean Ranger, ‘82
 - Explosion & fire on fixed production platform Piper A, ‘88
 - Burning blowout on Deep Water Horizon mobile drilling unit, 2010

Impacts on Standards and Practices

- Capsize of the flotel Alexander L Kielland
 - Basic safety training for personnel
 - Use of conventional lifeboats in severe weather
 - Construction safety
 - Barriers to prevent rapid capsizing following major structural damage
Impacts on Standards and Practices

• Capsize of drilling rig Ocean Ranger
 - Improvement of ballast system flexibility for stabilizing the unit in high inclination angles
 - Training of ballast operators
 - Evacuation during severe weather conditions
 - Rescue of survivors following evacuation in severe weather

• Explosion and fire on Piper Alpha
 - Active fire protection
 - Passive fire protection
 - Protection of Temporary Refuge (shelter area)
 - Barriers against high inventories in pipelines
 - Compliance with procedures & documentation
Trends in offshore QRAs (10–15 years)

- Very limited further development
 - Some further development of consequence tools
 - Precursor data and barrier performance data through RNNP (N)
- Development of tools and methods for incorporation of
 - Causes of initiating events within HOF envelop
 - Collisions with offshore vessels
 - HC leaks

Overall purpose
FPSO Operational Safety Project

- Develop models and tools for predictive human reliability analysis
- Test out methodology on selected case studies
- Illustrate results that may be obtained
Objectives

- Demonstrate importance of HOF collision risk
- Identify and evaluate the important HOF factors
- Propose potential risk reduction measures relating to HOF

Contractors:
- NTNU
- SINTEF

Sponsors:
- ExxonMobil
- HSE
- Statoil
- Navion

Importance

- Several incidents 1996–2001
- Low velocity impacts (high mass, up to 30 MJ)
- Cargo penetration unlikely
- Accident chain may imply very severe consequences
- After 2002, 2–3 minor accidents
Comparison
Experienced times and maximum times available

Recovery action initiation

Time to stop

0 60 120 180 240 300 360

50 m distance
80 m distance
150 m distance

Time to collision if no action is taken

Risk Modelling, Integration of Organisational, Human and Technical factors (Risk_OMT)

- Ambitions for the Risk_OMT programme:
 - Extension of verification of barrier performance
 • From existing technical focus into a focus where operational barriers have similar weight
 - Provide sound quantitative basis
 • for analysis of operational risk reducing measures
 - Learn how the best managed installations
 • are achieving performance of operational barriers
 - Propose key performance indicators
 • enable identification proactively when operational conditions are deviating from a high standard

R&D PARTNERS:
- US, NTNU, SINTEF, FFI

Project sponsors (2007-11):
- Norwegian Research Council
Dependencies

- Change management
- Communication
- Procedures and documentation
- Physical working environment and workload
- Competence

Life cycle perspective

- The life cycle perspective is most obvious in Norwegian legislation, which apply for all phases of petroleum activity.
- UK legislation has the same perspective.
- The Norwegian legislation may be described as functional, risk-based (or risk informed):
 - Based on use of risk assessments in all phases.
Offshore petroleum: Use of risk analysis

- QRA (quantitative risk analysis)
 - New development
 - Concept selection
 - Concept optimization
 - Engineering
 - Fabrication
 - Pre start-up ('as built')
 - Operations phase
 - When modifications are implemented
 - Otherwise regularly (say every 3-5 years)
 - Prior to start of decommissioning
- Qualitative risk analysis
 - As design tool (HAZOP, etc)
 - As operational tool (HAZID, etc)

Goal-setting regime

- Implications of goal-setting approach:
 - Industry has more flexibility vis-à-vis fulfilling regulations & finding optimum solutions
 - Preventive and protective systems and actions may be tailored to relevant hazards
 - Models need to be available to distinguish between different levels of threats, and to tailor the solutions to the circumstances
ISO 31000 – Risk Management

- Also the basis for:
 - NORSOK Standard Z-013 Risk analysis and emergency preparedness assessment

Misuse of risk analysis in petroleum sector

- PSA:
 - Risk analysis primary use to identify & assess risk reducing measures in ALARP context
 - Risk analysis shall not be used to ‘prove’ acceptability of deviation from laws, regulations, standards, common practice, etc.

- HSE [UK] has made similar remarks
- Misuse
 - Was an issue in 1980s, with limited QRA experience
 - Reiterated warning in 2007
Robust regulations?

- Combination of internal control and risk-informed regulations appear to be fragile and far from robust combination for
 - Industry
 - Authorities

- No apparent focus in research

Could risk assessment prevented Macondo?

- Presidential Commission makes reference to North Sea legislation as possible model for US
 - ≈ 2 years after the accident:
 - no change so far
 - Some are sceptical that anything will change
Could risk assessment prevented Macondo?

• Reflections on this question
 – PSA has confirmed that Macondo accident could have occurred in Norwegian sector
 – Several incidents/accidents during 2004–10
 • Full blown subsea gas blowout in Nov. ’04 on Snorre A (Norwegian North Sea)
 – Lack of compliance with procedures one root cause
 – Also one of success factors of the well killing operations

Could risk assessment prevented Macondo?

• One of the common factors in recent well associated incidents & accidents:
 – Lack of proper risk assessment to
 • Identify criticality of various factors and deviations from plans & procedures that have to be made

• Common factor with the Macondo accident
 – Failure to assess risk as basis for MOC one crucial failure

• Effective management of major accident risk is strongly dependent on
 – Adequate modelling (i.e. insight) of hazard mechanisms
 – Stringent management of barriers throughout field life
 • Crucial factor in Montara accident
Could risk indicators prevented Macondo?

- Parallel with Texas City refinery explosion, where occupational injury statistics had been used to monitor major hazard risk
- Deepwater Horizon had been 7 years without significant occupational injuries
- Norwegian petroleum industry (RNNP)
 - Indicator for blowout risk based on occurrence of kicks (influx from high pressure zones into wellbore)
 - Typically 1 per 20 regular wells drilled
 - Deepwater wells (possibly up to 1 per 3 wells)
 - Insufficient to monitor performance in well drilling

Could risk indicators prevented Macondo?

- Study in recent R&D project has shown:
 - Blowout probability strongly influenced by
 - Inadequate planning of well operations
 - Inadequate management of change during drilling operations
- How should indicators be defined?
- Even if we had indicators
 - Would they be able to identify in time?
 - Failures of well planning
 - Failures during management of change during drilling operations
Could risk indicators prevented Macondo?

• Reference to Snorre A gas blowout (2004)
 – Undetected failures
 • Reentry into well planned without realizing leaks in casing
 • Risk assessment bypassed due to lack of resources
 • Failures were not detected before operations started
 – Unignited gas blowout
 • No injuries, no spill
 • Top kill within few hours, before ignition
 – Ignition could have caused total loss of installation and very extensive spills

• No indicators were able to identify well planning failures
• Is indicators the right way to go?

Could risk indicators prevented Macondo?

• Skogdalen et al.: possible use of major accident risk indicators to prevent accidents like Macondo
 – Many essential barrier elements are operational
 • Evaluation of the negative pressure test, which is one of the examples of the crucial misinterpretation of the tests
 – On every occasion that the drilling crew were supposed to make decisions balancing efficiency and risk (Pres. Com.)
 • Decided in favour of efficiency
 – thereby each time increasing the risk of a blowout
 – at the end failed to detect indications that there was a serious problem under development

• It appears very demanding to develop indicators that could have picked up this development
Could risk assessment prevented Gullfaks C?

- Lack of risk assessment identified as 1 root cause
 - PSA: why was risk assessments omitted?
- IRIS report identified significant management deficiencies
 - Limits Statoil’s ability to learn from accidents & incidents
- Investigation practices are also counterproductive with respect to learning
- More important than risk assessment:
 - Significant improvements to management attitudes & supervision
- A-standard appears to have significant effect
 - Reduced frequency of HC leaks in 2012

Risk assessment of drilling and well operations

- PSA has repeatedly claimed that risk assessment tools used by the Norwegian petroleum industry are not suitable for operational decision-making
 - Survey (PSA, 2009–10) pointed to need for further development of risk analysis tools
 - Usable as input to day-to-day decisions on installations; minor modifications, maintenance and interventions
 - Same observation would be applicable also for drilling operations
- Large difference between the NPPs and offshore installations with respect to development of online risk monitoring
Risk assessment for operational decision-making

- Simplistic or detailed modeling?
- Illustration
 - Decisions on how to install long process lines
 - Alt. A: Welding work
 - implies increased ignition risk during installation
 - Alt. B: ‘Cold’ installation methods, flanged connections
 - may increase leak probability over remaining life cycle
- Can robust decisions be made without detailed modeling?

Risk assessment of drilling and well operations

- Online risk monitoring for management of operations, maintenance and modifications to facilitate decisions relating to:
 - When a leaking valve needs to be repaired (example)
 - Whether it needs to done immediately in order to control the major accident risk
 - Whether it can wait for some time for the next scheduled plant shutdown
- Online risk monitoring of drilling and well operations is altogether another league
 - Models are not available at all
 - Extensive research effort is needed to develop suitable models
 - Mainly in the HOF field!
Barrier management

- PSA in follow-up after the Macondo blowout proposed also development of a scheme for barrier management
- Barrier failures were also obvious on the Deep Water Horizon mobile drilling rig, such as failure of blowout preventer (BOP)
- Lack of proper management of barriers is also common in the Norwegian industry
 - Poor RNNP barrier data year after year
 - HOF improvement in LOC data

Barrier management

- Management of barriers (ref. PSA) dependent on proper modelling in planning phase
 - Implies that inadequacy of risk models for drilling and well operations will also prevent the basis for barrier management to be established
- Lack of proper risk models will also limit how well risk indicators could be developed
Conclusions

• Prevention of major accidents most effectively through risk-informed decision-making
 – US & others should follow after UK & Norway

• Probably not a coincidence that severe accidents and incidents
 – Have occurred worldwide during the last ten years
 – Not in NW Europe

Conclusions

• Threat from EU to ‘throw out’ all the good experience in UK and Norway
 – Directive proposal apparently mainly aimed at environmental spill protection

• Step back from risk-informed to compliance basis

• Industry is probably partly to blame
 – No focus for many years to develop suitable risk based tools, especially for drilling and well operations
Conclusions

• Modelling of barrier performance is area where substantial improvement is needed
 – Grossly inadequate, especially for drilling
 – Operational barriers extra challenge

• Improvement of risk-informed management of major hazard risk in day-to-day decision-making

• Operational barrier elements the main challenge

Conclusions

• Can major accidents be eliminated?
 – No, one can occur tomorrow even if the probability is very low

• Risk-informed decision-making more advanced for process plant operation
 – Even in this area we have identified significant development needs
 – Drilling and well operations less well developed

• Possibility to learn from NPPs